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In the Multi-Objective Shortest Path Problem (MO-SPP), one has to find paths on a graph that 
simultaneously minimize multiple objectives. It is not guaranteed that there exists a path that 
minimizes all objectives, and the problem thus aims to find the set of Pareto-optimal paths from 
the start to the goal vertex. A variety of multi-objective A*-based search approaches have been 
developed for this purpose. Typically, these approaches maintain a front set at each vertex during 
the search process to keep track of the Pareto-optimal paths that reach that vertex. Maintaining 
these front sets becomes burdensome and often slows down the search when there are many 
Pareto-optimal paths. In this article, we first introduce a framework for MO-SPP with the key 
procedures related to the front sets abstracted and highlighted, which provides a novel perspective 
for understanding the existing multi-objective A*-based search algorithms. Within this framework, 
we develop two different, yet closely related approaches to maintain these front sets efficiently 
during the search. We show that our approaches can find all cost-unique Pareto-optimal paths, 
and analyze their runtime complexity. We implement the approaches and compare them against 
baselines using instances with three, four and five objectives. Our experimental results show that 
our approaches run up to an order of magnitude faster than the baselines.

1. Introduction

Given a graph with non-negative scalar edge costs, the Shortest Path Problem (SPP) calls for computing a minimum cost path from 
a given start vertex to a given destination vertex in the graph. In this article, we consider the Multi-Objective Shortest Path Problem 
(MO-SPP) [1--4], which generalizes SPP by associating each edge in the graph with a non-negative cost vector of constant length, where 
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each component of the vector corresponds to an objective to be minimized. MO-SPP arises in many applications, including hazardous 
material transportation [5], robot design [6], robot inspection planning [7,8] and airport departure runway scheduling [9].

For example, the hazardous material transportation [5] is a path planning problem from a starting location to a destination in 
an urban area. The problem calls for computing the shortest path to transport the material while accounting for vulnerable centres 
such as schools, hospitals, etc. This requires balancing travel distance and risk of exposure (see, e.g., [10]). The problem has been 
efficiently solved using heuristic-search approaches for the bi-objective case [11].

For MO-SPP, it is not guaranteed that there exists a path that simultaneously optimizes all objectives. MO-SPP thus seeks to find 
a Pareto-optimal set of paths, whose cost vectors form the Pareto-optimal front. Here, a path is Pareto-optimal (or, synonymously, 
non-dominated) if there is no other path that can decrease one cost without increasing at least one of the other costs. Unfortunately, 
computing the Pareto-optimal front is challenging [12] as its cardinality may be exponential in the number of vertices [13--15].

To solve MO-SPP, several multi-objective A* (MOA*)-like planners [2,3,11,16--18] have been developed to compute the exact 
or an approximate Pareto-optimal front. In MO-SPP, there are typically multiple non-dominated paths from the start vertex to any 
other vertex in the graph, and MOA*-like planners store, select and expand these non-dominated paths at each vertex during the 
search. When a new path 𝜋 to some vertex 𝑣 is found, 𝜋 needs to be compared with all previously found non-dominated paths to 𝑣
to check for dominance, namely, to verify whether 𝜋 is dominated by any other existing paths that reach 𝑣. These dominance checks 
are computationally expensive, especially when there are many non-dominated paths at a vertex, as it requires many cost vector 
comparisons [19].

To find the Pareto-optimal front efficiently, techniques have recently been developed to expedite these dominance checks for 
MOA*-like planners [11,19]. Among them, Bi-Objective A* (BOA*) [11] achieves around an order of magnitude speed-up over previous 
state-of-the-art MOA*-like search algorithms. Recently, BOA* has been improved further [16,17]. However, BOA* and its improved 
versions can handle only two objectives. We thus develop fast general dominance-checking methods that can handle an arbitrary 
number of objectives. To this end, we propose a search framework called Enhanced Multi-Objective A* (EMOA*), which abstracts 
and highlights the key procedures related to these expensive dominance checks during the MOA* search. This framework provides 
a novel perspective to understanding various existing MOA*-like search algorithms while highlighting the computational bottleneck 
bypassed in this article. The specific enhancement in EMOA* against the existing MOA* search is the identfication of key sub

problems during the search process, and the use of fast data structure and algorithms to solve these key sub-problems during the 
search. Furthermore, we show that BOA* is a specific instantiation of EMOA* when there are only two objectives.

