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Abstract

Multi-Agent Path Finding (MAPF) is a fundamental prob-
lem in robotics, requiring the computation of collision-free
paths for multiple agents moving from their respective start to
goal positions. Coordinating multiple agents in a shared en-
vironment poses significant challenges, especially in contin-
uous spaces where traditional optimization algorithms strug-
gle with scalability. Moreover, these algorithms often depend
on discretized representations of the environment, which can
be impractical in image-based or high-dimensional settings.
Recently, diffusion models have shown promise in single-
agent path planning, capturing complex trajectory distribu-
tions and generating smooth paths that navigate continuous,
high-dimensional spaces. However, directly extending diffu-
sion models to MAPF introduces new challenges since these
models struggle to ensure constraint feasibility, such as inter-
agent collision avoidance. To overcome this limitation, this
work proposes a novel approach that integrates constrained
optimization with diffusion models for MAPF in continuous
spaces. This unique combination directly produces feasible
multi-agent trajectories that respect collision avoidance and
kinematic constraints. The effectiveness of our approach is
demonstrated across various challenging simulated scenarios
of varying dimensionality.

Introduction
Multi-agent path finding (MAPF) is a critical problem in
robotics and autonomous systems, where the goal is to com-
pute collision-free paths for multiple agents navigating from
their respective start positions to designated goals in a shared
environment (Stern et al. 2019). This problem finds formula-
tion in numerous domains, such as gaming, automated ware-
houses, and aircraft taxing (Li et al. 2021). The problem
is inherently challenging due to the high-dimensional joint
configuration space and the need for coordination among
multiple agents to avoid collision. The complexity increases
exponentially with the number of agents, making scalability
a significant issue for traditional MAPF algorithms. Addi-
tionally, existing studies typically consider discrete environ-
ments (Stern et al. 2019; Hopcroft, Schwartz, and Sharir
1984), thus further limiting their applicability in scenarios
in-the-wild.

The complexity of MAPF in continuous or high-
dimensional environments calls for approaches that move
beyond traditional discretized methods. Within this con-

text, trajectory optimization has recently been tackled us-
ing diffusion models, a powerful class of generative mod-
els originally developed for tasks in image and signal pro-
cessing (Song and Ermon 2019; Ho, Jain, and Abbeel
2020). These models approximate high-dimensional proba-
bility distributions by iteratively denoising sampled trajecto-
ries, leveraging strong inductive biases that provide effective
heuristics even for very complex distributions. Their adapt-
ability has accelerated their adoption across diverse engi-
neering domains, including single-agent robotic path plan-
ning (Carvalho et al. 2023; Christopher, Baek, and Fioretto
2024). By learning the underlying distribution of (feasible)
trajectories, diffusion models can produce diverse solutions
that may be missed by traditional planners due to induc-
tive bias. Additionally, these models possess the ability to
generate smooth trajectories that effectively navigate high-
dimensional spaces with complex obstacles while directly
processing real-world representations of the environment.

However, despite their potential, current diffusion mod-
els face significant challenges in generating feasible trajecto-
ries. Existing approaches often rely on costly rejection sam-
pling methods, which attempt to identify a feasible subset
from a larger set of initially generated trajectories, if such a
subset exists at all (Carvalho et al. 2023; Christopher, Baek,
and Fioretto 2024). Additionally, despite their adoption in
single-agent scenarios, extending diffusion models to MAPF
presents additional challenges. The introduction of multi-
ple agents requires the consideration of collision avoidance
among agents, as well as kinematic constraints.

To address this limitation, this paper proposes a novel
integration of constrained optimization in diffusion pro-
cesses tailored to MAPF in continuous spaces. The proposed
method leverages the projection-based method for diffusion
models (Christopher, Baek, and Fioretto 2024), which has
been recently introduced to steer the learned data distribu-
tion to satisfy some constraints of interest. This approach re-
formulates the sampling process as a constrained optimiza-
tion problem, projecting the outputs of DMs at each sam-
pling step into the feasible region. However, the MAPF fea-
sible region is defined by a set of nonconvex nonlinear con-
straints (NNCs), which massively complicates the applica-
tion of these diffusion models in scenarios with a large num-
ber of agents or with moving objects. To address this limi-
tation and enhance computational efficiency, we propose an



augmented Lagrangian method that relaxes the NNCs, mak-
ing the proposed approach suitable for complex applications
where classical MAPF algorithms fall short. This novel inte-
gration enables generative diffusion models to generate, for
the first time, collision-free trajectories for scenarios involv-
ing dozens of agents and obstacles.

