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Abstract

Automated Storage and Retrieval Systems (AS/RS) require
the coordination of multiple agents in a common warehouse
environment. They often rely on Multi-Agent Path Finding
(MAPF) technologies for the path-coordination of agents that
transport inventory pods. In this paper, we study the more re-
cent cube-based AS/RS and the relevance of MAPF technolo-
gies to them. In these systems, storage bins are stacked on top
of each other in a tight 3D grid environment without aisles.
Robots operate only at the top level to retrieve and organize
the storage bins. While cube-based AS/RS maximize the stor-
age density, they require the robots to “dig” out the storage
bins whenever necessary. Despite their advantages and recent
adoption, limited research has been reported on the relevance
of MAPF technologies to them. In this paper, we adopt novel
MAPF perspectives on the cube-based AS/RS and propose
two approaches for planning in such domains. In the first ap-
proach, the robots are treated as the agents: Plans are gener-
ated for them using ‘move’ and ‘dig’ actions. In the second
approach, there are two phases. In the first phase, the storage
bins are treated as the agents: Plans are generated for them
to move autonomously. In the second phase, the robots are
treated as the agents: Plans are generated for them to chaper-
one the movements of the storage bins. We demonstrate the
value of MAPF technologies in cube-based AS/RS and ex-
perimentally show that the second approach marginally out-
performs the first.

1 Introduction

The automation of warehouses is a large multi-billion dol-
lar industry currently led by companies such as Amazon
Robotics and Alibaba (Salzman and Stern 2020). Automated
warehouses are often formally referred to as Automated
Storage and Retrieval Systems (AS/RS). In such systems,
multiple agents—typically robots—transport inventory pods
between their storage locations and various workstations
where they are required. These agents operate in a common
environment and are required to avoid conflicts with each
other while planning their paths.

For the required path coordination, AS/RS rely on Multi-
Agent Path Finding (MAPF) technologies. Specifically, they
invoke MAPF solvers to plan collision-free paths for all the
agents while optimizing one or more performance metrics.
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In fact, the end-to-end performance metrics of AS/RS are
often well-aligned with the performance metrics for which
the MAPF solvers are optimized. Moreover, modern MAPF
solvers encapsulate powerful algorithmic techniques and can
scale up to realistic AS/RS planning problems with hundreds
of agents.

Many existing AS/RS operate in an environment that can
be modeled as a 2D grid map with aisles between the stor-
age locations of the inventory pods. Thus, such systems can
be expanded by increasing the floor space and the number
of agents. However, in such systems, it is not easy to in-
crease the storage density, that is, the amount of inventory
per unit area of the floor space. Figure 1a shows an example
via a schematic of the Kiva system (Wurman, D’ Andrea, and
Mountz 2008). Here, increasing the storage density is pro-
hibitive because: (a) Decreasing the space reserved for the
aisles can cause more conflicts and congestion among the
robots that transport the inventory pods; and (b) Vertically
expanding the shelf space in an inventory pod can make it
unstable and/or overload the robot that carries it.!

More recently, cube-based AS/RS have been developed to
improve the storage density in automated warehouses (Trost,
Kartnig, and Eder 2023; Trost and Eder 2024). Figures 1b
and lc show two examples of cube-based AS/RS: AutoStore
and Ocado, respectively. Unlike the Kiva-style AS/RS, cube-
based AS/RS employ a 3D grid space for storage bins. The
storage bins are stacked directly on top of each other, in an
attempt to maximize the storage density. The robots operate
on a 2D grid above the storage area to retrieve and deliver
the storage bins to workstations, whenever necessary.

The cube-based AS/RS have several significant advan-
tages over Kiva-style AS/RS. One such advantage is that the
cube-based AS/RS have a higher storage density. Another
advantage is that they are easily extensible and capable of
utilizing available space of any shape within a building. A
third advantage is that the robots operate on a 2D grid above
the storage area, which is primarily open space without ob-
stacles or narrow aisles.

The above advantages of the cube-based AS/RS incur cer-
tain bin “digging” costs. Bin digging refers to the following
two-fold complexity. First, a robot is required to lift (lower)

! Adding a second or third floor to a warehouse may not increase
its land space but still increases its floor space.



(a) Kiva

(c) Ocado

Figure 1: Shows the schematics of different types of AS/RS. (a), borrowed from (Wurman, D’ Andrea, and Mountz 2008), shows a Kiva-
style system, in which robots transport inventory pods on a 2D grid map with aisles. (b) and (c), borrowed from https://commons.wikimedia.
org/wiki/File:Euro-friwa-autostore.jpg and https://commons.wikimedia.org/wiki/File:Ocado_warehouse_bots.jpg, respectively, show the Au-
toStore and the Ocado cube-based AS/RS, respectively, in which the storage bins are stacked on top of each other and the robots operate only

above the storage areas.

a storage bin from (onto) the stack beneath it. Hence, the
robots have to be equipped with special apparatuses for not
only carrying but also lifting (lowering) storage bins (albeit
one at a time). Each lift (lower) operation can be expensive,
both in terms of time and energy consumption. Second, the
storage bins that are stacked on top of a target storage bin
have to be relocated from that stack to clear the path for the
target storage bin.