Within the EMOA* framework, we further develop two different, yet closely-related algorithms for fast dominance checking, by 
leveraging the existing ideas and techniques in the literature [20--23]. Both algorithms can handle an arbitrary number of objectives. 
Specifically, we first develop a new method that uses a balanced binary search tree (BBST) to store the non-dominated paths at each 
vertex. The key ideas are: (i) the BBST can be incrementally constructed during the MOA* search and is computationally efficient 
to maintain; (ii) the BBST is organized using the lexicographic order between cost vectors, which guides the dominance checks and 
expedites the computation; and (iii) our BBST-based method is compatible with existing approaches for fast dominance checking, 
which allows us to use both the existing and our newly developed techniques together to speed up the computation of the Pareto

optimal front.

As an alternative to this BBST-based algorithm, we also propose a second algorithm based on lexicographically sorted lists and 
Binary Search (BS), which further improves the computational efficiency of the BBST-based approach by reducing the frequent rotation 
operations needed to re-balance the search tree.

We show that both the BBST-based and BS-based algorithms are guaranteed to find the exact Pareto-optimal front for MO-SPP. We 
analyze the runtime complexity of the proposed methods. To verify our EMOA* framework, we implement several algorithms that 
follow our framework by using different data structures and approaches for dominance checking. We compare these implementations 
on instances with three, four and five objectives. Our experimental results show that our methods run up to an order of magnitude 
faster than an existing state-of-the-art method [19].

Preliminary versions of this work appeared in [24] and [25] which presented two instantiations of EMOA*. This article differs 
from the aforementioned work by introducing the general EMOA* framework we present, including a comprehensive description and 
discussion of EMOA* as well as a detailed analysis of the two algorithms that appeared in [24] and [25], including proofs of their 
solution quality guarantees and runtime complexities. Finally, we present new experimental results of both algorithms in various test 
settings.

1.1. Related work

Research on MO-SPP and its variants has a long history [1--3] and remains an active research topic [11,16,17,26,27]. Algo

rithms that solve MO-SPP range from exact methods [2,3,11] to approximation methods [16,28--31], trading off solution quality 
for computational efficiency. Among the exact methods, Multi-Objective A* [2] is one of the first approaches to extend the well

known A* algorithm [32] to address multiple objectives, and was later revised and expedited by A New Approach to Multi-Objective 
A* (NAMOA*) [33]. NAMOA* was further improved and led to NAMOA*dr [19], where they use a technique based on ``dimension

ality reduction'', which can reduce the length of the vectors by one when running dominance checks during the A*-like search. All 
these three algorithms [2,19,33] can address an arbitrary number of objectives. The recent BOA* [11] further expedites NAMOA*dr
by introducing the idea of lazy dominance checks which allows to perform dominance checks in constant-time. However, BOA* is 
limited to bi-objective problems only. BOA* and NAMOA*dr, as state-of-the-art algorithms for bi-objective problems and general 
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Fig. 1. An illustration of dominance. (a) An MO-SPP problem with two objectives (𝑀 = 2). (b) Visualization of all solutions (without loops) and their corresponding 
cost vectors, where the green dots are the Pareto-optimal cost vectors and the yellow dots are the dominated ones. (c) Visualization of the solution cost vectors. The 
x-axis corresponds to objective 1 and the y-axis corresponds to objective 2. The green region in (c) visualizes the set of vectors that are dominated by (16,3). Note that 
(16,3) dominates (20,11), and (6,11) dominates both (12,21) and (20,11). (For interpretation of the colors in the figure(s), the reader is referred to the web version 
of this article.)

multi-objective problems respectively, are two closely related algorithms to this article, and will be revisited with more details in 
Sec. 3.

As the aforementioned algorithms extend A*, they can make use of a heuristic function to expedite the search. In the single

objective setting, the search needs to consider only one minimum cost path from any vertex to the destination, and the heuristic 
function maps each vertex to a single-value which estimates the cost-to-go to reach the destination from that vertex. In contrast to 
the single-objective setting, from every vertex there may be multiple paths that belong to the Pareto-optimal front in the presence 
of multiple objectives. Thus, a heuristic function may map each vertex to a set of values, i.e., a set of cost vectors that estimate the 
cost-to-go to reach the destination from that vertex. Such a heuristic is called a multi-valued heuristic [3]. While recent papers explored 
the use of multi-valued heuristics (see, e.g., [34,35]), the lion’s share of studies on MO-SPP use a single-valued heuristic where we store 
only one cost vector per vertex. This paper considers only single-valued heuristics.

