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In video games and robotics, one often discretizes a continuous 2D environment into a 
regular grid with blocked and unblocked cells and then finds shortest paths for the agents 
on the resulting grid graph. Shortest grid paths, of course, are not necessarily true shortest 
paths in the continuous 2D environment. In this article, we therefore study how much 
longer a shortest grid path can be than a corresponding true shortest path on all regular 
grids with blocked and unblocked cells that tessellate continuous 2D environments. We 
study 5 different vertex connectivities that result from both different tessellations and 
different definitions of the neighbors of a vertex. Our path-length analysis yields either 
tight or asymptotically tight worst-case bounds in a unified framework. Our results show 
that the percentage by which a shortest grid path can be longer than a corresponding 
true shortest path decreases as the vertex connectivity increases. Our path-length analysis 
is topical because it determines the largest path-length reduction possible for any-angle 
path-planning algorithms (and thus their benefit), a class of path-planning algorithms in 
artificial intelligence and robotics that has become popular.

Published by Elsevier B.V.

1. Introduction

Agents, such as game characters and robots, navigate in continuous 2D environments and thus have to find paths. They 
often discretize their environments into regular grids whose cells are equilateral and equiangular polygons. Some of these 
polygons can be blocked. For example, robots use evidence grids [1] or, synonymously, occupancy grids to keep track of the 
locations of obstacles. Video games and robots also use grids as maps and might associate information with polygons, such 
as the type of terrain, hidden objects or weather information. For example, the video game “Company of Heroes” and the 
Mars rovers Spirit and Opportunity [2] use 2D square grids. But other kinds of grids are used as well, especially in video 
games. For example, the video game “Civilization VI” uses 2D hexagonal grids, as shown in Fig. 1. One advantage of 2D 
hexagonal grids over 2D square grids is that paths can often be found faster on 2D hexagonal grids than 2D square grids, as 
has been shown both analytically [3] and experimentally [4].

The agents then find shortest grid paths (SGPs) on the grid graphs constructed from the grids and move along them 
[5,3,6]. These paths need to be unblocked, that is, are not allowed to pass through the interior of blocked polygons or 
between blocked polygons that share a side. SGPs, of course, are not necessarily true shortest paths (TSPs) in the continuous 
2D environments. In this article, we therefore study how much longer an SGP can be than a corresponding TSP.
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Fig. 1. Screen Shot of the Video Game “Civilization VI” by Firaxis Games.

Significance: SGPs can often be found faster than the corresponding TSPs, but are also typically longer which results in 
larger navigation times and fuel consumptions. Path planning on visibility graphs [7,8], for example, finds TSPs in continuous 
2D environments, but is often slow since the number of edges can grow quadratically in the number of vertices [9]. Path 
planning on grids, on the other hand, often finds longer paths, but is fast since the vertex connectivity does not depend on 
the number of vertices. Understanding this trade-off between the planning time and the length of the resulting path allows 
practitioners to choose appropriate path-planning algorithms for their applications. We analyze how much longer an SGP 
is than a corresponding TSP to help characterize this trade-off. Our path-length analysis complements other studies of the 
planning times for the tessellations that we study in this article or the path lengths for other tessellations. For example, 
researchers have analyzed how much longer a SGP formed by the edges of Delaunay triangulations without blocked polygons 
is than a corresponding TSP [10,11]. For the 2D square tessellation, upper bounds parameterized in k have been given on 
how much longer than the TSP path the SGP may need to be when: the set of edges is augmented to be those passing 
through at most k rows and k columns [12]; the set of edges is augmented by setting the vertex degree to 2k [13].

Our path-length analysis is topical because it determines the largest path-length reduction possible for any-angle path-
planning algorithms [14] (and thus their benefit), a class of path-planning algorithms in artificial intelligence and robotics 
that has become popular. Any-angle path-planning algorithms are often based on A* [15] and propagate information along 
grid edges (like A*, to be fast) without constraining the resulting paths to grid edges (unlike A*, to find shorter paths than 
SGPs) [14]. Some any-angle path-planning algorithms, such as Anya [16], even find TSPs in continuous 2D environments. 
Some any-angle path-planning algorithms have been proposed in the context of video games [17–19]. Examples are Block 
A* [20], Anya, Theta* [21] and Lazy Theta* [22] and a chapter in a game-programming book [18]. Other any-angle path-
planning algorithms have been proposed in the context of robotics. An example is Field D*, which has been used on various 
robots – including the Mars rovers Spirit, Opportunity and Curiosity [2,23]. Researchers have also proposed to use Field D* 
on unmanned underwater vehicles [24] as well as Theta*, Lazy Theta*, and Accelerated A* [25] on unmanned aerial vehicles 
[26–28], for example to avoid collisions or bad weather. Any-angle path-planning algorithms can operate on various kinds 
of grid graphs. For example, Field D* [29] was initially designed for 2D square grids but has been extended to 3D cubic 
grids [30] and a variety of other graph topologies [31,32], and Theta* [33] and Lazy Theta* [34] were designed to operate 
on arbitrary Euclidean graphs. See [14] for an overview on any-angle path-planning algorithms.

We consider all regular grids with any arrangement of blocked polygons that tessellate continuous 2D environments 
(namely, grids with SQUAREs, TRIangles, and HEXagons as polygons). We transform them into grid graphs by placing vertices 
at the corners of the polygons. Placing vertices at the corners rather than the centers of 2D square grids typically results 
in shorter paths since TSPs in 2D grids change their headings only at the corners, as has been shown both analytically and 
experimentally [35], and is thus often done by any-angle path-planning algorithms. The closed-form interpolation equation 
of Field D*, for example, requires vertices to be placed there. We study 5 different vertex connectivities that result from both 
different tessellations and different definitions of the neighbors of a vertex, resulting in 6-Tri, 4-Square, 8-Square, 3-Hex, and 
12-Hex grid graphs, where the integer indicates the vertex connectivity. For example, a vertex in 4-Square (or 8-Square) grid 
graphs connects to its neighbors in the 4 (or 8, respectively) compass directions if the straight-line paths between them are 
unblocked.

Assumptions: We assume, as is often done for theoretical analyses, that the agents are omnidirectional points and 
each polygon has a traversal cost per unit of distance traveled of either one or, if it is blocked, infinity. Thus, our path-
2
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Table 1
Worst-Case Ratios Between Shortest Grid Paths (SGPs) and True Shortest Paths (TSPs).

Polygons Vertex Connectivity SGP can be up to % Longer than TSP

Triangles 6 100 · 2√
3

≈ 115.47 (tight)

Squares 4 100 · √2 ≈ 141.42 (tight)
8 100 · 2√

2+√
2

≈ 108.24 (asymptotically tight)

Hexagons 3 100 · 3
2 = 150 (tight)

12 100 · (√6 − √
2) ≈ 103.53 (asymptotically tight)

length analysis only approximates reality where agents often have both extent and kino-dynamic motion constraints and 
environments contain obstacles of more complex shapes. Agents would then first grow the obstacles sufficiently, next cover 
them with blocked polygons, plan their paths, and finally use controllers that take their motion constraints into account and 
stay close to the resulting paths.

Contributions: Our path-length analysis yields worst-case ratios of the lengths of an SGP and a corresponding TSP in 
a unified framework for all regular tessellations of continuous 2D environments, where only 3-Hex grid graphs need to be 
treated slightly differently since they have properties different from the other grid graphs. For example, an SGP typically 
moves in at most 2 different directions on 2D grid graphs but can move in 3 different directions on 3-Hex grid graphs. 
The worst-case ratios determine how much longer at most is an SGP than is a corresponding TSP over all path-planning 
instances. Our path-length analysis generalizes existing results on the worst-case ratios for 8-Square grid graphs [29] and 
6-Hex grid graphs [36]. These previous path-length analyses are specific to particular vertex connectivities and ignore the 
potential effects of blocked polygons. For example, it is known that an SGP for 8-Square grid graphs without blocked 
polygons can be about 8 percent longer than a corresponding TSP but not longer [29], which raises the question whether 
this percentage can be larger in the presence of blocked polygons. We show that this is not possible. Our path-length 
analysis in this article also substantially improves on our own previous path-length analysis [9], which makes extensive use 
of case enumeration and is thus long and inelegant. The prior work analyzes fewer vertex connectivities (but also cases 
where vertices are placed at the centers of the polygons).