The paper’s contributions are summarized as follows:
1. We introduce a novel formulation of MAPF in continu-

ous spaces using diffusion models, enabling the simulta-
neous generation of trajectories for all agents in a single
framework.

2. To address the challenge of constraint satisfaction, we
adapt the projection mechanism for MAPF by embedding
constraints directly into the diffusion process, projecting
the generated solutions into the feasible region.

3. Given the computational intractability of MAPF in con-
tinuous spaces, especially with a large number of agents,
we develop an augmented Lagrangian approach to ac-
celerate the projection process. This enhancement sig-
nificantly reduces computational overhead, making the
method scalable and practical for real-world applications.

4. We assess the ability of our approach to generate feasi-
ble MAPF trajectory empirically over several challeng-
ing scenarios, which include maps with narrow corridors,
dense obstacles, and a large number of agents.

Related Work
Multi-Agent Path Finding. The classical MAPF problem
assumes that time and the environment are discretized into
time steps and grids, respectively (Stern et al. 2019). Un-
der this assumption, numerous search algorithms have been
developed to efficiently obtain near-optimal solutions for
MAPF in discrete environments, even for scenarios involv-
ing hundreds of agents (Li et al. 2019; Li, Ruml, and Koenig
2021; Okumura et al. 2022a; Li, Ruml, and Koenig 2021).
While this assumption significantly reduces the complex-
ity of MAPF, it creates a gap between the problem’s for-
mulation and real-world applications, posing challenges in
many domains (Shaoul et al. 2024). Some studies attempt to
generalize MAPF to continuous environments using proba-
bilistic roadmaps (Kavraki et al. 1996) and rapidly exploring
random trees (LaValle 1998). Another line of research for-
mulates MAPF as a constrained optimization problem with
continuous variables, employing methods such as sequential
convex programming (Augugliaro, Schoellig, and D’Andrea
2012; Chen, Cutler, and How 2015) and the alternating di-
rection method of multipliers (Chen et al. 2023). However,
these methods often fail to find any solution if there are a
large number of agents and obstacles, even if one exists.

Path Finding with Generative Models. There has been
a growing interest in leveraging generative models for path
finding problems. Existing studies primarily focus on using
diffusion models to solve single-agent path finding prob-
lems (Janner et al. 2022; Carvalho et al. 2023). Besides
these approaches, Okumura et al. utilizes a conditional vari-
ational autoencoder to predict cooperative timed roadmaps
to aid in solving MAPF in continuous spaces. Shaoul et al.

uses diffusion models to generate a trajectory for a single
agent and employs classical searching algorithms to deter-
mine the final solutions. However, these methods do not en-
sure the feasibility of the diffusion model outputs and can-
not directly generate collision-free paths. In contrast, our
approach integrates optimization techniques into diffusion
models to directly generate feasible MAPF solutions in con-
tinuous spaces, even in scenarios with a significant number
of obstacles, while ensuring feasibility.

Preliminaries
Diffusion Models. Diffusion Models (DMs) are a class of
probabilistic generative models designed to transform sim-
ple noise distributions into complex target data distributions.
They operate through two Markov chains: (1) a forward dif-
fusion process that progressively adds noise to data samples,
and (2) a reverse denoising process that iteratively removes
noise to recover data samples (Yang et al. 2023). In the for-
ward process, Gaussian noise is incrementally added to the
data x0 ∼ q(x0) over T timesteps, producing a sequence of
noisy samples x1,x2, . . . ,xT :

q(xt|xt−1) = N
(
xt;

√
1− βtxt−1, βtI

)
, (1)

where βt ∈ (0, 1) is a predefined variance schedule control-
ling the amount of noise added at each step, ensuring that the
final distribution approximates an isotropic Gaussian. The
reverse process begins with a sample from the noise distri-
bution xT ∼ N (0, I) and aims to reconstruct data samples
by sequentially removing noise:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) , (2)

where θ represents the learned parameters of neural net-
works, and µθ and Σθ are functions parameterizing the
mean and covariance, respectively. Through this process,
DMs iteratively transform random noise samples into data
resembling the target distribution q(x0).