Additionally, given a set of vectors, to efficiently compute the subset of vectors that are mutually non-dominated, a variety of 
approaches have been developed. For example, given a set of 𝑛 vectors, Kung’s method [20] has a worst-case runtime complexity 
𝑂(𝑛 log𝑛) when the vectors are of length two or three, and 𝑂(𝑛 log𝑚−2 𝑛) when the vectors are of length 𝑚,𝑚 > 3. Other approaches 
(e.g., [21,22]) run in 𝑂(𝑚𝑛) time on average. Additionally, tree-based data structure has also been leveraged to speed up dominance 
comparisons [23].

2. Problem description

Let 𝐺 = (𝑉 ,𝐸, 𝑐) denote a finite directed graph with vertex set 𝑉 and edge set 𝐸, where each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 is associated 
with a non-negative cost vector 𝑐(𝑒) = 𝑐(𝑢, 𝑣) ∈ (ℝ+)𝑀 with 𝑀 being a positive integer and ℝ+ being the set of non-negative real 
numbers. Let 𝜋(𝑣1, 𝑣𝓁) denote a path connecting 𝑣1, 𝑣𝓁 ∈ 𝑉 via a sequence of vertices (𝑣1, 𝑣2,… , 𝑣𝓁) in 𝐺, where 𝑣𝑛 and 𝑣𝑛+1 are 
connected by an edge (𝑣𝑛, 𝑣𝑛+1) ∈ 𝐸, for 𝑛 = 1,2,… ,𝓁−1. Let 𝑔(𝜋(𝑣1, 𝑣𝓁)) denote the cost vector corresponding to the path 𝜋(𝑣1, 𝑣𝓁), 
which is the sum of the cost vectors of all edges present in the path, i.e., 𝑔(𝜋(𝑣1, 𝑣𝓁)) = Σ𝓁−1

𝑛=1 𝑐(𝑣𝑛, 𝑣𝑛+1). We use 𝑐𝑘 with a subscript 𝑘
to denote the 𝑘-th component of the vector 𝑐. To compare any two paths, we compare the cost vectors associated with them using 
the dominance relation [14]. Intuitively, given two vectors 𝑎 and ⃗𝑏, we say 𝑎 dominates ⃗𝑏 if (i) every value of 𝑎 is lower than or equal 
to the corresponding value of 𝑏⃗ and (ii) at least one value of 𝑎 is strictly lower than the corresponding value of 𝑏⃗. Formally, we have 
the following definition.

Definition 1 (Dominance). Given two vectors 𝑎 and 𝑏⃗ of length 𝐾 (𝐾 ≥ 2),1 𝑎 dominates 𝑏⃗ (denoted as 𝑎 ≺ 𝑏⃗) 2 if and only if 
∀𝑘 ∈ {1,2,… ,𝐾}, 𝑎𝑘 ≤ 𝑏𝑘, and ∃𝑘 ∈ {1,2,… ,𝐾} such that 𝑎𝑘 < 𝑏𝑘.

Let 𝑣𝑜, 𝑣𝑑 denote the start and destination vertices, respectively. A path from 𝑣𝑜 to 𝑣𝑑 is also called a solution. One solution 𝜋1
dominates another solution 𝜋2 if the cost vector 𝑔(𝜋1) dominates 𝑔(𝜋2). The set of all non-dominated solutions is called the Pareto

optimal set. A subset of the Pareto-optimal set, where any two solutions in this subset do not have the same cost vector is called a 
cost-unique Pareto-optimal set. Fig. 1 provides an illustration of these concepts.

Definition 2 (MO-SPP). Given a graph 𝐺 = (𝑉 ,𝐸, 𝑐), 𝑣𝑜 and 𝑣𝑑 , the Multi-Objective Shortest Path Problem (MO-SPP) requires com

puting a maximal cost-unique Pareto-optimal set.

1 Note that 𝐾 is the length of the vector and 𝑀 is the number of objective; 𝐾 may be equal to 𝑀 but does not necessarily have to.
2 In the literature, other symbols such as ⪯, ⪰ and ≻ are also frequently used to denote the dominance relation between two vectors. We choose to use ≺ in this 

article since the goal here is to minimize costs.
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Fig. 2. The relationship of different approaches under the EMOA* framework. 