Overall, the advantages of cube-based AS/RS outweigh
the costs of the bin digging problem incurred by them. In
fact, their recent adoption by companies, such as AutoStore
and Ocado, is testimony to this cost-benefit analysis. More-
over, in the near future, cube-based AS/RS are expected to
become cheaper and increasingly popular for warehouse au-
tomation.

While MAPF technologies have played a critical role in
the success of Kiva-style AS/RS, limited research has been
reported on their relevance to cube-based AS/RS?. In Kiva-
style AS/RS, MAPF technologies have been used to address
the one-shot MAPF problem (Cohen et al. 2016; Okumura
2023), the lifelong MAPF problem (Ma et al. 2019b; Li et al.
2021b; Varambally, Li, and Koenig 2022), and the ware-
house layout design problem (Zhang et al. 2023).

In this paper, we explore the applicability of MAPF tech-
nologies to cube-based AS/RS in anticipation of a signifi-
cant long-term impact similar to that in Kiva-style AS/RS.
However, as a first milestone, we study a version of the co-
ordination problem in which all tasks are known a priori. We
use two novel perspectives, each of which leads to a different
approach, but both of which are based on the Conflict-Based
Search (CBS) framework (Sharon et al. 2015). In the first
approach, the robots are treated as the agents: Plans are gen-
erated for them using ‘move’ and ‘dig’ actions. In the second
approach, there are two phases. In the first phase, the storage
bins are treated as the agents: Plans are generated for them
to move autonomously. In the second phase, the robots are

2 An existing master’s thesis (Djupesland 2023) claims to extend
the relevance and use of reinforcement learning in MAPF to cube-
based AS/RS. However, we do not have access to this thesis since
it will not be made publicly available until May 2026.

treated as the agents: Plans are generated for them to chap-
erone the movements of the storage bins.

The second approach initially treats the storage bins as
the agents and decouples them from the robots. Despite this
initial decoupling, we intuitively expect the second approach
to outperform the first approach for the following reason: In
the cube-based AS/RS, the storage bins are tightly packed
in a 3D grid space, while the robots operate on an open 2D
grid above the storage area. Consequently, the tendency of
storage bins to block each other is more than the tendency
of robots to block each other. Therefore, the coordination
of the storage bins is more critical than the coordination of
the robots and should be addressed as early as possible. The
second approach indeed follows this strategy.

While both of our approaches are based on the CBS
framework, they require careful generalizations and adap-
tations to cube-based AS/RS. This is because of the unique
challenges of cube-based AS/RS that primarily stem from
the added complexity of bin digging. We describe how to
address the unique challenges of cube-based AS/RS in both
our approaches. We also provide a comprehensive set of ex-
perimental results that compares the two approaches. In gen-
eral, we observe that the second approach marginally outper-
forms the first in terms of efficiency and success rate. Our
results conform to the intuition described above.

2 Background

In this section, we describe the background material that is
relevant to the rest of the paper.

2.1 Multi-Agent Path Finding

The classic MAPF problem is specified by an undirected
unweighted graph G = (V,E) and a set of k agents
{a1,az...a;}, where a; is required to move from a start
vertex s; € V to a goal vertex g; € V. Time is discretized
into timesteps. At each timestep, each agent can either move
to an adjacent vertex or wait at its current vertex, both with
unit cost. A path of a; is a sequence of move and wait ac-
tions that lead a; from s; to g;. A vertex conflict (a;, a;,v,t)
occurs when two different agents a; and a; are at the same



vertex v at timestep ¢. An edge conflict (a;, a;, u,v,t) oc-
curs when two different agents a; and a; traverse the same
edge (u,v) in opposite directions between timesteps ¢ and
t + 1. A solution to a MAPF problem is a set of paths, one
for each agent, without conflicts. The quality of the solution
is measured by the sum of costs (the sum of the numbers of
timesteps required by every agent to reach its goal vertex)
or the makespan (the number of timesteps within which all
agents reach their goal vertices).

The MAPF problem defined above is commonly referred
to as the one-shot MAPF problem: Each agent is required
to reach a single goal location from its start location and
stay there. The one-shot MAPF problem has many practi-
cal applications, such as in automated warehousing (Wur-
man, D’ Andrea, and Mountz 2008), virtual network embed-
ding (Zheng et al. 2022, 2023), railway planning (Li et al.
2021a) and multi-drone delivery (Choudhury et al. 2020).
Another variant of the MAPF problem is the lifelong MAPF
problem: Continually, each agent is assigned a new goal
location after it reaches the previously assigned goal loca-
tion (Ma et al. 2019b). The lifelong MAPF problem is rel-
evant in domains where agents are required to accomplish
a queue of tasks, such as in Kiva-style AS/RS. A survey of
common MAPF variants, objectives, and benchmarks can be
found in (Stern et al. 2019).

The one-shot MAPF problem is NP-hard to solve opti-
mally for various objective functions (Yu and LaValle 2013).
However, many kinds of solvers have been developed for
solving it efficiently in practice. These include CBS (Sharon
et al. 2015), improved versions of CBS (Cohen et al. 2016),
Priority-Based Search (Ma et al. 2019a), and LaCAM (Oku-
mura 2023). Many kinds of solvers have also been devel-
oped for solving the lifelong MAPF problem. These include
two categories of solvers: those that assume that all goal
locations are known a priori and those that do not. In the
first category, solvers have been developed based on An-
swer Set Programming (Nguyen et al. 2019) and Conflict-
Based Steiner Search (Ren, Rathinam, and Choset 2023).
In the second category, the solvers include Token Passing
with Task Swaps (Ma et al. 2017), Rolling-Horizon Colli-
sion Resolution (Li et al. 2021b), and Priority Inheritance
with Back Tracking (Chen et al. 2024). In general, lifelong
MAPF solvers require repeated replanning and an intelligent
outer-loop task assigner to reduce the idle time of the agents.