Score-based DMs employ a neural network sθ to approx-
imate the score function ∇xt log q(xt), which points in the
direction of the steepest ascent of the data density at each
noise level (Song et al. 2020). The training objective is to
minimize the difference between the true score and the net-
work’s approximation (Yang et al. 2023):

Et∼1,...,T , x0∼q(x0),
xt∼q(xt|x0)

|∇xt log q(xt)− sθ(xt, t)|2 η(t)βt

(3a)

= Et∼1,...,T , x0∼q(x0),
xt∼q(xt|x0)

|∇xt log q(xt|x0)− sθ(xt, t)|2η(t)βt + const,

where q(xt|x0) = N
(
xt;
√
1− βtx0, βtI

)
and η(t) is a

positive weighting function.
As shown by Yang et al. (2023), classical DMs are a spe-

cial case of score-based DMs. In the subsequent sections,
our focus will be on score-based DMs due to their flexibility
and effectiveness.

Multi-Agent Path Finding in Continuous Space
Multi-Agent Path Finding (MAPF) involves computing
collision-free trajectories for multiple agents moving from



their respective start locations to designated goals within
a shared environment. Consider a set of Na agents A =
{a1, a2, . . . , aNa

} operating on a two-dimensional plane, in
a continuous space. Each agent ai is modeled as a sphere
with radius ri and has a trajectory over H time steps de-
noted by πi = [π1

i , π
2
i , . . . , π

H
i ], where πh

i = (xh
i , y

h
i )

represents the position of agent ai at time h. The agents
have start positions B = [b1, b2, . . . , bNa

] and goal posi-
tions E = [e1, e2, . . . , eNa

]. In addition, their movement
must adhere to kinematic constraints, such as maximum
velocities. The environment contains No obstacles O =
{o1, . . . , oNo}. The objective is to find a set of trajectories
Π = {π1,π2, . . . ,πNa}, each associated with agent ai, that
minimizes a cost function while ensuring feasibility with re-
spect to environmental constraints and inter-agent collision
avoidance.

The MAPF problem can be formulated as the following
constrained optimization:

min
Π

J (Π) (4a)

s.t. Π ⊆ Ωobs, (4b)

π1
i = bi, ∀i ∈ [Na], (4c)

πH
i = ei, ∀i ∈ [Na], (4d)

Kinematic constraints on Π, (4e)
Collision avoidance between agents in Π, (4f)

where J : RNa×H×2 → R is the cost function (e.g., to-
tal travel time or energy consumption), and Ωobs denotes
the feasible region of the environment considering obstacles.
Constraints (4b) ensure that agents avoid obstacles, (4c) and
(4d) ensure that each agent starts at and reaches its desig-
nated start and end positions, respectively, (4e) enforce kine-
matic limits, and (4f) prevent inter-agent collisions. In the
following, we denote the constraint set (4c)– (4f), with Ω.

The MAPF problem is challenging due to the high dimen-
sionality of the joint configuration space and the need to co-
ordinate multiple agents simultaneously (Stern et al. 2019;
Shaoul et al. 2024). Traditional methods often struggle with
scalability and may not efficiently handle the continuous na-
ture of real-world environments, as shown in (Augugliaro,
Schoellig, and D’Andrea 2012; Shaoul et al. 2024). We seek
to address this issue using constrained DMs.

Constrained Diffusion Models
In this section, we first revisit the sampling process for DMs
and then investigate the integration of DMs and optimization
to constrain the output of DMs satisfying constraints.

Recall The Sampling Process in DMs
Since the sampling process in DMs is a Markov process, we
generate x0 by iterative sampling from the conditional dis-
tribution xt ∼ q(xt|x0) as t → 0, where q(xt|x0) shifts
from Gaussian noise to the training data distribution as t de-
creases. The sample is optimized with respect to each in-
terim data distribution by M iterations of Stochastic Gradi-
ent Langevin Dynamics (SGLD):

xi+1
t = xi

t + γt∇xi
t
log q(xi

t|x0) +
√

2γtz, (5)

Algorithm 1: PDM

1 x0
T ∼ N (0,

√
βT I)

2 for t = T to 1 do
3 γt ← βt/2βT

4 for i = 1 to M do
5 z ∼ N (0, I); g← sθ∗(xi−1

t , t)

6 xi
t = PΩ(x

i−1
t + γtg +

√
2γtz)

7 x0
t−1 ← xM

t

8 return x0
0

where z is standard normal, γt > 0 is the step size, and
∇xi

t
log q(xi

t|x0) is approximated by the learned score func-
tion sθ(xt, t).