Results: Table 1 summarizes the worst-case ratios of the lengths of an SGP and a corresponding TSP. All worst-case 
ratios are either tight (that is, can be attained for some path-planning instance) or asymptotically tight (an arbitrarily close 
ratio can be attained). They decrease as the vertex connectivity increases. Interestingly however, we show that when the 
TSP consists of a single line segment, as is the case when there are no blocked polygons, the worst-case ratio for 3-Hex 
converges to 4/3 as the TSP grows large. Thus, if the grid path consists of long line segments, the worst-case performance 
of 3-Hex is actually better than the worst-case performance of 4-Square. See [14] for a high-level overview of a subset of 
these and other results.

Structure: We define our terminology and notation in Section 2. We show that without loss of generality we may 
assume the starting and ending locations (s and t) have line of sight – i.e., the segment st avoids blocked polygons – 
whenever looking for the worst-case ratio between the lengths of an SGP and TSP (Theorem 1). In Section 3, we determine 
the worst-case ratio for the 8-Square grid graph. Specifically, we characterize the directions used in a SGP (Theorem 2) and 
show that blocked squares have no impact on the SGP when there is line of sight between s and t (Theorem 3). Finally, we 
prove the worst-case ratio and demonstrate that it is asymptotically tight. In Section 4, we then provide a set of properties 
that allow us to extend the proofs for the 8-Square grid graph to a larger family of grid graphs including 4-Square, 6-Tri, 
and 12-Hex. We then calculate the worst-case ratios and prove tightness for 4-Square, 6-Tri, and 12-Hex grid graphs. In 
Section 5, we show that the structure of 3-Hex grid graphs is fundamentally different and perform a separate analysis on it.

2. Notation and definitions

In this paper, we consider grid graphs induced by tessellations of R2 by regular polygons (triangles, squares, and 
hexagons) with unit side length. For simplicity, we arrange the tessellation so that one side of each polygon is parallel 
to the horizontal axis and so that there is a polygon with a vertex (corner point) at the point (0, 0). Grid paths are formed 
by moving from vertex to vertex of the polygons tessellating the plane while using some set of allowed movements. Most 
commonly, grid paths are allowed to move along the edge of a polygon. When tessellating R2 by squares, this corresponds 
to either moving in one of the 4-cardinal directions, e.g., north. We denote this type of grid graph as a 4-Square grid graph. 
Another common selection is to allow grid paths to move to any vertex within the same polygon. With a square tessellation, 
this allows movement in the 4-intercardinal directions, e.g., north-east, in addition to the 4-cardinal directions. We denote 
this type of grid graph as an 8-Square grid graph. Both square grid graphs and their allowed movements are depicted in 
Fig. 2

Unpassable terrain is represented by blocked polygons – a subset of the polygons tessellating the plane – and every 
path must avoid them. A path avoids a blocked polygon if every part of the path intersects with an unblocked polygon. 
We remark that this definition allows a path to squeeze through two diagonally adjacent blocked polygons as depicted in 
Fig. 3, which may be undesirable in some settings. Fortunately, we show that traveling through diagonally adjacent blocked 
3
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Fig. 2. Movements allowed in 4-Square and 8-Square grid graphs respectively.

Fig. 3. A true shortest path (red and dashed) and a shortest grid path (blue) in an 8-Square graph that avoids all blocked squares. The paths avoid blocked 
squares because every part of the path interests with an unblocked square. (For interpretation of the colors in the figure(s), the reader is referred to the 
web version of this article.)
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Fig. 4. Movements allowed in 6-Tri grid graphs.

polygons – or through any vertex besides the starting and ending locations – never occurs in a worst-case instance and our 
results extend even when such movements are not allowed.

This paper bounds how much longer the SGP is than a true shortest path (TSP) – a path that is allowed to move in 
any direction. In additional to considering square grid graphs, we also consider triangular and hexagonal grid graphs. For 
triangular grid graphs, traveling along an edge is equivalent to traveling to another vertex in the same triangle. We denote 
the resulting grid graph as a 6-Tri grid graph as depicted in Fig. 4.

Traveling from a vertex to another vertex of the same hexagon results in the 12-Hex grid graph described in Fig. 5. At 
first glance, 12-Hex appears significantly different than 4-Square, 8-Square, and 6-Tri; the set of possible movements depend 
on the location of the vertex. On closer inspection however, the angles of the movements are identical for every vertex and 
they only vary in magnitude. Our proofs rely on relaxing the notion of a grid graph by allowing non-integer movements in 
the directions induced by the grid graph. As such, we need not distinguish between di and d′

i when analyzing the 12-Hex 
grid graph.

Finally, moving along the edges of a hexagon induces the 3-Hex grid graph described in Fig. 6. The 3-Hex grid graph is 
fundamentally different than the aforementioned grid graphs as the set of allowed movements are completely different (in 
angle) for adjacent vertices. As such, the analysis for 3-Hex grid graphs will vary slightly from the other grid graphs.

Prior to analyzing these grid graphs in more detail, we provide a result that simplifies the analysis for all grid paths 
– including those not mentioned in this paper. We show that when looking for an instance with the worst ratio between 
the lengths of the SGP and TSP that it suffices to only consider instances where the TSP from the starting point s and the 
ending point t is a straight line; equivalently when there is line of sight between s and t .
4
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Fig. 5. Movements allowed in 12-Hex grid graphs from the lower left and lower right vertices respectively. While di and d′
i may have different magnitudes, 

they describe movement in the same direction.
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Fig. 6. Movements allowed in 3-Hex grid graphs from the lower left and lower right vertices respectively. Unlike the other grid graphs, the allowed 
movements are different depending on vertex location.

Theorem 1. If the (exact or asymptotic) worst-case SGP-to-TSP ratio is α, then for all ε > 0 there exists an s and t such that (1) the 
ratio between the SGP and TSP from s to t is at least α − ε and (2) there are no other vertices are on the TSP from s and t.

Informally, Theorem 1 states there is worst-case instance where the starting and ending vertices are the only vertices 
on the TSP. We remark that if the bound is only asymptotically tight then the worst-case ratio is not actually realized and 
instead there are instances that come arbitrarily close. As such, the use of ε in the theorem statement only guarantees that 
we can select a “worst-case” s and t .

Proof of Theorem 1. For vertices s and t , let SG P (s, t) and T S P (s, t) denote the lengths of a SGP and a TSP between s and 
t . Let s and t be such that the line segment between s and t contains a minimal number of vertices and where SG P (s,t)

T S P (s,t) ≥
α − ε . For contradiction, suppose the TSP contains vertex v /∈ {s, t}. Since v is on the TSP between s and t , T S P (s, t) =
T S P (s, v) + T S P (v, t). By the triangle inequality, SG P (s, t) ≤ SG P (s, v) + SG P (v, t) implying SG P (s,t)

T S P (s,t) ≤ SG P (s,v)+SG P (v,t)
T S P (s,v)+T S P (v,t) . 

Therefore, either SG P (s,v)
T S P (s,v)

≥ SG P (s,t)
T S P (s,t) ≥ α − ε or SG P (v,t)

T S P (v,t) ≥ SG P (s,t)
T S P (s,t) ≥ α − ε . Without loss of generality, suppose SG P (s,v)

T S P (s,v)
≥

α − ε . The line segment between s and v contains fewer vertices than the line segment between s and t since it excludes 
t . This, however, contradicts the minimality of the selection of s and t and the statement of theorem holds. �

Informally, Theorem 1 allows individual “segments” of the TSP and SGP to be analyzed independently by splitting the 
paths whenever they intersect at some vertex besides s and t . For instance, bounding the ratio for the paths in Fig. 7 can 
be done by analyzing the individual segments of the path – from s to a, from a to b, and from b to t . The ratio between 
5
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Fig. 7. A true shortest path (red and dashed) and a shortest grid path (blue) in a 4-Square grid graph. The ratio between the SGP and TSP is bounded by 
the ratio of the segments; 5

1+2
√

2
= SG P (s,t)

T S P (s,t) ≤ max
{

SG P (s,a)
T S P (s,a)

,
SG P (a,b)
T S P (a,b)

,
SG P (b,t)
T S P (b,t)

}
= max

{
2√
2
, 1

1 , 2√
2

}
= √

2.

