
Preprocessing Techniques for
Accelerating the DCOP Algorithm ADOPT∗

Syed Ali Sven Koenig Milind Tambe
Computer Science Department

University of Southern California
Los Angeles, CA 90089-0781

{syedmuha,skoenig,tambe}@usc.edu

ABSTRACT
Methods for solving Distributed Constraint Optimization
Problems (DCOP) have emerged as key techniques for dis-
tributed reasoning. Yet, their application faces significant
hurdles in many multiagent domains due to their ineffi-
ciency. Preprocessing techniques have successfully been used
to speed up algorithms for centralized constraint satisfac-
tion problems. This paper introduces a framework of dif-
ferent preprocessing techniques that are based on dynamic
programming and speed up ADOPT, an asynchronous com-
plete and optimal DCOP algorithm. We investigate when
preprocessing is useful and which factors influence the result-
ing speedups in two DCOP domains, namely graph coloring
and distributed sensor networks. Our experimental results
demonstrate that our preprocessing techniques are fast and
can speed up ADOPT by an order of magnitude.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent Systems

General Terms
Algorithms

Keywords
Distributed Constraint Optimization

∗We thank Rahul Iyer and Sumit Borar for their help in
generating the experimental results reported in this pa-
per. This research was supported in part by a subcontract
from NASA’s Jet Propulsion Laboratory (JPL) and an NSF
award under contract IIS-0350584. The views and conclu-
sions contained in this document are those of the authors
and should not be interpreted as representing the official
policies, either expressed or implied, of the sponsoring orga-
nizations or the U.S. government.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’05, July 25-29, 2005, Utrecht, Netherlands.
Copyright 2005 ACM 1-59593-094-9/05/0007 ...$5.00.

1. INTRODUCTION
Methods for solving Distributed Constraint Optimization

Problems (DCOP) [13, 10] have emerged as key techniques
for distributed reasoning in multiagent domains, given their
ability to optimize over a set of distributed constraints. For
example, DCOPs are able to model the task of scheduling
meetings in large organizations, where privacy needs make
centralized constraint optimization difficult [9]. DCOPs are
also able to model the task of allocating sensor nodes to tar-
gets in sensor networks [8, 13, 15], where the limited commu-
nication and computation power of individual sensor nodes
makes centralized constraint optimization difficult. Finally,
DCOPs are able to model the task of coordinating teams of
unmanned air vehicles [17], where the need for rapid local re-
sponses makes centralized constraint optimization difficult.

Unfortunately, the application of DCOP algorithms faces
significant hurdles in many multiagent domains due to their
inefficiency. Solving DCOPs optimally is known to be NP-
hard, yet one often needs to find optimal DCOP solutions
quickly. In this context, researchers have recently developed
ADOPT, an asynchronous complete and optimal DCOP al-
gorithm that has been compared against competing DCOP
algorithms [3] and shown to significantly outperform com-
plete and optimal DCOP algorithms that do not allow par-
tial or complete centralization of value assignments [13]. In
this paper, we introduce a framework of preprocessing tech-
niques that make ADOPT even more efficient. We focus on
ADOPT since it provides an efficient baseline and has been
used to solve DCOPs in domains where one needs to find
optimal DCOP solutions quickly, namely sensor networks
[15] and meeting scheduling for teams of personal assistant
agents [9].

Preprocessing techniques have been studied before in
the context of CSPs. For example, arc-consistency, path-
consistency and general k-consistency algorithms can speed
up CSP algorithms dramatically [4]. Recent work has ap-
plied similar preprocessing techniques to both distributed
CSPs [7, 18] and centralized COPs [1, 16]. However, pre-
processing techniques have not yet been investigated in the
context of DCOPs, which is not surprising since efficient
complete and optimal DCOP algorithms have been devel-
oped only recently. In this paper, we close this gap. The
purpose of our preprocessing techniques is to focus the sub-
sequent search rather than reduce its search space. ADOPT
is an uninformed search method and our preprocessing tech-
niques speed it up by supplying it with heuristic values that
focus its search, an idea that has successfully been used to

A C cost

x x 3

x y 2

y x 4

y y 1

A B cost

x x 1

x y 2

y x 3

y y 4

B C cost

x x 3

x y 4

y x 1

y y 2

A

B

C

Figure 1: Example DCOP

speed up centralized branch-and-bound search methods [19].
Our framework consists of a preprocessing phase followed by
the main phase which just runs ADOPT. The preprocessing
phase solves a relaxed version of the DCOP to calculate the
heuristic values, using either ADOPT itself or specialized
preprocessing techniques. We show how one can systemati-
cally construct preprocessing techniques of polynomial run-
time, some of which are more computation or communica-
tion intensive than others and thus tend to calculate more
informed heuristic values, thus trading off effort in the pre-
processing phase and main phase. We investigate when pre-
processing decreases the total effort and which factors influ-
ence the resulting speedups in two DCOP domains, namely
graph coloring and distributed sensor networks. Our exper-
imental results are very encouraging. For example, our new
versions of ADOPT can solve a distributed graph coloring
problem with 12 nodes about 10 times faster than ADOPT.