2.2 Cube-Based AS/RS

Cube-based AS/RS, exemplified by AutoStore and Ocado’s
grid-based automated warehouses, organize inventory in a
dense 3D grid of storage bins. The inventory items are stored
in storage bins stacked vertically in columns within the grid
structure. There are no internal aisles in the grid: Instead,
multiple robots move on an open 2D grid above the storage
area to retrieve the storage bins from the stacks beneath them
and deliver the storage bins to the workstations. The robots
should avoid collisions with each other.

To retrieve an item, a robot positions itself over the stack
of the target storage bin and lowers a lifting apparatus to pull
it up. Then the robot transports this storage bin to a worksta-
tion. However, before the robot pulls up the target storage

bin, each storage bin on top of the target storage bin also has
to be pulled up by the same robot or by any other robot. Each
such storage bin also has to be relocated to another available
stack. Hence, cube-based AS/RS introduces bin digging as
a new complexity to the coordination problem. After being
processed at a workstation, a storage bin is delivered back to
an available stack in the grid by an available robot. In many
cases, the robot that brings a storage bin to a workstation
also delivers it back to an available stack on the grid after
waiting at the workstation for it to be processed.

In comparison to Kiva-style AS/RS, cube-based AS/RS
eliminate unused aisle space and maximize storage den-
sity (Trost, Kartnig, and Eder 2023). Their design and per-
formance have been studied in (Trost, Kartnig, and Eder
2023) via simulation of an AutoStore-style system. Cube-
based AS/RS have also been studied via several other system
simulations (Beckschiéfer et al. 2017; Franke and Schuderer
2021; Chen, Yang, and Shao 2022). Some research has also
focused on attaining the optimal stack height and/or length-
to-weight ratio (Zou, de Koster, and Xu 2016), the optimal
storage locations of items (Beckschifer et al. 2017), and the
optimal sequencing of delivery tasks to the workstations (Ko
and Han 2022). Another work has utilized the single-agent
pathfinding algorithm D* Lite in cube-base AS/RS (Tan-
Thuan Banh 2024): However, this approach only exercises
the local repair of individual robot paths. A comprehensive
survey of cube-based AS/RS is presented in (Trost and Eder
2024).3

2.3 Conflict-Based Search

CBS is a two-level heuristic search framework that has been
used for solving the MAPF problem optimally (Sharon et al.
2015). On the high level, CBS performs a best-first search
on a Constraint Tree (CT). Each CT node N contains a set
of spatiotemporal constraints N.constraints that are used
to coordinate agents to avoid conflicts. CT node N has
a set of paths N.paths, one for each agent, that respects
N.constraints. The cost of CT node N is the sum of the
costs of the paths in N.paths. The root CT node contains an
empty set of constraints and a set of shortest paths that may
contain conflicts. When CBS expands a CT node N, it first
checks for conflicts between every pair of paths in N.paths.
If there are none, the CT node is a goal CT node and CBS
returns the paths as the solution. Otherwise, CBS chooses
one of the conflicts and resolves it by splitting it into two
child CT nodes, each with an additional constraint prohibit-
ing one agent from the conflict from using the conflicting
vertex or conflicting edge at the conflicting timestep. CBS
then uses its low-level search, such as A*, to replan the path
of the agent to satisfy the new constraint. The fewer conflicts
there are to resolve, the faster CBS terminates. A complexity
analysis of CBS is presented in (Gordon, Filmus, and Salz-
man 2021). CBS guarantees completeness by eventually ex-
ploring both ways of resolving each conflict and optimality

33D warehouses differ from cube-based AS/RS in that they
admit aisle space and are amenable to regular MAPF algo-
rithms (Wang et al. 2024). However, unlike Kiva-style AS/RS, the
3D warehouses can have both horizontal and vertical aisles.



of the generated solution by performing best-first search on
both its high and low levels.

However, since solving the MAPF problem optimally is
hard, suboptimal solution procedures can be investigated
to increase the runtime efficiency. Enhanced CBS (ECBS)
has been developed to produce suboptimal solutions in
the CBS framework by trading the solution cost for run-
time (Barer et al. 2014). ECBS utilizes the power of a
bounded-suboptimal search algorithm called focal search.

Focal search maintains two lists of nodes OPEN and
FOCAL. OPEN is the regular open list, as in A*, whose
nodes n are sorted by an admissible cost function f(n) =
g(n) + h(n) where h(n) is an admissible heuristic func-
tion. Let w > 1 be a user-specified suboptimality factor
and fpin = ming,, coppy f(n;) be the minimum f-value in
OPEN. FOCAL contains the nodes n in OPEN for which
f(n) < w - fiin, sorted by a secondary heuristic func-
tion d(n) that estimates the number of hops from node n
to a goal node. d(n) can be inadmissible. Unlike A*, focal
search always expands a node n with the minimum d-value
in FOCAL. Let C* be the cost of the optimal solution. Focal
search guarantees that the cost of the returned solution is at
most w - C* since f,;,, is a lower bound on C*.