Christopher, Baek, and Fioretto (2024) derive theory con-
necting the application of SGLD for sampling to iterative,
gradient-based optimization algorithms. The described pro-
cess ensures that, under appropriate conditions, samples are
distributed according to the target distribution q(xt). As
shown by Christopher, Baek, and Fioretto (2024), SGLD
converges toward a stationary distribution under mild as-
sumptions, transitioning toward deterministic gradient as-
cent as the stochastic component diminishes. This connects
the reverse diffusion process to an optimization problem,
minimizing the negative log-likelihood of the data distribu-
tion and forming the foundation for constrained sampling
via iterative projections.

Projected Diffusion Models
In this subsection, we introduce Projected Diffusion Models
(PDM) to ensure that generated outputs satisfy predefined
constraints. While the objective remains consistent with tra-
ditional score-based DMs, the solution is restricted to lie
within a feasible region Ω. This transforms the optimization
problem into a constrained formulation (Christopher, Baek,
and Fioretto 2024):

min
xT ,...,x1

∑
t=T,...,1

− log q(xt|x0) (6a)

s.t. xT , . . . ,x0 ∈ Ω. (6b)

The reverse sampling process in PDM aligns closely with
that of traditional score-based DMs. Specifically, the score
network sθ(xt, t) estimates the gradient of the objective in
Equation (6a), enabling iterative updates as defined in Equa-
tion (5). However, the presence of constraints (6b) necessi-
tates a modification to the update rule to maintain feasibil-
ity. To address this, PDM employs a projected guidance ap-
proach, incorporating constraints into the optimization pro-
cess.

The projection operator, PΩ, is defined as solving a con-
strained optimization problem:

PΩ(x) = argmin
y∈Ω

d(x,y), (7)

where d(x,y) is a distance function, and, unless otherwise
d(x,y) denotes the euclidean distance: ∥y − x∥22, which



identifies the closest feasible point y within Ω to the input
x.

To ensure feasibility at each step, the projected diffu-
sion model applies the projection operator after updating xt,
leading to the projected diffusion model sampling step:

xi+1
t = PΩ

(
xi
t + γt∇xi

t
log q(xt|x0) +

√
2γtz

)
, (8)

where Ω is the set of constraints and PΩ is a projection onto
Ω. Throughout the reverse Markov chain, each iteration per-
forms a gradient step to minimize the objective in Equa-
tion (6a), while ensuring feasibility through projection. As
is the case in this paper, the complete sampling process is
outlined in Algorithm 1.

PDM directly minimizes the negative log-likelihood as its
core objective, similar to standard unconstrained sampling
methods. This approach provides a crucial benefit: it directly
optimizes the probability of generating samples that align
with the data distribution, while simultaneously imposing
explicit, verifiable constraints. In the next section, we de-
velop a projection mechanism tailored for MAPF in contin-
uous spaces.

Efficient Projections for MAPFs
While PDM provides a useful method to steer samples
generated by the generative model to satisfy relevant con-
straints, projecting onto nonconvex sets can be a computa-
tionally expensive operation, especially when it is required
to be computed at each step of the sampling process. To ad-
dress this shortcoming, we develop a projection mechanism
to generate feasible trajectories for all agents. To accelerate
the projection process, we adopt the augmented Lagrangian
method (ALM) (Boyd et al. 2011) to the projection process.

Collision-free Trajectories Projection Mechanism
In the following, we define the mathematical formulation of
the feasible region Ω for the MAPF problem, distinguishing
between convex and nonconvex constraints.

Convex Constraints. First, each agent’s trajectory must
start and end its specified start and goal points, as specified
in Constraints (4c) and (4d).