2. DCOP
A DCOP consists of a set of nodes (= agents) N . D(n) de-

notes the set of possible values of node n ∈ N . c(d(n), d(n′))
denotes the cost of a soft binary constraint between nodes
n ∈ N and n′ ∈ N if node n is assigned value d(n) ∈ D(n)
and node n′ is assigned value d(n′) ∈ D(n′). The objective
is to assign a value to every node so that the sum of the
costs of the constraints is minimal.

Figure 1 shows an example DCOP with three nodes (A, B
and C). All nodes can be assigned either the value x or the
value y. There are constraints between A and B, B and C,
and A and C. The DCOP has two cost-minimal solutions,
namely (A=x, B=y, C=x) and (A=x, B=y, C=y).

3. ADOPT
ADOPT is an asynchronous complete and optimal DCOP

algorithm that significantly outperforms competing com-
plete and optimal DCOP algorithms that do not allow par-
tial or complete centralization of value assignments [13, 14].
It was the first optimal DCOP algorithm that used only lo-
calized asynchronous communication and polynomial space
for each node. Communication is local in the sense that a
node does not send messages to every other node. Rather,
ADOPT constructs a constraint tree, which is a tree of nodes
with the property that any two nodes that are involved in
some constraint are in an ancestor-successor (but not nec-
essarily parent-child) relationship in the tree. For instance,
the DCOP in Figure 1 is organized as a tree where A is the

A=x

B=x

C=x

cost=6

cost=1

(i)

A=y

B=x

C=...

cost=...

cost=3

(ii)

A=x

B=x

C=x

cost=...

cost=...

(iii)

Figure 2: Possible Execution Trace of ADOPT

root, B is the child of A, and C is the child of B. In this
case, the constraint tree is a chain since every node has at
most one child. ADOPT searches the constraint tree in a
way that resembles uninformed and memory-bounded ver-
sions of A*, except that it does so in a distributed way where
every node sends messages only to its parent or successors
in the constraint tree: Each node asynchronously executes
a processing loop in which it waits for incoming messages,
processes them and sends outgoing messages. VALUE mes-
sages are sent from a node to its successors in the constraint
tree, informing them of the values of their ancestors. The
successors then record these values in a “current context.”
In response to VALUE messages, nodes send COST mes-
sages to their parents to provide them with feedback about
the costs of the best complete assignment of values to nodes
that is consistent with the current context of the node. To
this end, a node adds the exact costs of all constraints that
involve nodes with known values (= its ancestors) and a
lower bound cost estimate of the smallest sum of the costs
of all constraints in the subtree rooted at the node (received
from its children via COST messages) for its current con-
text. Thus, COST messages contain estimates of the cost of
the constraints for the best complete assignment of values
to nodes that is both consistent with the current context
of the node and a lower bound on the actual cost. Nodes
initially use zero as cost estimates, and update these cost es-
timates when they receive COST messages from their chil-
dren. Nodes reset their cost estimates to zero when their
current context changes.

Figure 2 illustrates the execution of ADOPT for the
DCOP from Figure 1, with an emphasis on aspects that
illustrate the benefits of our modifications of ADOPT. The
figure shows three snapshots in the progression of a possi-
ble execution path of ADOPT. Initially, the cost estimate of
choosing value x and the one of choosing value y are zero for
every node, and either value can thus be chosen. In Figure
2(i), nodes A, B and C initially each choose value x. Node A
now sends VALUE messages to inform its successors B and
C about its choice of value x, and node B sends a VALUE
message to inform its successor C about its choice of value
x, as indicated by the downward arrows. The current con-
text of node B now records that node A has chosen value
x, and computes its cost estimate for the best complete as-
signment of values to nodes that is consistent with node A
having chosen value x. This cost estimate is one: If node B
chooses value x (value y) then the constraint cost between