ECBS is a bounded-suboptimal variant of CBS whose
high-level and low-level searches are both focal searches.
Both these searches use measures related to the number
of conflicts as the secondary heuristic function. ECBS(w)
refers to ECBS with the user-specified factor w to be used in
its focal searches. ECBS(w) is w-suboptimal since it guaran-
tees a solution—if one exists—with a cost that is no larger
than w - C* (Barer et al. 2014; Cohen et al. 2016). Thus,
ECBS(w) with a reasonably small value of w has the flexi-
bility of expanding CT nodes with fewer conflicts than the
CT nodes chosen for expansion by CBS. This often makes
ECBS(w) faster than CBS.

3 The Cube-Based AS/RS Coordination
Problem

In this section, we formulate the cornerstone coordination
problem of cube-based AS/RS. While many aspects of it re-
semble the MAPF problem, the bin digging aspect of it in-
troduces a new complexity.

3.1 The Cube-Based AS/RS Environment

A cube-based AS/RS environment can be viewed as an undi-
rected 3D grid graph G = (V, E). V represents the union of
the set of possible storage locations of the storage bins and
the set of possible locations of the robots that operate on top
of the storage area. Each vertex v € V is labeled by a tuple
of 3D coordinates (x,, Yy, 2y): %, and y, are the coordi-
nates projected on the XY -plane on which the storage area
stands; z,, is the depth measured from the top of the storage
area. Hence, the robots operate on the 2D vertex-induced
subgraph with 2z, = 0. E is a set of edges that represents the
union of the set of possible movements of the storage bins
and the set of possible movements of the robots to adjacent

locations. Hence, (v;,v;) € E if and only if

(:L.'Ui = x'”j) A (y'Ui = y’Uj) A (‘ZU'L - Z'Uj| = 1) or
(:L.'Ui = ‘TU]’) A (|yv1 - y’Uj| = 1) A (Zﬂi = Z'Uj = 0) or
(|"’U'Ui - xﬂj‘ = 1) A (yvi = y'”j) A (Zﬂi = Zuy = 0)

The robots and workstations operate at the top level of
the warehouse, that is, at z = 0. The storage bins are at
z = 0 while they are being carried by the robots or are being
processed at the workstations. Otherwise, they are at z > 0.
For the XY -plane on which the storage area stands, let the
height of the storage column at the location (z, y) be denoted
by h(w7y). Hence, for any vertex v, z,, € {0,1... h(wmyu)}.

3.2 Robots, Storage Bins, and Workstations

In addition to the graph G = (V, E)), cube-based AS/RS are
characterized by a set of robots R = {ry,ra... 7}, a set of
storage bins B = {b1,bs...b,,}, and a set of workstations
P = {p1,p2...p}. For simplicity, time is discretized into
logical timesteps. At any timestep, we use loc(-) to denote
the location of a robot, storage bin, or a workstation.

The robots are the only truly autonomous agents in the
system. Each robot can occupy any location (z,, y,,0) on
top of the storage area, where it can execute one of several
actions. First, it can lift and hold a storage bin that is on top
of the stack directly beneath it. If the storage bin is at depth
1 <d< h(mu}yv), the robot needs to lower its apparatus
from depth 0 to depth d and lift the storage bin from depth d
to depth 0, for a total of 2d timesteps. Second, it can lower
a storage bin that it holds onto the top of the stack directly
beneath it. If the storage bin is eventually placed at depth
1<d< h(zmyv), the robot needs to lower the storage bin
from depth O to depth d and lift the apparatus from depth d to
depth 0, for a total of 2d timesteps. Third, the robot can move
to an adjacent location that is also at z = 0, with or without
holding a storage bin. The robot expends one timestep for
doing so. Fourth, the robot can wait at its current location
for one timestep, with or without holding a storage bin. A
robot can hold only one storage bin at a time. A robot that
holds a storage bin occupies the same space as a robot that
does not. When robots move on the top level, they have to
avoid vertex conflicts and edge conflicts with each other.

The storage bins cannot move autonomously: They have
to be chaperoned by the robots. Each storage bin can oc-
cupy any location (x,,%yy, 2,), Where 1 < z, < h(g, 4,)-
However, a storage bin is subject to gravity and can only be
either on top of another storage bin or at (zy, Yv, Az, 4.))s
that is, at the bottom of the storage column. Consequently, a
robot can only place a storage bin in such a location without
dropping it, that is, the robot cannot drop the storage bin to
a midair location inside a storage column. A storage bin that
is not on top of its stack cannot be retrieved without first re-
locating the storage bins that are on top of it. No two storage
bins can be at the same location at the same timestep.

Workstations are processing units, each of which occu-
pies a single grid cell on the top level of the storage area.
Hence, the robots can access them easily since they are at
the same level. The robots are required to transport target



storage bins from the storage area to the workstations for in-
ventory picking operations. For simplicity, we assume that a
robot arrives at a workstation with a storage bin, waits there
for one timestep for the picking operation to be executed on
the storage bin, and then returns the storage bin to the stor-
age area.