Additionally, agents must adhere to maximum velocity
limits between consecutive time steps:(
πh
i − πh−1

i

)2 ≤ (vmax
i ∆t)

2
, ∀i ∈ [Na], h ∈ {2, . . . ,H},

(9)

where vmax
i denotes the maximum allowable velocity for

agent ai, and ∆t is the time interval between steps.
Together, these constraints define a convex set:

Ωc =
{
Π ∈ RNa×H×2

∣∣∣Constr. (4c), (4d), and (9) hold
}
.

(10)

Nonconvex Constraints. To ensure collision avoidance
between agents, we impose the following nonconvex con-
straints:

(πh
i − πh

j )
2 ≥ (Ra)2,∀i, j, i ̸= j ∈ [Na], h ∈ [H], (11)

where Ra denotes the minimum distance between agents at
each time.

Similarly, to avoid collisions between agents and static
obstacles, we have:

(πh
i − oj)

2 ≥ (Ro)2,∀i, j ∈ [Na], h ∈ [H], (12)

where Ro denotes the minimum distance between agents
and obstacles to guarantee noncollision. Similarly, these two
constraints define

Ωn =
{
Π ∈ RNa×H×2

∣∣∣Constr. (11), (12), hold
}
. (13)

The complete feasible set is given by: Ω = Ωc ∩ Ωn.
Although the projector PΩ can generate feasible MAPF tra-
jectories, the nonconvex constraints result in high computa-
tional costs.

ALM for Efficient Projection
To address this issue, we seek to relax the nonconvex
constraints in MAPF to transform the original nonconvex
quadratically constrained quadratic problem (QCQP) into a
convex QCQP. To facilitate analysis, we rewrite the inequal-
ity constraints as equalities:

Ha :(Ra)2 − (πh
i − πh

j )
2 + dai,j,h = 0,∀i, j, i ̸= j, ∀h,

(14a)

Ho :(Ro)2 − (πh
i − oj)

2 + doi,j,h = 0,∀i, j, ∀h, (14b)

where dai,j,h and doi,j,h (with vector form da and do, respec-
tively) are positive dummy variables. The Lagrangian func-
tion is defined as:

Lc(Π,νa,νo) = f(x) + ν⊤
a Ha(Π) + ν⊤

o Ho(Π), (15)

where νa and νo are Lagrangian multipliers,Ha andHo rep-
resent the equality constraints defined by (14a) and (14b),
respectively. Specifically,Ha corresponds to the agent colli-
sion avoidance constraints (Ra)2 − (πh

i − πh
j )

2 + dai,j,h =
0,∀i, j, i ̸= j, ∀h, and Ho corresponds to the obstacle col-
lision avoidance constraints (Ro)2 − (πh

i − oj)
2 + doi,j,h =

0,∀i, j, ∀h. To improve the poor convergence of the clas-
sical lagrangian function, we can augment the Lagrangian
function with a penalty on the constraint residuals (Boyd
et al. 2011; Kotary, Fioretto, and Van Hentenryck 2022):

L(Π,νa,νo) = f(x)

+ ν⊤
a Ha(Π) + ν⊤

o H0(Π)

+ ρa∥Ha(Π)∥2 + ρo∥Ho(Π)∥2,
(16)

where ρa and ρo are chosen penalty weights on the equality
residuals. The corresponding Lagrangian Dual function can
be defined:

d(νa,νo) = min
Π
L(Π,νa,νo). (17)

The Lagrangian Dual Problem is to maximize the dual
function:

arg max
νa,νo

d(νa,νo) (18a)

s.t. Π ∈ Ωc. (18b)



Algorithm 2: ALM for Projection

Input: Tolerance δ, Weight ρ, Initial Trajectory Π̂
1 x0

T ∼ N (0, σT I)
2 while∇νa < δ ∧∇νo < δ do
3 ν̂a ← Ha(Π̂), ν̂o ← Ho(Π̂);
4 Π̂← argminΠ∈Ωc

L(Π̂,ν∗
a ,ν

∗
o );

5 ∇νa
← Ha(Π̂),∇νo

← Ho(Π̂) ;
6 ρ← Update(ρ)

7 return Π̂;

Through weak duality, solving the dual problem (18) can
provide a lower bound for the original problem’s optimal so-
lution. Specifically, a feasible solution Π̂ to the Primal prob-
lem can be derived from the dual solution (ν∗

a ,ν
∗
o ) via the

stationarity condition:

Π̂ = arg min
Π∈Ωc

L(Π,ν∗
a ,ν

∗
o ). (19a)

The dual problem (18) can be solved iteratively, named
the Dual Ascent method (DAM):

Πk = arg min
Π∈Ωc

L(Π,νk
a ,ν

k
o ), (20a)

νk+1
a = νk

a + ρkaHa(Π
k), (20b)

νk+1
o = νk

a + ρkoHo(Π
k). (20c)

Using ALM significantly accelerates the projection pro-
cess, especially in complex scenarios. The augmented sam-
pling process is described in Algorithm 2.