nodes A and B is one (two, respectively), and the constraint
cost between nodes that involve node C is estimated to be
zero since node B has not yet received a COST message from
node C. Thus, node B sends a COST message to inform node
A of an estimated cost of one. The cost estimate of choos-
ing value x is now one for node A while the cost estimate of
choosing value y is still zero. In Figure 2(ii), node A now
chooses value y (the value with the smallest cost estimate)
and sends VALUE messages to inform its successors B and
C about its choice of value y. Node B then sends a COST
message to inform node A of an estimated cost of three.
The cost estimate of choosing value x is now one for node A
while the cost estimate of choosing value y is three. Thus, in
Figure 2(iii), node A now switches back to value x and thus
backtracks in its search space, and the execution of ADOPT
continues. ADOPT is described in detail in [14], including
some optimizations that are not relevant to this paper and
that we did not describe here. Our key point is that node
A switched its value from x to y and back to x based on the
cost estimates of its values. While such context switching is
appropriate to avoid blocking in an asynchronous execution
environment, it causes successors to reconstruct their solu-
tion, and thus we could potentially improve the performance
of ADOPT if we were able to reduce such context switching
by supplying it with better cost estimates. For example,
if the cost estimate of choosing value y had been three for
node A, then one would have avoided the context switch in
Figure 2(ii).

Our new versions of ADOPT are motivated by the need to
avoid or reduce such unnecessary context switches. These
new versions of ADOPT are identical to ADOPT except
that they initialize ADOPT with non-zero cost estimates,
called heuristic values. They solve DCOPs optimally if we
guarantee that the heuristic values are indeed lower bound
cost estimates, which is the case since they use preprocess-
ing techniques that calculate heuristic values by solving a
relaxed version of the DCOP (= the DCOP with some con-
straints deleted or their costs reduced) in a preprocessing
phase before they run ADOPT in the main phase. The
main question of this paper then is whether the total run-
time of the new versions of ADOPT is smaller than the one
of ADOPT itself. The answer is not obvious since it takes
time to compute the heuristic values. It is known that run-
ning an uninformed version of A* on a relaxed version of
a search problem to obtain heuristic values that are then
used to focus the search of an informed version of A* on
the original version of the search problem cannot result in
smaller total runtimes than just using the uninformed ver-
sion of A* on the original version of the search problem [5].
However, the scheme may potentially work for ADOPT be-
cause ADOPT does not resemble A* but memory-bounded
versions of A*.

4. PREPROCESSING FRAMEWORK
The heuristic values can be calculated by using either

ADOPT on a relaxed version of the given DCOP or special-
ized preprocessing techniques on the given DCOP directly.
In the following, we describe three preprocessing techniques
(DP0, DP1 and DP2) that trade-off between how long it
takes to calculate the heuristic values and how informed
they are. We use the following additional notation to de-
scribe them formally: C(n) ∈ N denotes the set of children
of node n ∈ N . A(n) denotes the set of those ancestors of

A=x A=y

5 7
A

B

C

A=x A=y

min(1+5,2+3)=5 min(3+5,4+3)=7

B=x B=y

5 3

C=x C=y

0 0

B=x B=y

min(3+0+min(3,4),4+0+min(2,1))=5 min(1+0+min(3,4),2+0+min(2,1))=3

1

2

3

4

5

Figure 3: DP2 Example

node n ∈ N with which the node has constraints. Finally,
the heuristic value h(d(n)) is a lower bound cost estimate of
the smallest sum of the costs of the constraints between two
nodes, at least one of which is a successor of node n ∈ N in
the constraint tree if node n is assigned value d(n) ∈ D(n).

DP0, DP1 and DP2 are dynamic programming algorithms
that assign heuristic values to the nodes, starting at the
leaves of the constraint tree and then proceeding from each
node to its parent. They set the heuristic values of all leaves
to zero, that is, they set h(d(n)) := 0 for all d(n) ∈ D(n) and
n ∈ N with C(n) = ∅. Table 1 shows how they calculate the
remaining heuristic values h(d(n)) for all d(n) ∈ D(n) and
n ∈ N with C(n) 6= ∅. The heuristic values are lower bounds
because some constraints do not get taken into account or
their costs get underestimated (which is evident from the
minimizations in the formulas).