Fig. 8. The shortest grid path does not necessarily stay close to the true shortest grid path. Similar to Fig. 7, we can still bound the ratio between the SGP 
and TSP based on where the TSP intersects with vertices: 7

1+4
√

2
= SG P (s,t)

T S P (s,t) ≤ max
{

SG P (s,a)
T S P (s,a)

,
SG P (a,b)
T S P (a,b)

,
SG P (b,t)
T S P (b,t)

}
= max

{
6

3
√

2
, 1

1 , 2√
2

}
= √

2.

the SGP and TSP is then at most the ratio of the SGP and the TSP for the individual segments. As such, when bounding the 
ratio between the two paths, we may always assume that the paths consist of a single “segment”.

Formally however, there is no guarantee that the TSP and SGP intersect anywhere besides s and t even if the TSP passes 
through another vertex. As seen in Fig. 8, the SGP can deviate greatly from the TSP. Instead, Theorem 1 bounds the ratio in 
Fig. 8 by constructing three new grid paths for each of the segments in the TSP – a grid path from s to a, a grid path from 
a to b, and a grid path from b to t . The worst ratio for the paths defined on the pairs {s, a}, {a, b}, {b, t} then bounds the 
ratio for the original pair s, t since a grid path from s to a to b to t is a grid path from s to t and therefore at least as long 
as the shortest grid path from s to t .

3. 8-Square grid graph

In this section, we prove that the worst-case ratio between a shortest grid path (SGP) and a true shortest path (TSP) 
in an 8-Square grid graph is 2√

2+√
2

and show that this ratio is asymptotically tight (Theorem 7). We consider an ending 
location t in the cone emanating from the starting location s in the adjacent directions d1 and d2 as depicted in Fig. 9.

Without loss of generality, we may always assume this location by rotating the tessellation and/or reflecting the tessella-
tion across the x-axis. Further, our proofs make no use of the values of d1 or d2 and the directions {d1, d2} can be replaced 
with any pair of adjacent directions, e.g., {d4, d5} or {d8, d1}. We also only consider s and t where there is line of sight from 
s to t; by Theorem 1 it suffices to only consider such paths when looking for a worst-case instance. Our proof consists of 
three parts:

1. If there is a grid path from s to t that only uses directions d1 and d2 then it will be a shortest grid path (Theorem 2).
2. There exists a grid path from s to t that only uses directions d1 and d2 whenever there is line of sight from s to t

(Theorem 3).
3. Given a grid path from s to t that uses only directions d1 and d2, the ratio between that grid path and the true shortest 

path is at most 2√
2+√

2
(Theorem 7).

Before proceeding, we remark that the proofs in this section rely heavily on the lattice structure induced by adjacent 
directions in an 8-Square grid graph (described in Proposition 4). With the exception of the 3-Hex grid graph, all of our grid 
graphs form the same lattice structure after applying some linear transformations. In Section 4, we introduce the sufficient 
properties so that the proofs for 8-Square grid graphs immediately extend to larger family of grid graphs that includes 
4-Square, 6-Tri, and 12-Hex, but not 3-Hex. As such, much of the language in this section is written for a general set of 
directions and for regular polygons that tessellate the plane.

Theorem 2. Suppose that t is in the cone emanating from s in the adjacent directions d1 and d2 . If there is an 8-Square grid path from 
s to t that only uses directions d1 and d2 , then it is a shortest grid path.
6
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Fig. 9. The blue region shows the cone emanating from s in the directions d1 and d2.

Fig. 10. A relaxed 8-Square grid path from s to t using directions d1 and d2.

Fig. 11. If a relaxed grid path exits the cone emanating from s, then re-enters at the point u, then we can shorten the path by going directly from s to u
using the direction d1 or d2. Therefore, the shortest relaxed path must only use d1 and d2.

Proof. A grid path is only allowed to use integer multiples of each direction, i.e., we must always move from one corner 
to point to another corner point in the same polygon in one of the allowed directions. We prove a stronger statement by 
relaxing the notion of a grid path. Formally we show that if there is an 8-Square grid path from s to t that only uses 
directions d1 and d2, then it is no longer than any path that uses any combination of directions d1, ..., d8 (not necessarily 
integer multiples) regardless of whether that path avoids blocked polygons (squares).

We refer to such paths as relaxed grid paths; they are still only allowed to move in the same set of directions, but non-
integer steps are allowed and the paths are not required to avoid blocked polygons (squares). A relaxed 8-Square grid path 
is shown in Fig. 10.

Consider a shortest relaxed grid path and suppose it uses direction di a total of ci times. This implies that t = s +∑8
i=1 ci ·

di . In particular, since relaxed grid paths are not required to avoid blocked polygons, these directions can be used in any 
order, e.g., we can start our relaxed grid path by moving in direction d8, then use all of d7 and so-on.

For contradiction, let us suppose that there is a shortest relaxed grid path from s to t that is shorter than a grid path 
that only uses d1 and d2, i.e., that there is a shortest relaxed grid path that uses direction di where i /∈ {1, 2}. We will show 
that the relaxed grid path can be made shorter, a contradiction:

Since the path uses di where i /∈ {1, 2}, we can assume it uses the direction di first since the relaxed grid path is not 
required to avoid blocked polygons. Since d1 and d2 are adjacent directions, the relaxed grid path reaches a point u that 
is outside the cone emanating from s in the directions d1 and d2. Since t is inside this cone, there must be a point on 
the relaxed grid path, v , that appears after u and appears on the boundary of the cone. However, this contradicts that we 
have a shortest relaxed grid path; since v is on the boundary of the cone, the shortest s to v relaxed grid path uses only 
direction d1 or d2 and therefore we can shorten our path to avoid the point u by going directly from s to v as depicted in 
Fig. 11.

This implies that a shortest relaxed grid path uses only d1 and d2. Next, observe that if two different relaxed grid paths 
use only d1 and d2 then they have the same length since d1 and d2 are linearly independent. Finally, every grid path is also 
7
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Fig. 12. Parallelogram grid induced by d1 and d2 with “rows” and “columns” in the respective directions.

a relaxed grid path. Thus, if there is a grid path that uses only d1 and d2, then it is a shortest relaxed grid path and no 
longer than any other grid path. �
Theorem 3. Suppose that t is in the cone emanating from s in the adjacent directions d1 and d2 as shown in Fig. 9. If there is line of 
sight from s to t, then there is a grid path from s to t that uses only d1 and d2 .

Theorems 2 and 3 imply that the shortest grid path from s to t uses only directions d1 and d2 if there is line of sight 
between s and t thereby allowing easy computation of the length of the shortest grid path. Note that if t is on the boundary 
of the cone, then t = s + ci · di for either i = 1 or i = 2 and the TSP and SGP are identical yielding a SGP-TSP ratio of one. 
Thus, our analysis focuses on t in the interior of the cone. Before proceeding, we introduce the lattice structure induced by 
the adjacent directions d1 and d2.

Proposition 4 (Parallelogram Grid Graph for 8-Square). For any vertex t in the cone emanating from s in the adjacent directions d1
and d2 , t can be reached from s using only the directions d1 and d2 when there are no blocked polygons.

Proposition 4 is readily shown by induction and the proof is deferred to the appendix. In particular, this means that 
d1 and d2 induce a parallelogram grid in the cone emanating from s where the lattice points of the grid are precisely the 
vertices of the original grid graph as depicted in Fig. 12.