3.3 Problem Instance

A problem instance specifies the values of k, m, and [. It
also specifies the start location s; of each robot r; € R,
the target storage bins B, C B, the location loc(p;) of
each workstation p; € P, and the destination workstation
gF € {loc(py),loc(p2) . .. loc(p;)} for each b; € By, The
tuple (b;, g7) is referred to as a delivery task. A solution
satisfies all the constraints stated in Sections 3.1 and 3.2. It
consists of k action sequences { A, Ay ... Ai}: Each A; as-
signs an action for robot 7; at each timestep. Collectively,
the action sequences of the robots transport the target stor-
age bins from their start locations to their destination work-
stations and then return them back to the storage area. The
objective can be to minimize either the sum of the numbers
of timesteps taken by all the robots (sum of costs) or the
maximum of these numbers (makespan). In a lifelong ver-
sion of the problem, there is usually the need for an outer
loop that intelligently specifies where a storage bin should
be placed after it is processed at a workstation. However, for
easy exposition, we assume that the storage bin is returned
to the nearest available stack.

4 Planning Framework and Approaches

We now present two preliminary approaches for solving
the cube-based AS/RS problem formalized in Section 3.
Both approaches are based on adapting the ECBS frame-
work (Barer et al. 2014). The first approach, which we re-
fer to as the robot-centric approach, treats the robots as the
agents. The second approach, which we refer to as the bin-
centric approach, takes a different perspective and treats the
storage bins as the agents in its first phase and the robots
as the agents in its second phase: The plan generated for the
robots in the second phase chaperones the plan generated for
the storage bins in the first phase.

Both approaches use the notions of a relocation task and
a retrieval task. A relocation task is of the form (b, g), indi-
cating that the storage bin b € B needs to be moved from
its current location to the goal location g. g specifies the
XY -coordinates of a storage column. A relocation task is
not specified in the problem instance but is generated by
our algorithms internally. A retrieval task is of the form
(bi, gF, g), indicating that the storage bin b; € By, needs to
be moved from its current location to the workstation loca-
tion g7 and later to the goal location g by the same robot. g
specifies the XY -coordinates of a storage column. While b;
and ¢! are specified in the problem instance as the delivery
task (b;, g7), g is generated by our algorithms internally.

4.1 Approach 1: Robot-Centric Planning

Algorithm 1 shows the pseudocode for the robot-centric
planning approach. It takes as input the environment graph

Algorithm 1: Robot-Centric Planner

Input: G, R, B, Biar, P, del_tasks
Output: a sequence of actions for each robot
Parameter: suboptimality factor w
1: Sort elements in del_tasks in increasing order of the depth of
their storage bins. (Break ties using the index order.)

2: forr; € Rdo

4: end for

5: expanded_tasks < ()

6: precedences + ()

7: system_copy < locations of all storage bins.

8: while del_tasks # () do

9:  Pop the first element (b;, g7 ) from del_tasks.

10:  decomp < 0.

11:  Let on_top be the set of storage bins on top of b; in increas-

ing order of depth.

12:  while on_top # 0 do

13: Pop the first element b; from on_top.

14: g; < a nearby storage column, preferably avoiding the
storage columns of the storage bins in del_tasks.

15: Append the relocation task (b;, g;) to decomp.

16: Update system_copy with the new location of b; set to
9j-

17:  end while

18:  gi < anearby storage column, preferably avoiding the stor-

age columns of the storage bins in del_tasks.

19:  Append the retrieval task (b;, gf, gi) to decomp.

20:  Append decomp to expanded_tasks.

21:  Update system_copy with the new location of b; set to g;.

22: end while

23: for d € expanded_tasks do

24:  Add 7 < 7' to precedences if task 7 is mentioned before
task 7’ in d.

25: end for

26: for d;,d; € expanded_tasks do

27:  Add T < 7' to precedences if T and 7’ mention the same
storage bin or 7’ places a storage bin at the location of 7°s
storage bin, with 7 € d;, 7’ € d;, and 7 < j.

28: end for

29: while expanded_tasks (flattened) # () do

30: Choose 7 € expanded_tasks such that no 7 €
erpanded_tasks yields 7/ < .

31: Let r; be the robot that can start doing 7 at the earliest
timestep after completing the tasks in 7°Q);.

32:  Append 7 to T'QQ; and remove it from expanded_tasks.

33: end while

34: return ECBSr(G, R, {TQ1,TQ>...TQy},

precedences, w).

G, the set of robots R with their start locations, the set of
storage bins B with their start locations, the set of target
storage bins B, the set of workstations P with their loca-
tions, and the set of delivery tasks del_tasks that need to be
accomplished by the robots. It outputs a sequence of actions
for each robot as a solution. It uses a suboptimality factor w
for invoking ECBS on Line 34.

On Line 1, the algorithm starts by sorting the delivery
tasks in del_tasks in increasing order of the depth of their
storage bins: If two target storage bins are on the same stack,
the digging operations used for retrieving the storage bin that



is placed higher on the stack also serve the purpose of re-
trieving the storage bin that is placed lower on the stack. Be-
yond this, the sorting breaks ties in favor of the indexing or-
der used in the input. On Lines 27, the algorithm initializes
the data structures T'Q);, for 1 < ¢ < k, expanded_tasks,
precedences, and system_copy. T'Q); is intended to contain
the sequence of relocation tasks and retrieval tasks that robot
r; attends to. expanded_tasks is intended to contain a set
of relocation tasks and retrieval tasks with precedence con-
straints between them recorded in precedences: Respect-
ing these constraints guarantees the execution of every task
without interferences from other tasks. system_copy is in-
tended to track the locations of all storage bins.