Experiments
We evaluate the performance of PDM in generating feasi-
ble trajectories for MAPF in continuous spaces. We compare
PDM against standard Diffusion Models (SDM) and Guided
Diffusion Models (GDM) across three challenging scenar-
ios: Narrow Corridors, Obstacle-Dense Environments, and
Agent-Dense Environments.

Experimental Setup
We conduct experiments in the following scenarios:
• Narrow Corridors: Scenarios where agents must ex-

change positions in confined spaces, requiring precise co-
ordination to avoid collisions.

• Obstacle-Dense Environments: Scenarios with a high
density of obstacles, where agents must navigate com-
plex paths to reach their goals without collisions.

• Agent-Dense Environments: Scenarios with a large
number of agents, increasing the complexity of collision
avoidance and coordination.

For each scenario, we generate environments where the
positions of obstacles and agents are randomly assigned and
do not appear in the training data, ensuring that the mod-
els are tested on unseen configurations. The training data is
collected following the routine described in (Okumura et al.
2022b).

We evaluate the methods based on two metrics:

PDM DM GDM

Violation
Rate

NC 1 0 34.62 0.96
NC 2 0 15.79 5.26

Path
Length

NC 1 0.7867 2.6766 0.8235
NC 2 0.7521 2.1293 0.8398

Table 1: Performance Evaluation on Narrow Corridors.

• Violation Rate: The percentage of constraints violated,
indicating the feasibility of the generated trajectories.

• Total Path Length: The sum of the lengths of the paths
taken by all agents, reflecting the efficiency of the trajec-
tories.

We compare our proposed PDM against the following
baseline methods:

• Standard Diffusion Models (SDM): Standard diffusion
models used to generate trajectories without any con-
straint handling.

• Guided Diffusion Models (GDM): Diffusion models
guided by penalty terms added during the sampling pro-
cess to encourage feasibility, similar to the method used
in (Carvalho et al. 2023).

Evaluation on Narrow Corridors
The Narrow Corridor scenarios are designed to test the abil-
ity of the methods to generate feasible trajectories in tight
spaces where agents must exchange positions. Figures 1(a)
and 1(b) illustrate the trajectories generated by PDM in two
different narrow corridor scenarios. Agents (solid circles)
successfully reach their respective goals (empty circles) by
coordinating their movements to avoid collisions in the con-
fined space. Notice how PDM can identify a set of feasible
paths for each agent in the narrow corridor by generating
complex maneuvers and adjusting speed and position to al-
low an agent to overtake the other.

Table 1 presents the performance of all methods in terms
of violation rate and total path length for the two narrow
corridor scenarios (NC1 and NC2). Lower values indicate
better performance. Notice how PDM outperforms both DM
and GDM, achieving zero violation rates and the shortest
total path lengths in both scenarios. In contrast, standard
DM exhibits high violation rates and longer paths, indicating
significant limitations in handling constraints. GDM reduces
violation rates compared to DM but still falls short of PDM’s
performance.

Evaluation on Obstacle-dense Scenarios
In the Obstacle-Dense scenarios, we test the methods in en-
vironments with twenty randomly placed obstacles and four
agents. Figures 2(a) and 2(b) show the trajectories generated
by PDM, demonstrating its ability to navigate complex envi-
ronments while avoiding collisions even when agents need
to navigate scenarios presenting a large number of obstacles.

Table 2 summarizes the performance of the methods in the
obstacle-dense scenarios (OD1 and OD2). Notice how PDM



(a) Narrow Corridor 1.

(b) Narrow Corridor 2.

Figure 1: Collision-free trajectories generated by PDM in Narrow Corridor scenarios. Agents (solid circles) navigate to their
goals (empty circles) by exchanging positions in confined spaces without collisions.