We now prove Theorem 3 by providing an algorithm that finds such a path from s to t using d1 and d2. Let a ∈R2 and 
b ∈ R be such that the line of sight from s to t is written as {x : aᵀx = b} where aᵀd1 ≤ 0 (direction d1 moves below the 
line) and aᵀd2 ≥ 0. Then Algorithm 1 finds an 8-Square grid path from s to t whenever there is line of sight. Algorithm 1
works by staying above the line of sight, but as close as possible to ensure that it does not traverse any blocked polygons 
as shown in Fig. 13.

Algorithm 1 Finding a Shortest Grid Path by Staying Above the Line of Sight.
1: procedure Find Grid Path

2: i ← 0
3: vi ← s
4: while vi 
= t do
5: if aᵀ(vi + d1) ≥ b (equivalently, vi + d1 on or above the line of sight) then
6: vi+1 ← vi + d1

7: else
8: vi+1 ← vi + d2

9: i ← i + 1

Lemma 5. Algorithm 1 terminates when t is in the interior of the cone emanating from s in the directions d1 and d2 .

Proof. Suppose t is in row k. Since t is in the interior of the cone, the line aᵀx = b is not parallel to d1 or row k. Thus, t is 
the unique point on aᵀx = b and in row k. By design of Algorithm 1, aᵀvm ≥ b for each iteration. Therefore, if the algorithm 
fails to terminate, there must be an m such that vm is in row k +1. Select m minimally. By minimality, vm = vm−1 +d2 where 
vm−1 
= t is in row k. Since vm is added to the path, aᵀ(vm−1 + d1) < b. However, this implies that aᵀx = b intersects row k
strictly between adjacent vertices vm−1 and vm−1 + d1. This implies that t is not a vertex in the graph, a contradiction. �
8
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Fig. 13. Grid path found by Algorithm 1 by staying close to the line of sight. Algorithm 1 behaves similarly to Bresenham’s line algorithm; the traversed 
polygons can be used to define a pixel representation of st.

Fig. 14. Selection of v for Lemma 6. The points v , vi−1, and vi form a triangle contained inside a unique polygon.

Lemma 6. Suppose t is in the interior of the cone emanating from s in the directions d1 and d2 and there is line of sight between s and 
t. For each vi−1 and vi added in Algorithm 1, the line segment vi−1 vi also does not intersect with any blocked polygons

Proof. Similar to Theorem 1, without loss of generality, we may assume that the line of sight only intersects with the 
vertices s and t . If not, it intersects with vertex v /∈ {s, t} and the analysis can be conducted separately on the segments 
sv and vt . We break the proof into two parts depending on whether vi = vi−1 + d2 or vi = vi−1 + d1. Both parts involve 
finding a polygon P containing both vi and vi−1 where the line of sight from s to t enters the interior of P implying that 
P is not blocked thereby proving the statement of the theorem.

Case 1: vi = vi−1 + d2. Suppose first that vi = vi−1 + d2 and let v = vi−1 + d1. Since d1 and d2 are adjacent, there is a 
unique polygon P with corners vi, vi−1 and v as depicted in Fig. 14. By selection of vi−1 and v , aᵀvi−1 ≥ b and aᵀv < b
implying that the line of sight intersects with the line segment vi−1, v at some location other than v since aᵀ < b. By 
definition, vi−1, v is parallel to d1 which is not parallel to the line of sight. Since line of sight between s and t is between 
the directions d1 and d2 and doesn’t pass through v , the line of sight also enters the interior of the triangle defined by 
vi, vi−1 and v . Since the polygons are convex, this triangle is necessarily in P and therefore P is not blocked completing 
the first part of the lemma.

Case 2: vi = vi−1 +d1. Now suppose that vi = vi−1 +d1. Let v = vi −d2 and thus there is a unique polygon P containing 
vi−1, vi , and v as depicted in Fig. 14. Next, we show that aᵀv < b. Suppose vi is in row k and let v j be last vertex added 
by Algorithm 1 that is in row k − 1 as depicted in Fig. 15. Equivalently, j is the largest index such that v = v j + c · d1 for 
some c ≥ 1. By the maximality of j, v j+1 = v j + d2 and therefore aᵀ(v j + d1) < b. This implies that aᵀv = aᵀ(v j + c · d1) =
aᵀ(v j +d1) +aᵀ(c −1)d1 < b +0 = b. Thus, the line of sight must intersect with the line segment vi, v at some location over 
than v since aᵀvi ≥ b. By symmetry, s is in the cone emanating from t in the directions −d1 and −d2. Following identically 
to the previous case, the line of sight st must enter the triangle defined by vi , vi−1, and v . This triangle is necessarily in P
and therefore P is not blocked completing the lemma. �

Theorem 3 now follows directly from Lemmas 5 and 6; Algorithm 1 finds a grid path from s to t that uses only directions 
d1 and d2. This path avoids all blocked polygons since each line segment added intersects with a polygon that is traversed 
by the line of sight from s to t . Finally, we determine the worst-case ratio between the SGP and the TSP.

Theorem 7. For the 8-Square graph where the angle between d1 and d2 is θ = π/4, the ratio between the lengths of a SGP and a TSP 
is at most 

√
2

1+cos θ
= 2√

2+√
2

≈ 1.0824. This ratio is asymptotically tight.

Proof. By Theorems 1, 2, and 3, it suffices to show the result when there are no blocked polygons and when there is line of 
sight. Without loss of generality, suppose t is in the cone emanating from s in the direction d1 and d2 and t = s +c1 ·d1 +c2 ·
d2 for some integer ci > 0. By Theorems 2 and 3, the shortest path uses only directions d1 and d2 and therefore has length 
9
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Fig. 15. Selection of v and v j when vi = vi=1 + d1 in Lemma 6.

Fig. 16. Ratio between the true shortest path and the shortest grid path.

l1 + l2 where li = ||ci · di ||2. By the law of cosines, the length of the true shortest path is 
√

l21 + l22 − 2 · l1 · l2 · cos (π − θ) as 
depicted in Fig. 16.

Thus, the ratio between the true shortest path and the shortest grid path is

l1 + l2√
l21 + l22 − 2 · l1 · l2 · cos (π − θ)

= l1 + l2√
l21 + l22 + 2 · l1 · l2 · cos (θ)

To bound this ratio, it suffices to solve:

max
(l1,l2)∈R2≥0

l1 + l2√
l21 + l22 + 2 · l1 · l2 · cos (θ)

(1)

The maximizer of (1) also solves

min
(l1,l2)∈R2≥0

l21 + l22 + 2 · l1 · l2 · cos (θ)

(l1 + l2)2
= inf

w≥0
min

(l1,l2)∈R2≥0:
l1+l2=√

w

l21 + l22 + 2 · l1 · l2 · cos (θ)

w
, (2)

since (2) is attained by taking the reciprocal and the square (two monotonic transformations) of (1). The domain {(l1, l2) ∈
R2≥0 : l1 + l2 = √

w} is symmetric and convex and the function l21 + l22 + 2 · l1 · l2 · cos (θ) is symmetric and strictly convex for 
θ ∈ (0, π/2). Therefore, all optimal solutions to (2) are symmetric (l1 = l2) and (1) simplifies to

max
l1∈R≥0

2l1√
2l21 + 2 · l21 · cos (θ)

=
√

2

1 + cos θ
(3)

as in the statement of the theorem.
Finally we remark that this bound is only asymptotically tight. Since the function in (2) is strictly convex, it is only 

possible to build a worst-case example when l1 = l2 implying that t is on the bisector of d1 and d2. However, the slope of 
the bisector is irrational and therefore no integer points (besides s) appear on the bisector and thus the worst-case ratio 
cannot be attained. The ratio is asymptotically tight however since a line with an irrational slope comes arbitrarily close to 
infinitely many integer points [37]. �
4. Parallelogram grid graphs

In this section, we identify the necessary properties to extend the results of Section 3 to the 6-Tri, 4-Square, and 12-Hex 
grid graphs. More generally, the proofs and theorems of Section 3 extend to any parallelogram grid graph – even variants 
where the plane is tessellated by non-regular or even varying convex shapes.
10
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Fig. 17. Labeling of R2 in the basis induced by d1 = (1,0) and d2 = (3/2,
√

3/2).

d1

d2

s Row 0

Row 1

Row 2

Row 3

Row 4

Row 5

s

Fig. 18. Parallelogram Grid Structure of 12-Hex Grid Graphs.