It is straightforward to implement DP0, DP1 and DP2
in a decentralized way where nodes send messages to their
parents. Basically, the leaves in the constraint tree calculate
the heuristic values for each possible value of their parents
and then send them in a message to their parents. All other
nodes wait until they have received such messages from each
of their children, then set the heuristic value of each of their
possible values to the sum of the heuristic values reported
by their children for this value, and then proceed in the
same way as the leaves. For example, Figure 3 describes the
operation of DP2 on the DCOP example from Figure 1. In
Step 1 of the preprocessing phase, C initializes the heuristic
values for its values x and y to 0. In Step 2, C calculates the
heuristic values for the values x and y of B. The heuristic
value for the value x of B is calculated as follows: If C is
assigned the value x then it is cost-minimal to assume that A
is assigned the value x. In this case, the cost of the constraint
between A and C is 3 and the cost of the constraint between
B and C is 3, resulting in an overall cost estimate of 6.
On the other hand, if C is assigned the value y then it is
cost-minimal to assume that A is assigned the value y as
well. In this case, the cost of the constraint between A and
C is 1 and the cost of the constraint between B and C is
4, resulting in an overall cost estimate of 5. The heuristic
value for the value x of B is the minimum of the two cost
estimates and thus 5. Similarly, C calculates the heuristic
value for the value y of B. It then sends these heuristic values
to B. In Step 3, B updates its heuristic values and, in Step 4,

DP0 h(d(n)) :=
P

n′∈C(n)

P

n′′∈A(n′) mind(n′)∈D(n′) mind(n′′)∈D(n′′) c(d(n′), d(n′′))

DP1 h(d(n)) :=
P

n′∈C(n) mind(n′)∈D(n′)(h(d(n′)) + c(d(n′), d(n)))

DP2 h(d(n)) :=
P

n′∈C(n)(mind(n′)∈D(n′)(h(d(n′)) + c(d(n′), d(n)) +
P

n′′∈A(n′)\{n} mind(n′′)∈D(n′′) c(d(n′), d(n′′))))

Table 1: Calculation of DP0, DP1 and DP2

calculates the heuristic values of the values x and y of A. It
then sends these heuristic values to A, and finally, in Step 5,
A updates its heuristic values, which ends the preprocessing
phase. In the main phase, node A initially chooses value
x and switches to value y only when the cost estimate of
choosing value x exceeds seven (= the initial cost estimate
of choosing value y) which avoids the initial context switch
in Figure 2(ii).

DP0, DP1 and DP2 can differ in both the heuristic values
they calculate and in their computation and communication
overhead. Each heuristic value of DP2 is guaranteed to be at
least as large (= at least as informed) as the corresponding
heuristic value of either DP0 or DP1. The following table
contains the heuristic values for our example, where the last
row contains the largest lower-bound cost estimates that
satisfy our definition of the heuristic values:

A=x A=y B=x B=y C=x C=y
DP0 1 1 2 2 0 0
DP1 3 5 3 1 0 0
DP2 5 7 5 3 0 0
optimal 6 7 5 3 0 0

We can now examine the overhead of DP0, DP1 and DP2.
Unfortunately, it is nontrivial to measure the runtime of the
preprocessing techniques since nodes can operate in paral-
lel but are often simulated in different threads on a single-
processor machine. We follow other researchers and mea-
sure the runtime using cycles, where every node is allowed
to process all of its messages in each cycle. However, cycles
typically measure only the communication but not the com-
putation overhead. While this is appropriate in those sit-
uations where the communication overhead dominates the
computation overhead, we also investigate the computation
overhead to ensure that it is not excessive.

• Computation Overhead: The computation over-
head is affected by how many constraint costs a node
must access. DP1 needs to access only the costs of the
constraints that a node has with its parent while DP0
and DP2 also need to access the costs of the constraints
that the node has with its other ancestors.

• Communication Overhead: The communication
overhead is measured in cycles. DP0 needs only one
cycle because it does not propagate heuristic values up
the constraint tree while DP1 and DP2 need a num-
ber of cycles that equals the depth of the constraint
tree (plus one). For example, Steps 1 and 2 constitute
one cycle in the DP2 example from Figure 3, Steps 3
and 4 constitute another cycle, and Step 5 constitutes
the third and final cycle. Another key difference be-
tween DP0 and the other two preprocessing techniques
is that DP0 sends only one heuristic value from a node
to its parent (because the heuristic values are identi-
cal for all possible values of the parent) while DP1 and
DP2 send one heuristic value for each possible value of

the parent (because they can be different). For exam-
ple, every node sends two heuristic values to its parent
in the DP2 example from Figure 3. However, since
DP1 and DP2 communicate both of these heuristic
values to the parent node at the same time, they can
bundle them within a single message, and the number
of messages per cycle then is the same for all three
preprocessing techniques. While the number of mes-
sages, rather than their size, is a suitable measure of
the communication overhead in many domains, a more
detailed investigation on real hardware may be needed
to fully understand the impact of the increase in the
message size. In the following, we discuss the impact
of such an increase in the message size, but our exper-
imental results count all cycles the same, independent
of the size of the messages sent.