On Lines 8-22, the algorithm uses a loop to generate the
relocation tasks and the retrieval task required for each de-
livery task. It starts each iteration of this loop by popping
the first element (b;, g’) from del_tasks on Line 9. It then
initializes a data structure decomp on Line 10: decomp is
intended to glean (a) the relocation tasks necessary for the
storage bins on top of b; and (b) the retrieval task that moves
b; to gF’ and then back to a storage location. On Lines 11—
17, the algorithm iterates through every storage bin b; on top
of b;, in increasing order of their depth, and relocates b; to
a storage column at g;. g; can be chosen using one of many
strategies. In our current implementation, the algorithm first
rules out the storage columns of all the storage bins that ap-
pear in the remaining delivery tasks in del_tasks. It then
chooses the nearest storage column that is not ruled out. If
no such storage column exists, it simply chooses the nearest
storage column. On Line 15, the algorithm appends the re-
sulting relocation task to decomp and, on Line 16, updates
system_copy. On Line 18, the algorithm chooses a storage
location g; for returning b; from g£. g; is chosen using the
same logic as on Line 14. On Line 19, the algorithm appends
the resulting retrieval task (b;, g7, g;) to decomp. On Line
20, it appends decomp to expanded_tasks and, on Line 21,
updates system_copy.

On Lines 23-25, the algorithm records the precedence
constraints between tasks within each individual decomp el-
ement d: This corresponds to the order in which tasks are
generated on Lines 9-21 for each delivery task in del_tasks.
On Lines 26-28, the algorithm records the precedence con-
straints between tasks across pairs of decomp elements d;
and d;: (a) If two tasks 7 € d; and e dj, for i < j, men-
tion the same storage bin, 7 has to finish before 7/ can start,
and (b) If the task 7" € d; places a storage bin at the location
of the storage bin of the task 7 € d;, T has to finish before
7/ can start.

On Lines 29-33, the algorithm iterates through the tasks
in expanded_tasks, for which expanded_tasks is flattened
to remove the construct of the decomp element. In each iter-
ation, it first gathers on Line 30 a task 7 that can be executed
without precedence constraints. On Lines 31-32, it then as-
signs a robot r; to accomplish 7 based on a simple heuristic:
The heuristic examines all robots and the tasks currently as-
signed to them and picks the robot that can attend to 7 at
the earliest timestep after completing its currently assigned
tasks. The earliest timestep is evaluated for each robot while
ignoring the other robots.

On Line 34, the algorithm invokes and returns the out-
put of a modified ECBS procedure £C BSg. This proce-
dure takes as input GG, R, the task queue 7'Q); of each robot
r;, the precedence constraints precedences, and the subop-
timality factor w. It outputs a sequence of actions for each
robot: Together, they accomplish all the tasks while meeting
the precedence constraints and avoiding the vertex conflicts
and edge conflicts with each other.

ECBSEk modifies ECBS as follows. In ECBSg, each
CT node N not only contains the fields N.paths and
N.constraints but also contains the two additional fields
N.actions and N.task_labels. N.paths describes the loca-
tion that each robot occupies at each timestep. N.actions
describes the action that each robot takes at each timestep.
Lifting (lowering) a storage bin from (to) a depth d takes
2d timesteps. N.constraints records the conflict-resolution
constraints imposed by the high-level search. N.task_labels
describes the task that each robot attends to at each timestep.
The task label of a robot is updated when: (a) the robot starts
lifting the storage bin for a new task and (b) the robot fin-
ishes lowering the storage bin for an ongoing task. In be-
tween tasks, the robot is considered to be in the ‘idle’ state.

In the high-level search, EFC BSp recognizes conflicts
and resolves them via branching. The conflicts are of two
kinds: (a) the vertex conflicts and edge conflicts and (b)
violations of the precedence constraints. The vertex con-
flicts and edge conflicts are resolved via spatiotemporal con-
straints, as described in Section 2.3. However, the violations
of precedence constraints are resolved differently. A prece-
dence constraint 7 < 7’ is violated when a robot r; attends
to the task 7’ before the task 7 is completed. Suppose that
the task 7 is assigned to the robot r;, which completes it
at timestep t.. The violation of the precedence constraint
is resolved by generating two child CT nodes (Zhang et al.
2022). The first child CT node enforces the robot 7; to start
attending to the task 7’ after the timestep ¢.. The second
child CT node enforces the robot 7; to start attending to the
task 7/ before or at the timestep t. and the robot r; to com-
plete the task 7 before the timestep ¢.. For the first (second)
child CT node, EC BSg runs the low-level search to replan
the path and actions for the robot r; (r;). The resolution of
the violations of precedence constraints is done with higher
priority than the resolution of vertex conflicts and edge con-
flicts.

In the low-level search, EC BSr modifies and uses Multi-
Label A* (M LA*) (Grenouilleau, van Hoeve, and Hooker
2019) instead of spatiotemporal A*. M L A* finds the short-
est path for an agent with respect to an ordered list of
goals.* ECBSgr’s modifications of M LA* are similar to
those in (Li et al. 2021b) but with some differences. Each
low-level node n records both the robot’s location and its ac-
tion at that location. The possible actions are ‘move’, ‘wait’,
‘lower’ apparatus, and ‘lift’ apparatus. Each low-level node

*A straightforward approach may use spatiotemporal A* to
compute the shortest path between each pair of consecutive goals
and then concatenate these paths. However, this does not guarantee
an overall shortest path because spatiotemporal constraints intro-
duce dependencies between different path segments.