Definition 1 (Parallelogram Grid Graph). A grid graph is a parallelogram grid graph if it satisfies the following properties when 
there are no blocked polygons.

[P1] The angle (not necessarily magnitude) of allowed movements is independent of the vertex location.
[P2] For each direction, backwards movement is allowed, i.e., if di is an allowed movement, then −di (subject to rescaling) 

is also allowed.
[P3] For vertex v and adjacent directions d1 and d2, there exists a polygon containing v , v + d1, and v + d2.
[P4] For adjacent directions d1 and d2, starting vertex s, and every vertex v in the cone emanating from s in the directions 

d1 and d2, v can be reached from s using only directions d1 and d2.

For 6-Tri, 4-Square, and 8-Square, property [P1] holds immediately. To see that the property holds for 12-Hex, observe 
that the allowed movements at each vertex only vary in magnitude and not angle, e.g., movement to the right can cor-
respond to moving by (1,0) or (2,0) depending on the vertex. Similarly, properties [P2] and [P3] are easily verified by 
observation for each grid graph. Finally, property [P4] is shown for all grid graphs in the appendix.

We remark that this formulation essentially reduces hexagonal and triangular grid graphs to a square grid graph by 
redefining the set of basis vectors that we use to label R2. In the case of 6-Tri graph, every vertex is an integer point in the 
basis induced by d1 = (1, 0) and d2 = (3/2, 

√
3/2) as depicted in Fig. 17.

Similarly, every vertex is a 12-Hex grid graph is also a lattice point in the basis induced by two adjacent directions as 
shown in Fig. 18. We formalize these bases in the appendix while proving [P4] for each of the graphs. Further, [P1]–[P3] 
ensure that movement in the basis induced by d1 and d2 looks identical to movement in a 4-Square grid graph with rows 
and columns. As such, the framework we introduce in Definition 1 allows analysis conducted on square grid graphs to be 
extended to triangular, hexagonal, and even irregular grid graphs, e.g., stretched rectangles/parallelograms as is the case in 
12-Hex (Fig. 18). Using this framework, our results in the previous section readily extend to all parallelogram grid graphs.

Theorem 8. Consider any parallelogram grid graph. Suppose that t is in the cone emanating from s in the adjacent directions d1 and 
d2 . If there is an s − t grid path that only uses directions d1 and d2 , then it is a shortest grid path.

This proof follows identically to Theorem 2; the proof only makes use of properties [P1] and [P4] to guarantee that you 
can shortcut any path that leaves the cone and re-enters at point v by traveling directly from s to v in the direction d1 or 
d2. We remark that the magnitude of the direction was never used in the proof – the proof was shown for a relaxed grid 
path where only the direction of movement matters.
11
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Table 2
Worst-Case Ratios for Analyzed Parallelogram Grid Graphs.

Grid Graph Angle Between Directions Worst-Case Ratio Between SGP and TSP

4-Square π/2
√

2
1+cos(π/2)

= √
2 ≈ 1.4142 (tight)

6-Tri π/3
√

2
1+cos(π/3)

= 2√
3

≈ 1.1547 (tight)

8-Square π/4
√

2
1+cos(π/4)

= 2√
2+√

2
≈ 1.0824 (asymptotically tight)

12-Hex π/6
√

2
1+cos(π/6)

= √
6 − √

2 ≈ 1.0353 (asymptotically tight)

s

t

s

t

Fig. 19. Worst case SGP-to-TSP ratio for 4-Square and 6-Tri respectively.

(0,0) a

b c

A =
[

3 0
3/2

√
3/2

]−1

(0,0) aA

b A c A

Fig. 20. Transforming 12-Hex so that all vertices are rational and all integer points are vertices.

Theorem 9. Consider any parallelogram grid graph. Suppose that t is in the cone emanating from s in the adjacent directions d1 and 
d2 . If there is line of sight from s to t, then there is a grid path from s to t that uses only d1 and d2 .

Theorem 9 follows identically to Theorem 3 by using Algorithm 1 to find the path. Lemma 5 guarantees that Algorithm 1
terminates by making use of the parallelogram grid structure induced by property [P4] and therefore extends to all parallel-
ogram grid graphs. Moreover, each line segment added in Algorithm 1 intersects with no blocked polygons as in Lemma 6. 
This lemma makes use of Property [P3] in order to find an unblocked polygon that contains the added line segment – in 
one case, it also uses Property [P2] by moving backwards in a direction to find the unblocked polygon. As such, Lemma 6
extends to all parallelogram grid graphs and Theorem 9 holds.

Theorem 10. Consider any parallelogram grid graph. Suppose that t is in the cone emanating from s in adjacent directions d1 and d2

and let θ be the angle between d1 and d2 . The ratio between the lengths of the SGP and TSP is at most 
√

2
1+cos θ

. Moreover, this ratio is 
tight if there is a vertex along the bisector of d1 and d2 .

Theorem 10 follows identically to Theorem 7. In particular, for the parallelogram grid graphs referenced in this paper, the 
worst-case ratios are given in Table 2. Unsurprisingly, the worst-case ratio decreases as the angle between adjacent angles 
decreases – equivalently, as more directions of movement are allowed in the grid graph.

The worst-case ratios for 4-Square and 6-Tri are shown in Fig. 19. Demonstrating that the bound for the 12-Hex grid 
graph is asymptotically tight follows almost identically to the 8-Square after applying a transformation. We first map the 

set of hexagons into a new basis via the linear transformation A =
[

3 0
3/2

√
3/2

]−1

as demonstrated in Fig. 20. After this 

transformation, each vertex of a hexagon maps to a rational point in the new basis and each integer point coordinate in 
the new space maps to a vertex of the transformed hexagons. Specifically, when proving [P4] for 12-Hex in the appendix, 
we show that the lower left vertices of hexagons map form the set of integer points in the new basis and that every lower 
right vertex located (1, 0)A = (1/3, 0) from a lower left vertex.

In the original space, a bisector of d1 = (1, 0) and d2 = (3/2, 
√

3/2) is (2 − √
3, 1). After the linear transformation, the 

bisector corresponds to the vector (2 − √
3, 1)A = (2/3 − 2/

√
3, 2/

√
3), which has an irrational slope. The argument now 

follows identically to 8-Square by working in the transformed space. With s = (0, 0), no other rational points appear on the 
bisector and, since all hexagon vertices are rational in the transformed space, no other vertices appear on the bisector. Thus, 
12
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s t

Fig. 21. The SGP in the 3-Hex grid graph may require movement in three directions.

v2

v1

Fig. 22. label(v1) = +1, label(v2) = −1.

Table 3
Directions available based on the label of v .

label(v) = +1 label(v) = −1

d+1 = (−1,0) d−1 = (1,0)

d+2 =
(

1
2 ,

√
3

2

)
d−2 =

(
− 1

2 ,−
√

3
2

)
d+3 =

(
1
2 ,−

√
3

2

)
d−3 =

(
− 1

2 ,
√

3
2

)

the worst-case ratio cannot be achieved. However, the bisector comes arbitrarily close to infinitely many integer points in 
the transformed space. Since all integer points correspond to vertices of hexagons, the ratio can be made arbitrarily close to 
the ratio in Table 2.

5. 3-Hex grid graphs

Unlike the other 2D grid graphs, the 3-Hex grid graph does not satisfy the parallelogram grid properties; it only satisfies 
[P3]. As a result, the parallelogram grid graph may require three different directions to be used in the shortest grid path as 
demonstrated in Fig. 21.