Based on these two axes of computation and communi-
cation overhead, we identify two key design choices. They
provide the rationale for our choices of DP0, DP1 and DP2.
In the following, we always list the choice first that results
in more informed heuristic values.

• Property a (= Computation Overhead): A pre-
processing technique can either take all constraints
into account (1) or only the constraints between nodes
and their parents (2), in which case the constraints
form a tree. (2) corresponds to relaxing the DCOP
by deleting all constraints that are between any two
nodes that are not in a parent-child relationship in the
constraint tree, which is basically exactly what DP1
does. Instead of using DP1 on a given DCOP, one can
therefore also use ADOPT itself on the relaxed DCOP
to calculate similar heuristic values, which needs more
cycles than DP1 but makes the preprocessing step eas-
ier to implement and might still result in substantial
speedups. (We also experimented with other ways of
deleting constraints. For example, randomly deleting
a given percentage of constraints turned out not to be
advantageous.)

• Property b (= Communication Overhead): A
preprocessing technique can either take the heuristic
values of a node into account (1) or ignore them (2)
when calculating the heuristic values of the parent. (1)
needs a number of cycles that equals the depth of the
constraint tree (plus one) to propagate the heuristic
values up the constraint tree, while (2) can be com-
puted in only one cycle.

The following table categorizes DP0, DP1 and DP2 ac-
cording to these two properties:

Property a Property b
DP0 (1) (2)
DP1 (2) (1)
DP2 (1) (1)

Figure 4: Sensor Network Chain

The following table shows the runtimes of DP0, DP1, and
DP2 per cycle as a function of the two properties, where
v = maxn∈N |D(n)| is the largest cardinality of the set of
possible values of any node, k = maxn∈N |A(n)| is the largest
cardinality of the set of those ancestors with which any node
has constraints, c denotes the runtime of the preprocessing
technique measured in cycles, and m denotes the size of its
messages:

Preprocessing Cost per Cycle
low high

(c=1, m=1) (c=tree depth, m=v)
Graph tree O(v2) DP1 O(v2)

Structure full graph DP0 O(kv
2) DP2 O(kv

2)

There are v2 constraint costs for each constraint. Each
preprocessing technique might have to process all v2 con-
straint costs for each of the at most k ancestors of a node
with which it has constraints. If the constraints form a tree
(upper row of the table), then the number of ancestors is one
(k = 1). When the constraints do not form a tree (lower row
of the table), each node must examine its input and thus v2

constraint costs for each of its k ancestors, and thus the kv2

cost is mandatory for both DP0 and DP2. The cost for DP2
needs further explanation since given a node n, it iterates
over all k ancestors of all children of node n, and would thus
appear to require an additional cost of iterating over all such
children. However, in a decentralized implementation, each
child node only computes the heuristic values relevant to it-
self and sends the values to the parent node n, which sums
the inputs from the children. Thus, each child incurs the
cost of kv2 per cycle. This explains the table. Since the
runtimes of DP0, DP1, and DP2 are polynomial per cycle
and their number of cycles is polynomial as well, their run-
times are polynomial. This means that their runtimes are
small in the worst case compared to the runtime of the main
phase since solving DCOPs is NP-hard.

5. EXPERIMENTAL RESULTS
It is not immediately obvious whether the runtime of

the preprocessing techniques is sufficiently overcome by the
speedups achieved in the main phase and, if so, which pre-
processing technique results in the smallest total runtime,
that is, sum of the runtimes of the preprocessing phase and
main phase. We conducted experiments in two different
DCOP domains to answer these questions:

• Graph Coloring: Our first domain is a three-coloring
problem with a link density (= number of constraints
over the number of nodes) of two, which are relatively
easy to solve according to [2]. The values of the nodes
correspond to the colors, and all constraint costs are
drawn with uniform probability from the integers be-
tween 1 and 100.