Finally, we introduce a few notations to simplify the subsequent presentation. The cost vectors corresponding to a maximal cost

unique Pareto-optimal set is called the Pareto-optimal front. Given two vectors 𝑎 and 𝑏⃗ of the same length 𝐾 (with 𝐾 ≥ 2), we say 
that 𝑎 weakly dominates 𝑏⃗ (𝑎 ⪯ 𝑏⃗), if every component in 𝑎 is less than or equal to 𝑏⃗ (i.e., ∀𝑘 ∈ {1,2,… ,𝐾}, 𝑎𝑘 ≤ 𝑏𝑘). Note that, 
𝑎 ⪯ 𝑏⃗ is equivalent to 𝑎 ≺ 𝑏⃗ or 𝑎 = 𝑏⃗. Given two vectors 𝑎 and 𝑏⃗ of the same length 𝐾 (with 𝐾 ≥ 2), let 𝑎 <lex 𝑏⃗ represent that 𝑎 is 
lexicographically smaller than ⃗𝑏. Similarly, >lex, ≤lex, ≥lex can be dfined between 𝑎 and ⃗𝑏. Given a set 𝐵 of vectors of the same length, 
𝐵 is called a set of cost-unique non-dominated vectors if any two vectors 𝑎, 𝑏 ∈ 𝐵 satisfy that 𝑎 ⊀ 𝑏, 𝑏 ⊀ 𝑎 and 𝑎 ≠ 𝑏. Additionally, 
given a set 𝐵 of vectors of the same length, let (𝐵) denote the maximal cost-unique non-dominated subset of vectors in 𝐵. Finally, 
let Trunc ∶ℝ𝐾 →ℝ𝐾−1 denote a truncation function that removes the first component from the input vector, and we use Trunc(𝑎) to 
denote the truncated vector corresponding to 𝑎.

3. Enhanced Multi-Objective A* (EMOA*) framework

This section begins by introducing the basic concepts and notations in Sec. 3.1 and then presents our EMOA* framework in Sec. 3.2. 
We then present two instantiations of the EMOA* framework in Sec. 3.3 and Sec. 3.4, depending on when to conduct the dominance 
checking during the search. For both instantiations, there are three key abstract procedures related to dominance checking, and we 
dfine the corresponding sub-problems that need to be solved by these procedures in Sec. 3.5. Finally, we discuss the properties of

EMOA* in Sec. 3.6. The relationship of different approaches are summarized in Fig. 2.

3.1. Basic concepts

Let 𝑙 = (𝑣, 𝑔) denote a label,3 which is a tuple of a vertex 𝑣 ∈ 𝑉 and a cost vector 𝑔. A label represents a path from 𝑣𝑜 to 𝑣 with 
cost vector 𝑔. To simplify the presentation, given a label 𝑙, let 𝑣(𝑙) and 𝑔(𝑙) denote the vertex and the cost vector contained in label 𝑙, 
respectively. Two labels 𝑙, 𝑙′ are comparable only when 𝑣(𝑙) = 𝑣(𝑙′), and a label 𝑙 is said to be dominated by (or is equal to) another 
label 𝑙′ if 𝑔(𝑙) ≺ 𝑔(𝑙′) (or 𝑔(𝑙) = 𝑔(𝑙′)).

Let ℎ⃗(𝑣), 𝑣 ∈ 𝑉 denote a heuristic that estimates the cost-to-go from 𝑣 to 𝑣𝑑 . As mentioned, we limit ourselves to single-valued 
heuristics in this paper. If every component of ℎ⃗(𝑣), 𝑣 ∈ 𝑉 is no larger than the corresponding component of the cost vector of any 
possible path from 𝑣 to 𝑣𝑑 , then ℎ⃗ is referred to as an admissible heuristic. If a heuristic satifies ℎ⃗(𝑣) ≤ ℎ⃗(𝑢) + 𝑐(𝑢, 𝑣),∀𝑢, 𝑣 ∈ 𝑉

(intuitively speaking, the triangle inequality), then ℎ⃗ is called a consistent heuristic. A consistent heuristic is always admissible if 
ℎ⃗(𝑣𝑑 ) = 0⃗, i.e., the heuristic vector of the goal vertex is a zero vector.