We begin by characterizing the set of directions used in a SGP. Property [P1] does not hold for 3-Hex graphs and the 
path is not allowed to move in the same set of directions at each vertex. To address this inconsistency, we label each vertex 
with ±1 to indicate the set of allowed movements. This labeling is shown in Fig. 22 and corresponds to lower left vertices 
(−1) and lower right vertices (+1). If label(v) = +1, then a path at v can move in directions d+i for i = 1, 2, 3 where each 
direction is defined in Table 3. Similarly, if label(v) = −1, then a path at v can move in directions d−i for i = 1, 2, 3.

As shown in Fig. 21, three directions may be required to get from s to t in a 3-Hex grid graph. However, a SGP will never 
use four directions when there are no blocked hexagons. Specifically, if direction di is used, then direction d−i is not used 
for i ∈ ±{1, 2, 3}.

Theorem 11. If a shortest grid path from s to t uses direction di , then it does not use d−i when there are no blocked hexagons.

Proof. We consider a path using both directions d+1 and d−1. We then show that we can re-arrange the path so that d+1
and d−1 are the first two directions remove. However, this implies that after two steps, the path returns to the starting 
node s and therefore the path can be shortened by removing these two directions.

A shortest grid path from s to t is described by a sequence of directions (d j1 , d j2 , ..., d jn ), i.e., t = s + ∑n
i=1 d ji where 

v ′
k = s + ∑k

i=1 d ji is the kth vertex visited on the path. If v and v ′ are adjacent, then label(v) = −label(v ′) and therefore 
ji and ji+1 have opposite signs for all i. By reflecting s, t , and the tessellation of hexagons across a vertical axis, we may 
assume that label(s) = +1, ji < 0 for i even, and ji > 0 for i odd. Let σ be a permutation of J = { j1, ..., jn} such that σi < 0
for i even and σi > 0 for i odd – equivalently, ji and σi have the same sign.

First observe that σ still describes a valid 3-Hex grid path from s to t; by selection, t = s + ∑n
i=1 d ji = s + ∑n

i=1 dσi

since σ is a permutation of J . It remains to show that σ corresponds to a valid path. Let vk = s + ∑k
i=1 dσi . We will 

show by induction that (1) vk is a vertex of a hexagon, (2) label(vk) = −1 for k odd and +1 for k even, and (3) vk is 
reached from vk−1 using an allowed direction at vk−1. By selection of σ , v1 is a vertex of a hexagon since σi > 0 and 
label(s) = +1. By induction, for k even, vk−1 is a vertex and label(vk−1) = −1. Further, σk−1 < 0 since k is even. Since 
label(vk−1) = −1, moving in direction σk−1 describes a valid movement to an adjacent vertex. Therefore vk = vk−1 + dσ
k−1

13
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is a vertex. Moreover, label(vk) = +1 since its it is adjacent to a vertex with a label of −1 thereby completing the claim for 
k even. The proof for k odd follows identically. Therefore, σ corresponds to a valid path from s to t .

Finally, we show that if direction di is used in a shortest grid path, then d−i is not. For contradiction, suppose there is a 
shortest grid path from s to t described by the sequence J = ( j1, .., jn) with an odd k and even l such that jk = − jl , i.e. the 
direction di and d−i is used for i = jk . Select a permutation, σ , of J such that the sign of ji is the same as σi for all i and 
such that σ1 = jk and σ2 = jl . By the previous claim, σ describes a valid path from s to t . Moreover it is also a shortest grid 
since all directions have the same length. Let vk = s +∑k

i=1 dσi . Thus, v2 = s +d jk +d jl = s +d jk +d− jk = s +d jk +−d jk = s. 
This implies that (σ3, ..., σn) describes a valid path from s to t contradicting that σ is a shortest grid path. Therefore, if 
direction di is used in a shortest grid path, then d−i is not. �

Theorem 11 is similar to Theorem 2 in that it provides a characterization of the set of directions used to optimally travel 
from s to t . Using this connection, we prove that the worst-case ratio between the lengths of the SGP and the TSP is 3

2 and 
converges to 4

3 as the length of the SGP tends to infinity.

Theorem 12. For 3-Hex grid graphs, the ratio between lengths of a SGP and a TSP is at most 3
2 when there are no blocked hexagons. 

Furthermore, the worst-case ratio converges to 4
3 as the length of the SGP tends to infinity.

Proof. Let J = { j1, ..., jn} describe a shortest grid path from s to t as in the proof of Theorem 11. We consider only 
paths with length at least two since otherwise s is adjacent to t and the SGP and TSP are the same path. As in the proof 
of Theorem 11, we may assume label(s) = +1 and therefore j1 > 0. Moreover, after rotating s, t , and the tessellation of 
hexagons around the point s by a multiple of 2π/3 = 120◦ , we may assume d j1 = d+1 = (−1, 0). Further, by reflecting 
across a horizontal axis, we may assume d j2 = d−2 =

(
− 1

2 ,−
√

3
2

)
. By Theorem 11, J contains at most one other distinct 

element and it is either d+3 or d−3 = −d+3 =
(
− 1

2 ,
√

3
2

)
.

Case 1: d+1, d−2, and d+3 appear in J . Let k be the length of the SGP – equivalently the number of elements in the 
sequence J – and let ci denote the number of times di appears in J implying c+1 + c−2 + c+3 = k. As in Theorem 11, 
ji and ji+1 have opposite signs and therefore approximately half of the elements of J are {−2}. Specifically, j1 > 0 since 
label(s) = +1 and c+1 + c+3 = c−2 + r where r = k mod 2. Combining both equalities, c−2 = k−r

2 and c+3 = k − c+1 − c−2 =
k − c+1 − k−r

2 . This implies

t − s = c+1 · d+1 + c−2 · d−2 + c+3 · d+3

= c+1 · (−1,0) + c−2 · (−1/2,−√
3/2) + c+3 · (1/2,−√

3/2)

=
(

−c+1 − c−2

2
+ c+3

2
,− (c+3 + c−2)

√
3

2

)

=
(

−c+1 − k − r

4
+ k − c+1 − k−r

2

2
,− (k − c1)

√
3

2

)

= 1

2

(
r − 3c+1, (c+1 − k)

√
3
)

and therefore the length of the TSP is 
√

(r−3c+1)2+3(c+1−k)2

2 . The length of the shortest grid paths is k since J contains k
elements. Thus, the ratio between the two paths is

k

||t − s||2 = 2k√
(r − 3c+1)2 + 3(c+1 − k)2

≤ 4k

3k − r
(4)

where (4) follows by minimizing (r − 3c+1)
2 + 3(c+1 − k)2 with respect to c+1 with c∗+1 = k+r

4 . For r = 0 (k even), (4)

reduces to 4
3 . For r = 1 (k odd), (4) reduces to f (k) = 4k

3k−1 → 4
3 as k → ∞. Moreover, f (k) is maximal when k = 3 yielding 

f (3) = 3
2 . The ratio 3

2 is demonstrated to be tight in Fig. 23. This completes the proof of the theorem when J consists only 
of the directions d+1, d−2, and d+3.

Case 2: d+1, d−2, and d−3 appear in J . This case follows identically to case 1. Denote k, ci , and r as before implying 
c+1 = k+r

2 (at least half the steps use c+1 since j1 > 0) and c−3 = k − c+1 − c−2 = k − k+r
2 − c−2. Therefore,

t − s = c+1 · d+1 + c−2 · d−2 + c−3 · d−3

= c+1 · (−1,0) + c−2 · (−1/2,−√
3/2) + c−3 · (−1/2,

√
3/2)
14
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s

t

Fig. 23. Worst-case SGP-to-TSP ratio for 3-Hex grid graphs.

st

Fig. 24. Repeatable path demonstrating 4/3 ratio for long paths.