• Distributed Sensor Network (DSN): Our second
domain is a distributed sensor network problem where

54 sensors, arranged in a chain, have to track 10, 15,
20 or 25 targets that are randomly positioned between
four sensors each [12]. At most one target is between
any four sensors. Figure 4 shows an example, where
hollow circles with Xs represent sensors and solid cir-
cles without Xs represent targets. Each sensor can
track at most one target, which needs to be in its im-
mediate vicinity. Each target is either tracked by ex-
actly three sensors or one incurs a cost that is drawn
with uniform probability from the integers between 60
and 660. Details are given in [12, 14]. Basically, one
creates the nodes TA1, TB1, TC1, and TD1 if the
sensors A, B, C, and D are able to track target 1.
Thus, there is one node for each combination of a sen-
sor and one of its possible targets. (The total number
of nodes is thus equal to four times the number of tar-
gets.) The possible values of these three nodes are all
combinations of three sensors that are able to track
the target (ABC, ABD, ACD, BCD), and the value
IGNORE that represents that no sensor will track the
target. There are equality constraints between any
two nodes with the same target. For example, there
is an equality constraint between TA1 and TB1 that
requires sensors A and B to agree on the set of sen-
sors that track target 1. Similarly, there are mutual
exclusion constraints between any two nodes with the
same sensor. For example, there is a mutual exclusion
constraint that enforces that sensor A cannot track
targets 1 and 2 at the same time. The costs are zero
if these mutual exclusion constraints are satisfied and
very high (= 1,000,000) if they are not satisfied, mak-
ing them hard constraints. If a node is assigned the
value IGNORE, then it incurs a cost for ignoring that
target.

The following table gives details on the number of nodes
and the number of their possible values for the two DCOP
domains. We varied the sizes of the domains by varying the
number of their nodes. We report averages over 15 problem
instances for each domain and size. The code for our ex-
periments and the results for the different sizes of the two
domains can be found at teamcore.usc.edu/preAdopt.htm:

Domain Nodes Values per Node
Graph Coloring 9, 10, 11, 12 3
DSN 40, 60, 80, 100 5

5.1 Discussion of Cycle Count
In the following, we refer to ADOPT0, ADOPT1 and

ADOPT2 as the combination of DP0, DP1 and DP2, re-
spectively, in the preprocessing phase and ADOPT in the
main phase. Figure 5 shows the total number of cycles of
ADOPT and the three new versions of ADOPT as a func-
tion of the number of nodes (= agents). ADOPT2 outper-
forms all other versions of ADOPT in graph coloring and
its speedups increase with the number of nodes. For ex-
ample, ADOPT2 speeds up ADOPT by a factor of 10.59
in graph coloring with 12 nodes. ADOPT0 does not speed
up ADOPT in DSN, and ADOPT1 and ADOPT2 speed it
up by the same amount. ADOPT2 speeds up ADOPT by
a factor of 2.79 in DSN with 100 nodes. To summarize,
ADOPT2 has the smallest total number of cycles in graph
coloring. Both ADOPT1 and ADOPT2 have the smallest

Figure 5: Cycles

Figure 6: Preprocessing Cycles

total number of cycles in DSN, which means that ADOPT1
should be preferred over ADOPT2 in this domain since the
computation overhead of DP1 is smaller than the one of
DP2. On the other hand, ADOPT0 is not the method of
choice in either domain despite the small computation and
communication overhead of DP0 over DP1 and DP2.

Recall that one can use both DP1 on a given DCOP or
ADOPT on a relaxed version of the DCOP to calculate the
similar heuristic values in the preprocessing phase. Thus,
the number of cycles in the main phase will be similar in
both cases and one should choose the preprocessing tech-
nique that results in the smallest number of cycles in the
preprocessing phase. Figure 6 shows that the number of cy-
cles of DP1 in the preprocessing phase is smaller than the

Figure 7: Accuracy

one of ADOPT by a factor of 4.68 in graph coloring with
12 nodes and by a factor of 7.35 in DSN with 100 nodes.
To summarize, there is an advantage to using specialized
preprocessing techniques in the preprocessing phase rather
than the more general ADOPT itself.