Throughout this paper we will use the so-called ``ideal-point heuristic'' ℎ⃗ideal which combines a set of 𝑀 single-objective heuristics 
ℎ1,… , ℎ𝑀 . Let 𝜋𝑖𝑑𝑒𝑎𝑙

𝑖
(𝑣, 𝑣𝑑 ) denote a minimum cost path from each vertex 𝑣 ∈ 𝑉 to 𝑣𝑑 according to the 𝑖-th objective, and let ℎ𝑖 denote 

the cost value of the path 𝜋𝑖𝑑𝑒𝑎𝑙
𝑖

(𝑣, 𝑣𝑑 ). Then, this ideal-point heuristic is dfined as ℎ⃗ideal(𝑣) ∶= (ℎ1(𝑣),… , ℎ𝑀 (𝑣)). The ideal-point 
heuristic, which is consistent, is easily computed by running 𝑀 single-objective instances of Dijkstra’s algorithm starting backwards 
from the destination 𝑣𝑑 to all other vertices in 𝐺, i.e., one instance for each objective. Within the EMOA* framework, specific 
instantiations require consistent heuristics in order to use some fast dominance checking techniques. For the rest of the paper, we 
assume the heuristic is consistent.

The 𝑓 -vector of a label 𝑙 is dfined as 𝑓 (𝑙) ∶= 𝑔(𝑙) + ℎ⃗(𝑣(𝑙)) and let OPEN denote a priority queue of labels. At any time during 
the search, OPEN contains labels that will be either expanded or discarded in future iterations of the search. While there are many 
ways to order OPEN can be ordered (see [38]), here we limit the discussion to the setting where labels in OPEN are prioritized by 
their corresponding 𝑓 -vectors in lexicographic order from the minimum to the maximum. This is a widely used ordering scheme in 
MOA* search [11,19,24].

Additionally, the search needs to store the non-dominated paths from 𝑣𝑜 to any other vertex 𝑢 ∈ 𝑉 . Let 𝑝𝑎𝑟𝑒𝑛𝑡(𝑙) denote the parent 
pointer of label 𝑙 that represents the label from which 𝑙 is generated. By iteratively backtracking the parent pointers of 𝑙, a path 
from 𝑣𝑜 to 𝑣(𝑙) can be reconstructed. Let open(𝑢), 𝑢 ∈ 𝑉 denote a set of non-dominated labels 𝑙 at vertex 𝑢 (i.e., 𝑣(𝑙) = 𝑢) that are 
in OPEN. In other words, labels in open(𝑢) are generated by the search and are to be expanded or discarded in the future search. 
Correspondingly, let closed(𝑢), 𝑢 ∈ 𝑉 denote a set of non-dominated labels at vertex 𝑢, which have been expanded during the search. 
Each label in closed(𝑢), 𝑢 ∈ 𝑉 represents a non-dominated path from 𝑣𝑜 to 𝑢. Furthermore, let  (𝑢), 𝑢 ∈ 𝑉 denote the front set at vertex 

3 To identify a path, different names, such as nodes [11] and labels [36,37], have been used in the multi-objective path-planning literature. This article uses ``labels'' 
to identify paths and reserves ``nodes'' for the tree nodes in the balanced binary search tree in the ensuing section.
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Fig. 3. Examples of the DC and NSU problems. (a) Visualization of a DC problem that requires checking if there exists a vector in a set 𝐵 that weakly dominates the 
given vector 𝑏. In this example, 𝑏 is non-dominated by any vectors in 𝐵. (b) Visualization of a NSU problem that requires computing (𝐵

⋃
{𝑏}). In this example, 

(15,4) is filtered from 𝐵 since it is weakly dominated by 𝑏.

Algorithm 1 EMOA* Search Framework.

1: 𝑙𝑜 ← (𝑣𝑜, 0⃗), 𝑝𝑎𝑟𝑒𝑛𝑡(𝑙𝑜)← 𝑁𝑈𝐿𝐿

2: Add 𝑙𝑜 to OPEN

3:  (𝑣)← ∅,∀𝑣 ∈ 𝑉

4: while OPEN ≠ ∅ do

5: 𝑙 ← OPEN.pop() ⊳ Label extracted

6: if CheckUpdateBeforeExp (𝑙) then

7: continue

8: if 𝑣(𝑙) = 𝑣𝑑 then

9: continue

10: for all 𝑣′ ∈ GetSuccessors(𝑣(𝑙)) do ⊳ Label expanded

11: 𝑙′ ← (𝑣′, 𝑔(𝑙) + 𝑐(𝑣, 𝑣′)), 𝑝𝑎𝑟𝑒𝑛𝑡(𝑙′)← 𝑙

12: 𝑓 (𝑙′)← 𝑔(𝑙′) + ℎ⃗(𝑣(𝑙′))
13: if CheckUpdateAfterGen (𝑙) then

14: continue

15: Add 𝑙′ to OPEN

16: return  (𝑣𝑑 )

𝑢, which stores non-dominated labels 𝑙 at vertex 𝑢 (i.e., 𝑣(𝑙) = 𝑢) during the search. As we will see in Sec. 3.3 and 3.4,  (𝑢) is the same 
as either open(𝑢) or open(𝑢) ∪closed(𝑢), depending on the specific instantiation of EMOA*. When presenting the framework EMOA*
in Sec. 3, we use  (𝑢) in order to unify different instantiations under a common framework. Finally, each label in  (𝑣𝑑 ) identfies a 
solution.