=
(

−3k

4
− r

4
,
(k − r)

√
3

4
− c−2

√
3

)

and the ratio between the lengths of the shortest grid path and the true shortest path is

k

||t − s||22
= 4k√

(3k + r)2 + 3(k − r − 4c−2)2
(5)

≤ 4k

3k + r
≤ 4

3
(6)

The inequalities in ((5)–(6)) hold since 3(k − r − 4c−2)
2 ≥ 0 thereby completing the proof of the theorem. We also remark 

that, in the limit that the 4/3 ratio is tight and can be seen by extending the line in Fig. 24. �
Finally, we show that the set of blocked hexagons has no impact on the shortest grid path if there is line of sight 

between s and t . We first establish that if a grid path from s to t uses the same set of directions as an SGP from s to t , then 
it also an SGP; this result is similar to the linear independence that we used for the parallelogram grid graphs. We then 
convert a 12-Hex SGP from s to t from Algorithm 1 into a 3-Hex grid path that (1) respects avoids blocked hexagons and 
(2) uses the same set of directions as an SGP from s to t . Together, these things imply that the blocked polygons have no 
impact on the shortest grid path and the worst-case ratios from Theorem 12 extend even when there are blocked hexagons.

Lemma 13. Suppose there is an SGP from s to t that uses only the directions d±i for i = 1, 2, 3 as given in the proof of Theorem 12. 
Then every path from s to t that uses the same set of directions is also an SGP.

Proof. Through rotational symmetry, we may assume there is a shortest path from s to t using only the directions d+1, d−2, 
and d−3 – unlike Theorem 12, we make no assumption about the label of s and we can assume the third direction is d−3.

Consider any path from s to t that use only directions d+1, d−2, and d−3 and let ci be the number of times each 
coefficient is used. Equivalently,

t − s = c+1 · d+1 + c−2 · d−2 + c−3 · d−3.

Similar to Theorem 12, c+1 = c−2 + c−3 + q where q ∈ {−1, 0, 1}. We now focus on the first coordinate of t − s. Specifi-
cally, by construction of 3-Hex, 2(t1 − s1) is integer. By definition of d±i ,

2(t1 − s1) = −2 · c+1 − (c−2 + c−3) = −3 · c+1 + q ≡ q mod 3.

Thus q ∈ {−1, 0, 1} is uniquely determined by s and t . This implies c+1 is uniquely determined by s and t since 2(t1 −
s1) = 3 · c+1 + q. Further, c−2 + c−3 = c+1 − q is also determined uniquely by s and t . Finally, the length of the path, 
c+1 + (c−2 + c−3) is a unique constant determined only by s and t . Therefore all grid paths that use the same set of 
directions as a SGP are also SGPs. �

Finally, we show that blocked hexagons have no impact on the length of an SGP when there is line of sight between s
and t . We accomplish this by converting the 12-Hex grid path from Algorithm 1 into a 3-Hex grid path.
15
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Fig. 25. Vertex t is in the cone emanating from s in the directions d+1 = (−1,0) and (−3/2,
√

3/2).

d+1

d−
3

direction (−3/2,
√

3/2)

vertex label: −1

d+1

d−
3

direction (−3/2,
√

3/2)

vertex label: +1

d+1

direction (−1,0)

vertex label: −1

d−
3

d+1

d −2

direction (−2,0)

vertex label: +1

Fig. 26. Converting a 12-Hex grid path to a 3-Hex grid path (case 1).

Theorem 14. If there is line of sight from s to t, then blocked hexagons have no effect on the length of an SGP from s to t in a 3-Hex 
Grid Graph.

Proof. Without loss of generality, suppose that a SGP from s to t only uses directions d+1, d−2, and d−3 when blocked 
hexagons are ignored. Let ci denote the number of times di is used. By reflecting across a horizontal axis, we may also 
assume that c−3 ≥ c−2; this reflections swaps d−2 and d−3 in the grid path and there is still a shortest grid path using only 
directions d+1, d−2, and d−3. Moreover, c+1 = c−2 + c−3 + q where q ∈ {−1, 0, 1} since movements must alternate in sign. 
Therefore,

t − s = c+1 · d+1 + c−2 · d−2 + c−3 · d−3

= (c−2 + c−3 + q) · d+1 + c−2 · d−2 + c−3 · d−3

= (c−2 + c−3 + q) · (−1,0) + c−2 · (−1/2,−√
3/2) + c−3 · (−1/2,

√
3/2)

= q · (−1,0) + c−2 · (−3/2,−√
3/2) + c−3 · (−3/2,

√
3/2)

= q · (−1,0) + c−2 · (−3,0) + (c−3 − c−2) · (−3/2,
√

3/2)

= (3c−2 + q) · (−1,0) + (c−3 − c−2) · (−3/2,
√

3/2).

We now break the problem into two cases based on the sign of 3c−2 + q.
Case 1: 3c−2 + q ≥ 0. This implies that t is in the cone emanating from s in the directions (−1, 0) and (−3/2, 

√
3/2) as 

depicted in Fig. 25.
The directions (−1, 0) and (−3/2, 

√
3/2) are adjacent in a 12-Hex grid graph. By Theorem 9, there is an s to t 12-Hex 

grid graph path that avoids all blocked hexagons and uses only the red, dashed movements in Fig. 26.
This 12-Hex grid path is easily converted into a 3-Hex grid path by replacing each segment as described in Fig. 26. 

Moreover, the resulting 3-Hex grid path avoids blocked hexagons since it traverses the same set of hexagons as the 12-Hex 
grid path. Finally, the resulting 3-Hex grid path is also an SGP; it only uses directions d+1, d−2, and d−3 and by Lemma 13, 
is an SGP when there are no blocked hexagons. Therefore it is also an SGP with the blocked hexagons since it avoids them, 
thereby completing case 1.

Case 2: 3c−2 + q < 0. As such, q = −1 and c−2 = 0 implying c−3 = c1 + 1 ≥ 1. Therefore

t − s = (3c−2 + q) · (−1,0) + (c−3 − c−2) · (−3/2,
√

3/2)

= (1,0) + c−3 · (−3/2,
√

3/2)

= (−1/2,
√

3/2) + (c−3 − 1) · (−3/2,
√

3/2)
16
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d+1

d−
3

direction (−3/2,
√

3/2)

vertex label: −1

d+1

d−
3

direction (−3/2,
√

3/2)

vertex label: +1

direction (−1,
√

3)

vertex label: −1

Cannot Occur

d−
3

direction (−1/2,
√

3/2)

vertex label: +1

Fig. 27. Converting a 12-Hex grid path to a 3-Hex grid path (case 2).

and t is in the cone emanating from s in the directions (−3/2, 
√

3/2) and d−3 = (−1/2, 
√

3/2). The proof now follows 
almost identically to case 1. There directions are adjacent in a 12-Hex grid graph and there exists a 12-Hex grid graph from 
s to t using only the movements in Fig. 27.

Unlike case 1, only 3 of the 4 movements can occur. Since (−1/2, 
√

3/2) and (−3/2, 
√

3/2) are linearly independent, 
t − s = a1 · (−1/2, 

√
3/2) + a2 · (−3/2, 

√
3/2) is uniquely expressed with the coefficients a1 = 1 and a2 = c−3 − 1. Thus, the 

movement (−1, 
√

3) cannot occur as it would require a1 ≥ 2. As in case 1, a 3-Hex grid path can be constructed using the 
transformation described in Fig. 27 and will result in a SGP from s to t that avoids all blocked hexagons. Therefore, both 
cases have been proven and the statement of Theorem 14 holds. �
Theorem 15. For 3-Hex grid graphs, the ratio between the SGP and TSP is at most 3

2 . Furthermore, if s and t have line of sight, then the 
worst-case ratio converges to 4

3 as the length of the SGP tends to infinity.

The theorem statements hold immediately from Theorems 1, 12, and 14.

6. Conclusions

In this article, we studied how much longer a shortest grid path can be than a corresponding true shortest path on all 
regular grids with blocked polygons that tessellate continuous 2D environments. We studied 5 different vertex connectivities 
that result from both different tessellations and different definitions of the neighbors of a vertex. Our analysis yielded 
either tight or asymptotically tight worst-case bounds in a unified framework. In our future work, we will study additional 
tessellations and definitions of the neighbors of a vertex, such as 16-Square and 9-Hex grid graphs.
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Appendix A. Parallelogram grid property for 4-square, 8-square, 6-tri, and 12-hex

We first show the parallelogram grid property for the 4-Square grid graph. We then establish a new coordinate system 
for the other 3 grid graphs so that the proofs follow identically.