5.2 Discussion of Accuracy
To understand better why the speedups depend on the

preprocessing technique, recall that the heuristic values com-
puted by the preprocessing techniques are used to seed the
cost estimates of ADOPT in the main phase. ADOPT can
raise these cost estimates during its operation. We there-
fore computed the ratio of each cost estimate computed by
the preprocessing technique and the one after the termina-
tion of ADOPT, averaged over all cost estimates that are
still available when ADOPT terminates (except for the cost
estimates in leaf nodes of the constraint graph, which are
zero). We refer to this ratio as the accuracy. The larger the
accuracy, the more informed the heuristic values are. An
accuracy of 0 percent means that the heuristic values are no
more informed than the initial cost estimates of ADOPT it-
self. In this case, the preprocessing technique does not speed
up ADOPT. On the other hand, an accuracy of 100 percent
means that the heuristic values computed by the prepro-
cessing technique were so good that ADOPT was not able
to raise them. Figure 7 shows the accuracies of DP0, DP1
and DP2. The accuracy of DP0 is 14.4 percent, the accu-
racy of DP1 is 35.8 percent, and the accuracy of DP2 is 69.0
percent in graph coloring with 12 nodes. On the other hand,
the accuracy of DP0 is zero percent (and hence the bar does
not appear in the figure) in DSN with 100 nodes since the
heuristic values calculated by DP0 are all zero. This is so
since every constraint has at least one constraint cost that
is zero. Thus, ADOPT and the main phase of ADOPT0 are
equally fast in this case. The accuracies of DP1 and DP2
are larger than zero percent but, for a similar reason, iden-
tical at 37.9 percent. Thus, the main phases of ADOPT1
and ADOPT2 are equally fast in this case. Figure 7 shows

Figure 8: Repeated Contexts

that the total number of cycles from Figure 5 are closely
correlated with the accuracies of the heuristic values. The
more accurate the heuristic values, the more they speed up
ADOPT on the same DCOP.

To examine this relationship further in graph coloring
with 11 nodes, we first ran ADOPT without preprocess-
ing and obtained the cost estimates after its termination.
We then ran ADOPT again but now simulated a prepro-
cessing phase that produces heuristic values that are equal
to the product of the corresponding cost estimates after the
termination of ADOPT and the same constant factor (no
larger than one), which represents the desired accuracy of
the heuristic values. Figure 10 shows that the total number
of cycles is closely correlated with the factors. Similar to
the previous experiment, the larger the factors and thus the
more accurate the heuristic values, the more they speed up
ADOPT.

5.3 Discussion of Number of Contexts
There are two reasons why the informedness of the heuris-

tic values can have a large effect on the resulting speedups.
We explore both reasons, illustrating that the speedups are
a combination of both reasons. For the explanation, we use
the number of unique and regenerated (= repeated) current
contexts at each node. Whenever a node receives a VALUE
message from one of its ancestors, it calculates its new cur-
rent context. If it has not seen this current context before, it
counts the current context as a unique current context, oth-
erwise it counts the current context as a regenerated current
context:

• The first reason why the informedness of the heuristic
values can have a large effect on the resulting speedups
is that ADOPT, as a memory-bounded DCOP algo-
rithm, has to regenerate partial solutions (in the form
of current contexts) when it backtracks to a previ-
ously explored part of the search space. More informed
heuristic values reduce the amount of backtracking of
ADOPT and thus the number of regenerated current

Figure 9: Unique Contexts

contexts, resulting in a smaller number of cycles in
the main phase. To verify our hypothesis, we mea-
sured the number of regenerated current contexts at
each node, averaged over all nodes in the constraint
graph. Figure 8 shows that the number of regenerated
current contexts is indeed closely correlated with the
total number of cycles from Figure 5 and the accura-
cies from Figure 7. The more accurate the heuristic
values, the fewer current contexts are repeated in the
main phase, and the more the heuristic values speed
up ADOPT.

• The second reason why the informedness of the heuris-
tic values can have a large effect on the resulting
speedups is that more informed heuristic values reduce
the part of the search space explored by ADOPT and
thus also the number of unique current contexts, re-
sulting in a smaller number of cycles in the main phase.
To verify our hypothesis, we measured the number of
unique current contexts at each node, averaged over
all nodes in the constraint graph. Figure 9 shows that
the number of unique current contexts, surprisingly,
changes very little in graph coloring. The number of
unique current contexts decreases with the accuracy
of the heuristic values in DSN. The more accurate the
heuristic values in this case, the fewer unique current
contexts are generated in the main phase, and the more
the heuristic values speed up ADOPT.

5.4 Related Work
Precursor work to the systematic investigation of prepro-

cessing in this paper appeared in [9], where a single pre-
processing technique was reported, namely a hybrid of our
DP0 and DP1 techniques. Figure 11 shows that the total
number of cycles of ADOPT2 is smaller than the one of this
precursor technique by a factor of 5.7 in graph coloring with
12 nodes.