Algorithm 2: Bin-Centric Planner

Input: G, R, B, Biar, P, del_tasks
Qutput: a sequence of actions for each robot
Parameter: suboptimal factor w

1: bin_paths <+ ECBSp(G, B, Biar, del tasks, w).

2: forr; € Rdo

4: end for

5: Sort bin_paths in increasing order of the storage bins’ earliest
timestep to be able to move.

6: while bin_paths # () do

7:  Pop the first element path from bin_paths.

8:  Let s be the start location of path.

9: Let r; be the robot that can start to chaperone path at the

carliest timestep after completing its tasks in 7°Q);.
10:  Add (s, path) to TQ;.
11: end while
12: return
ECBSgr(G,R,{TQ1,TQ2...TQr},bin_paths,w)
to chaperone bin_paths.

n also has an attribute n.task_label that records the current
task of the robot. n.task_label updates when: (a) the robot
starts lifting the storage bin for a new task and (b) the robot
finishes lowering the storage bin for an ongoing task. In be-
tween tasks, n.task_label is set to ‘idle’.

The tasks in T'Q); are translated into a sequence of goals.
Since every relocation and retrieval task consists of lifting
a storage bin, lowering it, with or without delivering it to a
workstation, the accomplishment of these actions constitutes
the sequence of goals. Each low-level node n uses an at-
tribute n.label to keep track of the number of accomplished
goals. If n.label equals the cardinality of the goal sequence,
the low-level search terminates and returns both the path and
the sequence of actions for that robot. The child nodes gen-
erated for the low-level node n must respect the spatiotem-
poral constraints and the precedence constraints imposed by
the high-level CT node; otherwise, it is pruned. The heuristic
value of the low-level node n is the heuristic value from n
to the next goal plus the sum of the heuristic values between
the remaining consecutive goals. Heuristic values are com-
puted by ignoring the constraints imposed by the high-level
CT node. Finally, the low-level search is a focal search with
suboptimality factor w. The focal list is sorted by the fore-
going heuristic values; ties are broken in favor of a smaller
number of conflicts against other planned paths.

4.2 Approach 2: Bin-Centric Planning

Algorithm 2 shows the pseudocode for the bin-centric ap-
proach. It has the same input and output formats as Algo-
rithm 1.

On Line 1, the algorithm starts by invoking a modified
ECBS procedure EC'BSp that takes as input G, B, Biar,
del_tasks, and w. It outputs a sequence of locations (path)
for each storage bin, which is stored in the data structure
bin_paths. bin_paths contains information on (a) how to
move the target storage bins from their start locations to their
assigned workstations, (b) how to move the target storage
bins from their workstations back to the storage area, and

(c) how to relocate any storage bins necessary. The paths of
the storage bins in bin_paths are conflict-free as outputted
by ECBSp.

ECBSp modifies ECBS as follows. All storage bins in
B are treated as the agents that operate on the input graph
G' They are subject to vertex conflicts and edge conflicts on
G. Moreover, since storage bins can only be lifted (lowered)
from (onto) a stack in a storage column one at a time, two
storage bins b; and b; moving within the same storage col-
umn simultaneously is treated as a column conflict. A col-
umn conflict (b;, bj, u,v,u’,v’,t) occurs when two storage
bins b; and b; move from u to v and from v’ to v’, respec-
tively, between timesteps ¢t and ¢ + 1 such that the XY-
coordinates of u, v, v/, and v’ are identical. Such a con-
flict is resolved by generating two child CT nodes: One child
CT node prohibits the movement of the storage bin b; from
u to v between timesteps ¢ and ¢ + 1; the other child CT
node prohibits the movement of the storage bin b; from v’
to v’ between the same timesteps. Storage bins that are not
in By, move if and only if doing so clears the path(s) for the
target storage bin(s). For relocating a storage bin, EC BSp
finds the shortest path to the nearest available storage col-
umn, similar to Line 14 of Algorithm 1. Moreover, ECBSp
uses M LA* in its low-level search since the target storage
bins have two consecutive goal locations.

On Lines 2-4, Algorithm 2 initializes the data structure
TQ; that is intended to contain the sequence of path chap-
erone tasks that the robot r; attends to. On Line 5, it sorts
the elements in bin_paths in increasing order of the stor-
age bins’ earliest timestep to be able to move. On Lines 6—
11, the algorithm retrieves each path from bin_paths and
assigns the corresponding path chaperone task to a robot.
This assignment uses the same heuristic as on Line 31 of
Algorithm 1. On Lines 8 and 10, the algorithm retrieves the
start location of a path to facilitate fast downstream compu-
tations. The tuple (s, path) in TQ; directs the robot r; to
move to the start location s to start the path chaperone task
on path. On Line 12, Algorithm 2 runs a slightly different
version of EC' BSgk compared to Line 34 of Algorithm 1.
Here, EC' BSR, plans the path of each robot so that it moves
to the start location of each path chaperone task assigned
to it before starting that task. In between, EC'BSp simply
conforms to the movements of the storage bins that it chap-
erones. Finally, EC' BSgk composes the complete action se-
quences and paths for each robot to move the storage bins.