Proposition 16. [Parallelogram Grid Graph for 4-Square] For any vertex t in the cone emanating from s in the adjacent directions d1
and d2 , t can be reached from s using only the directions d1 and d2 when there are no blocked polygons.

Proof. Recall d1 = (1, 0) and d2 = (0, 1). Without loss of generality, let s = (0, 0). Every integer point, and therefore every 
vertex of an 4-grid graph, can be expressed as t = c1 · d1 + c2 · d2 for integers c1 and c2. As such, t is a vertex in the cone if 
and only if c1 and c2 are non-negative integers.

We proceed by induction on k = c1 + c2. The result trivially holds for k = 0 (s = t). We now show the result holds for 
c1 + c2 = k + 1.
17
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Case 1: c2 ≥ 1. This implies that t′ = t −d2 = c1 ·d1 + (c2 −1) ·d2 where c2 −1 ≥ 0. Thus, t′ is in the cone as well. Further, 
c1 + c2 − 1 = k and, by induction, there is a path from s to t′ using only d1 and d2 and s to t′ to t describes a path from s
to t using only directions d1 and d2.

Case 2: c2 = 0 and therefore c1 ≥ 1 since c1 = k + 1 ≥ 1. By induction, t′ = t − d1 is reached from s using only directions 
d1 and d2 and there is a path from s to t′ to t that uses only directions d1 and d2.

In both cases, the inductive step holds completing the proof of the proposition. �
Proposition 17. [Parallelogram Grid Graph for 6-Tri] For any vertex t in the cone emanating from s in the adjacent directions d1 and 
d2 , t can be reached from s using only the directions d1 and d2 when there are no blocked polygons.

Proof. Without loss of generality, let s = (0, 0). The point t is a vertex of a triangle if and only if t = ∑6
i=1 ci · di for non-

negative integers c1, ..., c6. We first claim that t is a vertex of a triangle if and only if t = a1 · d1 + a2 · d2 for integers 
a1, ..., a2.

(⇒) Suppose t is a vertex and t = ∑6
i=1 ci · di for non-negative integers c1, ..., c6. Then

t =
6∑

i=1

ci · di

=
3∑

i=1

(ci − c3+i) · di

= (c1 − c4) · (1,0) + (c2 − c5) · (1/2,
√

3/2) + (c3 − c6) · (−1/2,
√

3/2)

= (c1 − c4) · (1,0) + (c2 − c5) · (1/2,
√

3/2) + (c3 − c6) ·
[
(1/2,

√
3/2) − (1,0)

]
= (c1 − c4 − c3 + c6) · (1,0) + (c2 − c5 + c3 − c6) · (1/2,

√
3/2)

= (c1 − c4 − c3 + c6) · d1 + (c2 − c5 + c3 − c6) · d2

completing the first direction.
(⇐) Suppose t = a1 · d1 + a2 · d2 for integer ai . Let a+

i ≥ 0 and a−
i ≥ 0 be integer and such that ai = a+

i − a−
i . Then 

t = ∑2
i=1 a+

i · di + ∑2
i=1 a−

i · (−di) = ∑2
i=1 a+

i · di + ∑2
i=1 a−

i · di+3 and t is a vertex.
The proof now follows identically to Proposition 16 using t = a1 · d1 + a2 · d2 for integers a1, ..., a2. �

Proposition 4 [Parallelogram Grid Graph for 8-Square]. For any vertex t in the cone emanating from s in the adjacent 
directions d1 and d2, t can be reached from s using only the directions d1 and d2 when there are no blocked polygons.

Proof. Without loss of generality, let s = (0, 0). Following identically to the proof of Proposition of 17, t is a vertex if and 
only if t = c1 · d1 + c2 · d2 for some integers c1, c2. The proof now follows identically to Proposition 16. �
Proposition 18. [Parallelogram Grid Graph for 12-Hex] For any vertex t in the cone emanating from s in the adjacent directions d1
and d2 , t can be reached from s using only the directions d1 and d2 (and equivalent directions d′

1 and d′
2) when there are no blocked 

polygons.

Proof. We begin by characterizing the set of vertices. First, observe that every vertex is either the lower left or lower 
right vertex of some hexagon so it suffices to characterize the lower left and lower right vertices of all hexagons. Let 
v be the lower left vertex of the hexagon H and therefore v + d1 is the lower right vertex. Let d̄ = 3 · d1 = (3, 0). The 
tessellation of hexagons is formed by shifting a hexagon by integer combinations of d2 and d̄. Thus, t is a vertex if and only 
if t = v + c1 · d1 + c2 · d2 + c̄ · d̄ for c1 ∈ {0, 1} and integers c2, ̄c. Specifically, t is lower left vertex if c1 = 0 and a lower right 
vertex if c1 = 1.

Suppose that s = (0, 0) = v + w · d1 where w ∈ {0, 1} depending on whether s is a lower left or lower right vertex. 
Then t = (c1 − w) · d1 + c2 · d2 + c̄ · d̄ is in the cone emanating from s in directions d1 and d2 if and only if c2 ≥ 0 and 
c1 − w + 3 · c̄ ≥ 0.

We now proceed by induction on k = c1 − w + 2 · c2 + 3 · c̄. For k = 0, c2 = c̄ = 0 and c1 = w implying s = t and the 
result holds. We remark that the result rightfully does not hold for k = −1 because this would imply t = s − d1, which is 
not in the cone. We now show the result for k + 1.

Case 1: c2 ≥ 1. This implies k + 1 = c1 − w + 2 · c2 + 3 · c̄ ≥ 2 since c1 − w + 3 · c̄ ≥ 0. Then t′ = t − d2 = (c1 − w) · d1 +
(c2 − 1) ·d2 + c̄ · d̄ is in the cone emanating from s. Moreover, c1 − w + 2 · (c2 − 1) + 3 · c̄ = k − 1 ≥ 0 and, by strong induction, 
there is a grid path from s to t′ to t = t′ + d2 using only the directions in the statement of the proposition.

Case 2: c2 = 0 and c1 = 0 (t is a left vertex). Therefore k + 1 = −w + 3 · c̄ implying c̄ ≥ 1 and k + 1 ≥ 2. Since t is a lower 
left vertex, t − (2, 0) = t − d′ is a lower right vertex. Moreover, t′ = t − d′ = −w · d1 + c̄ · d̄ − d′ = (1 − w) · d1 + (c̄ − 1) · d̄ is 
2 2 2

18
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(0,0) a

b c

A =
[

3 0
3/2

√
3/2

]−1

(0,0) aA

b A c A

Fig. A.28. New basis defined by direction d2 = (1/2,
√

3/2) and d̄ = (3,0).

in the cone emanating from s. Further, (1 − w) + 3 · (c̄ − 1) = k − 1 ≥ 0 and, by strong induction, there is a grid path from s
to t′ to t = t′ + d′

2 using only the directions in the statement of the proposition.
Case 3: c2 = 0 and c1 = 1 (t is a right vertex). Therefore −w + 3 · c̄ ≥ 0 since k + 1 = 1 − w + 3 · c̄. Since t is a right 

vertex, t′ = t − (1, 0) = t − d1 is a left vertex. Moreover, t′ = t − d1 = −w · +c̄ · d̄ is in the cone emanating from s. Thus, by 
induction, there is a path from s to t′ to t = t + d1 using only the directions in the statement of the proposition.

In all three cases, the inductive step holds completing the proof of the proposition. �
We remark that this characterization of vertices is consistent with the transformation in Section 4 and shown in Fig. A.28. 

In particular, after the transformation A to a new basis, the vertex t is expressed as t A = (v + c1 · d1 + c2 · d2 + c̄ · d̄)A =
v A + c1 · (1/3, 0) + c2 · (0, 1) + c̄ · (1, 0). Assuming vertex v = (0, 0) is in the lower left corner of a hexagon, each vertex has 
rational coordinates – a multiple of 1/3 – in the new space. Moreover, the integer points in the transformed space precisely 
describe the coordinates of vertices in the lower left corners of hexagons.
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