Figure 10: Impact of Accuracy in Graph Coloring

Figure 11: Previous Speedups in Graph Coloring

6. CONCLUSIONS
In this paper, we developed a framework of preprocess-

ing techniques that speed up ADOPT, an asynchronous
complete and optimal DCOP algorithm. Our preprocess-
ing techniques use dynamic programming to calculate in-
formed lower bound cost estimates for ADOPT. Our em-
pirical results in two DCOP domains, namely graph color-
ing and distributed sensor networks, demonstrated that our
preprocessing techniques are fast and can speed up ADOPT
by an order of magnitude, at a relatively low preprocess-
ing cost. We showed that the key reason for the speedup
is the informedness of the heuristic values, which in turn
determines how many partial solutions ADOPT generates
and how many of these it revisits. The results also demon-
strated that the preprocessing techniques are significantly
more efficient than using ADOPT itself in the preprocess-
ing phase. As outlined in [13], it is essential to use lower
bound cost estimates in DCOP algorithms. Since our pre-
processing techniques focus on computing such lower bound
cost estimates, the ideas behind them might also apply to
DCOP algorithms other than ADOPT such as Synchronous
Branch and Bound [6], Synchronous Iterative Deepening [14]
and Optimal Asynchronous Partial Overlap [11]. It is future
work to explore their applicability to these and other DCOP
algorithms as well as to develop even more sophisticated pre-
processing techniques.

7. REFERENCES
[1] S. Bistarelli, R. Gennari, and F. Rossi. Constraint

propagation for soft constraints: generalization and
termination conditions. In CP, pages 83–97, 2000.

[2] J. Culberson and I. Gent. Frozen development in
graph coloring. Theoretical Computer Science,
265(1–2):227–264, 2001.

[3] J. Davin and P. Modi. Impact of problem

centralization in distributed constraint optimization
algorithms. In AAMAS, 2005.

[4] R. Dechter and I. Meiri. Experimental evaluation of
preprocessing techniques in constraint satisfaction
problems. In IJCAI, pages 271–277, 1989.

[5] O. Hansson, A. Mayer, and M. Valtorta. A new result
on the complexity of heuristic estimates for the A*
algorithm. Artificial Intelligence, 55(1):129–143, 1992.

[6] K. Hirayama and M. Yokoo. Distributed partial
constraint satisfaction problem. In CP, pages 222–236,
1997.

[7] H. Jung and M. Tambe. Performance models for large
scale multiagent systems using POMDP building
blocks. In AAMAS, pages 297–304, 2003.

[8] V. Lesser, C. Ortiz, and M. Tambe, editors.
Distributed sensor networks: A multiagent perspective.
Kluwer, 2003.

[9] R. Maheswaran, M. Tambe, E. Bowring, J. Pearce,
and P. Varakantham. Taking DCOP to the real world:
Efficient complete solutions for distributed event
scheduling. In AAMAS, pages 310–317, 2004.

[10] R. Mailler and V. Lesser. Solving distributed
constraint optimization problems using cooperative
mediation. In AAMAS, pages 438–445, 2004.

[11] R. Mailler and V. Lesser. Solving distributed
constraint optimization problems using cooperative
mediation. In AAMAS, pages 438–446, 2004.

[12] P. Modi, H. Jung, M. Tambe, W. Shen, and
S. Kulkarni. A dynamic distributed constraint
satisfaction approach to resource allocation. In CP,
pages 685–700, 2001.

[13] P. Modi, W. Shen, M. Tambe, and M. Yokoo. An
asynchronous complete method for distributed
constraint optimization. In AAMAS, pages 161–168,
2003.

[14] P. Modi, W. Shen, M. Tambe, and M. Yokoo.
ADOPT: asynchronous distributed constraint
optimization with quality guarantees. Artificial

Intelligence, 161:149–180, 2005.

[15] P. Scerri, J. Modi, M. Tambe, and W. Shen. Are
multiagent algorithms relevant for real hardware? A
case study of distributed constraint algorithms. In
ACM Symposium on Applied Computing, pages 38–44,
2003.

[16] T. Schiex. Arc consistency for soft constraints. In CP,
pages 411–424, 2000.

[17] N. Schurr, S. Okamoto, R. Maheswaran, P. Scerri, and
M. Tambe. Evolution of a teamwork model. In R. Sun,
editor, Cognition and Multi-Agent Interaction: From

Cognitive Modeling to Social Simulation, page (to
appear). Cambridge University Press, 2005.

[18] M. Silaghi, D. Sam-Haroud, and B. Faltings.
Consistency maintenance for ABT. In CP, pages
271–285, 2001.

[19] R. Wallace. Enhancements of branch and bound
methods for the maximal constraint satisfaction
problem. In AAAI, pages 188–195, 1996.