(a) Obstacle-dense Scenario 1. (b) Obstacle-dense Scenario 2.

Figure 2: Collision-free trajectories generated by PDM
in Obstacle-Dense scenarios. Agents successfully navigate
through environments with numerous obstacles to reach
their goals. The empty dashed circles denote starting points,
and the solid circles represent the goals.

achieves the best performance, maintaining zero violation
rates and the shortest paths, indicating strong adaptability to
dense obstacles. In contrast, DM exhibits higher violation
rates and the longest paths. GDM outperforms DM but is
worse than PDM. These results emphasize PDM’s robust-
ness and efficiency.

PDM DM GDM

Violation
Rate

OS 1 0 0.58 0.48
OS 2 0 1.02 0.58

Path
Length

OS 1 2.0087 6.0228 5.6979
OS 2 2.0457 5.8585 5.2771

Table 2: Performance Evaluation on Obstacle-dense Scenar-
ios.

PDM DM GDM

Violation
Rate

AS 1 0.31 3.78 0.54
AS 2 0.17 2.99 0.37

Path
Length

AS 1 5.2021 11.1599 5.4932
AS 2 5.1631 11.4114 5.4081

Table 3: Performance Evaluation on Agent-dense Scenarios.

Evaluation on Agent-dense Scenarios
Finally, we test the ability of our proposed method to han-
dle a large collection of agents. An increasing number of
agents significantly introduces computational costs during
projection, which makes standard projection methods chal-
lenging to handle. To address this, we use the ALM method
to efficiently address Agent-dense Scenarios. Table 3 evalu-
ates PDM, DM, and GDM in agent-dense scenarios (AS 1
and AS 2). PDM achieves the lowest violation rates (0.31
and 0.17) and shortest path lengths (5.2021 and 5.1631),
highlighting its efficiency in handling high agent density.
GDM also shows moderate performance, with higher vio-
lation rates and longer path lengths compared to PDM. DM
performs the worst, with significantly higher violation rates
(3.78 and 2.99) and longest paths (11.1599 and 11.4114),
indicating limited suitability for agent-dense conditions.

These results are significant as they demonstrate the
power of combining diffusion models with constrained opti-
mization techniques to address problems that would be oth-
erwise challenging to be tackled by these two areas indepen-
dently.

Conclusion
In this paper, we have presented a novel approach that
combines constrained optimization techniques with DMs to
generate collision-free trajectories for MAPF in continuous
spaces. By integrating constraints directly into the diffusion
process, our method enables the direct generation of feasi-
ble solutions for MAPF without the need for expensive re-



jection sampling or post-processing steps. This integration
ensures that the generated trajectories satisfy all necessary
constraints, including collision avoidance between agents,
adherence to kinematic limits, and compliance with start and
goal positions.

To address the computational challenges inherent in han-
dling complex constraints, especially in scenarios with a
large number of agents or obstacles, we designed an ALM
to efficiently manage the projection process within the dif-
fusion framework. The ALM significantly accelerates the
computation by transforming the constrained optimization
problem into a series of unconstrained problems augmented
with penalty terms and Lagrange multipliers. This enhance-
ment makes our approach scalable and practical for real-
world applications where computational resources and time
are critical factors.

Our preliminary experiments across various challenging
scenarios—including narrow corridors, obstacle-dense envi-
ronments, and agent-dense environments—demonstrate the
effectiveness and robustness of our proposed method. In
narrow corridor scenarios, where precise coordination is
crucial, our PDM successfully generated feasible trajecto-
ries that allowed agents to exchange positions without col-
lisions. In obstacle-dense environments, PDM consistently
navigated agents through complex paths while maintaining
zero violation rates and optimizing path lengths. In agent-
dense scenarios, despite the increased complexity due to the
higher number of agents, PDM maintained superior perfor-
mance with the lowest violation rates and shortest total path
lengths.

Crucially, the integration of constrained optimization into
the diffusion process not only ensures constraint satisfaction
but also improves the overall quality of the generated tra-
jectories. By embedding constraint handling directly within
the generative model, the aim is to eliminate the reliance on
heuristic adjustments, leading to a cohesive and effective so-
lution. We hope that applications like this one would help to
bridge the gap between probabilistic generative models and
constrained optimization, opening new avenues for applying
diffusion models to complex multi-agent robotic systems.
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