5 Empirical Evaluation

In this section, we present an empirical evaluation of our
proposed approaches for cube-based AS/RS: the robot-
centric approach and the bin-centric approach. We imple-
mented the algorithms in both approaches using C++ and
conducted our experiments on a desktop running Ubuntu
with a 4.20 GHz AMD Ryzen 7 7800X3D processor and
16 GB memory. We built a simulation of the warehouse
environment using the Robot Operating System (ROS) and
Gazebo. Our algorithms can interface with this environment.
Figure 2 shows a snapshot of a simple cube-based AS/RS
simulation in Gazebo. For all algorithms, we set a time limit



Figure 2: Shows a snapshot of a simple cube-based AS/RS sim-
ulation in Gazebo. The gray grid represents the storage area. The
gray boxes stacked in columns represent the storage bins. The pur-
ple cubes that move on top of the storage area represent the robots.
The frontmost robot is shown carrying a storage bin within its hull.
The red column represents the workstation.

of 60 seconds on each problem instance. We set w = 2 in all
cases.

We used a 10 x 10 x 10 storage area to generate our prob-
lem instances. The storage area stands on an XY -plane with
a footprint of 10 x 10 2D grid cells. A column of height 10
stands on each such cell, accounting for a total of 1, 000 stor-
age cells. We generated 5 different warehouse maps by fill-
ing these 1, 000 storage cells with 600 storage bins arranged
as stacks within the 100 columns. In each warehouse map,
the stacks are placed randomly on the XY -plane and are of
random heights < 10. In each warehouse map, the start lo-
cations of 10 robots are also specified. Moreover, across all
warehouse maps, we fixed the locations of 3 workstations on
one side of the storage area, as shown in Figure 2.

We draw empirical results by varying the number of tar-
get storage bins from 5 to 30 in increments of 5. For each
setting of the number of target storage bins, we formulate 50
problem instances: We formulate 10 problem instances from
each of the 5 warehouse maps. In each problem instance, the
target storage bins are chosen randomly from the 600 stor-
age bins. Moreover, a delivery task is formulated for each
target storage bin by choosing one of the 3 workstations at
random as its destination workstation.

Figure 3 shows the comparative results of the robot-
centric approach and the bin-centric approach with respect
to various performance metrics. The top panel shows the
comparison with respect to the success rate. Each data point
represents, as a fraction, the number of problem instances
(out of 50) that can be solved within the time limit. We
observe that the success rate of the bin-centric approach is
marginally better than that of the robot-centric approach.

The middle panel shows the comparison with respect to
the average runtime (measured in seconds). Each data point
is averaged only over the successful runs. For smaller prob-
lem instances, we observe that the bin-centric approach has
an average runtime that is marginally better than that of the
robot-centric approach. For larger problem instances, we ob-

Success Rate

0.8
0.6
0.4
0.2

0
5 10 15 20 25 30

—@— Robot-Centric Approach —@—Bin-Centric Approach

Average Runtime (Seconds)

35
30
25
20
15
10
5
0
5 10 15 20 25 30

—@— Robot-Centric Approach —@—Bin-Centric Approach

Average Sum of Costs

5 10 15 20 25 30

—@— Robot-Centric Approach —@— Bin-Centric Approach

Figure 3: Shows the comparative results of the robot-centric ap-
proach and the bin-centric approach with respect to various per-
formance metrics. The horizontal axis shows an increasing number
of target storage bins (number of delivery tasks). The vertical axis
shows the success rate, average runtime, and the average sum of
costs in the three panels, top to bottom, respectively.

serve the opposite pattern. However, this is because the bin-
centric approach has a higher success rate and solves hard
problems that contribute more to the average runtime. The
bottom panel shows the comparison with respect to the aver-
age sum of costs, that is, the average quality of the solutions.
Each data point is averaged only over the successful runs.
We observe that there is only a marginal difference between
the robot-centric approach and the bin-centric approach.



6 Conclusions and Future Work

In this paper, we studied cube-based AS/RS and the coordi-
nation problems that arise in them. We formalized one such
cornerstone coordination problem and discovered its combi-
natorial similarities to the MAPF problem. Hence, we pro-
posed the use of MAPF technologies for planning in cube-
base AS/RS. We proposed two viable approaches: the robot-
centric approach and the bin-centric approach. In both ap-
proaches, we carefully adapted the popular CBS framework
from the MAPF domain to address the unique challenges
of cube-based AS/RS: These unique challenges are centered
around the added complexity of bin digging. In the robot-
centric approach, the robots are treated as the agents and
plans are generated for them to transport the storage bins.
In the bin-centric approach, the storage bins are first treated
as the agents and plans are generated for them to move au-
tonomously; the robots are then treated as the agents and
plans are generated for them to chaperone the movements
of the storage bins. Overall, we demonstrated the value of
MAPF technologies in cube-based AS/RS and experimen-
tally showed that the bin-centric approach marginally out-
performs the robot-centric approach. For doing so, we also
built a simulation environment in Gazebo that interfaces
with our algorithms.

Given the advantages of cube-based AS/RS, we envision
that an efficient way to address the bin digging problem
in them is critical to the future of warehouse automation.
Hence, in future work, we will import more MAPF tech-
nologies to cube-based AS/RS based on the proof of concept
provided in this paper.
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