As presented in the ensuing sections, EMOA* requires three procedures as building blocks: IsDomByFront, IsDomBySol and

FilterAndAddFront. These three procedures encapsulate the computation related to dominance checking, and the computational 
efficiency of these procedures affects the overall runtime of the search [11,19]. Here, we formally dfine the problems that need to 
be solved by these three procedures before presenting the algorithms.

Definition 3 (Dominance Checking (DC) Problem). Given a set 𝐵 of 𝐾 -dimensional cost-unique non-dominated vectors (with 𝐾 ≥ 2) 
and a new 𝐾 -dimensional vector 𝑏⃗, the DC problem aims to verify whether there exists a vector 𝑏⃗′ ∈ 𝐵 that weakly dominates 𝑏⃗, i.e., 
𝑏⃗′ ⪯ 𝑏⃗.

Definition 4 (Non-Dominated Set Update (NSU) Problem). Given a set 𝐵 of 𝐾 -dimensional non-dominated vectors (with 𝐾 ≥ 2) and a 
new 𝐾 -dimensional vector 𝑏⃗ that is non-dominated by any vector in 𝐵, the NSU problem computes (𝐵

⋃
{𝑏⃗}).

Examples of the DC and NSU problems are provided in Fig. 3. The relationship between the aforementioned three procedures and 
these two problems can be described as follows.

• In IsDomByFront, given a label 𝑙 and  (𝑣(𝑙)), an equivalent DC problem can be generated with input ⃗𝑏 = 𝑔(𝑙) and 𝐵 = {𝑔(𝑙′)|𝑙′ ∈
 (𝑣(𝑙))}.

• In IsDomBySol, given a label 𝑙 and  (𝑣(𝑙)), an equivalent DC problem can be generated with ⃗𝑏 = 𝑓 (𝑙) and 𝐵 = {𝑓 (𝑙′)|𝑙′ ∈  (𝑣𝑑 )}. 
Note that 𝑓 (𝑙′) = 𝑔(𝑙′),∀𝑙′ ∈  (𝑣𝑑 ).

• In FilterAndAddFront, given a label 𝑙 and  (𝑣(𝑙)), an equivalent NSU problem can be generated with 𝑏⃗ = 𝑔(𝑙) and 𝐵 =
{𝑔(𝑙′)|𝑙′ ∈  (𝑣(𝑙))}.

3.2. The EMOA* search framework

As shown in Algorithm 1, to initialize the search (Lines 1-3), EMOA* first creates an initial label 𝑙𝑜 = (𝑣𝑜, 0⃗), and sets its parent 
pointer to 𝑁𝑈𝐿𝐿, which means 𝑙𝑜 has no parent. EMOA* then adds 𝑙𝑜 to OPEN for future search (Table 1). Additionally, we assume 
that the entire graph is known and the front set at each vertex is initialized to be an empty set. In Algorithm 1, we say a label is 
extracted from OPEN, when EMOA* reaches Line 5. We say a label is expanded, when EMOA* reaches Line 10. During the search, the 
set of expanded labels is always a subset of the extracted labels. Additionally, we say a new label is generated when EMOA* reaches 
Line 11.
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Table 1
Frequently used notations, procedure names and abbreviations.

Notation Meaning 
𝐺 = (𝑉 ,𝐸) A graph 𝐺 with vertex set 𝑉 and edge set 𝐸. 
𝑙𝑜, 𝑙, 𝑙

′, 𝑙′′ Labels. 
𝑔(𝑙), ℎ⃗(𝑣(𝑙)), 𝑓 (𝑙) The 𝑔,ℎ, 𝑓 -vector related to label 𝑙. 
 (𝑣),open(𝑣),closed(𝑣) The frontier sets at vertex 𝑣∈ 𝑉 . 
CheckUpdateBeforeExp The check and update procedure before the expansion of a label. 
CheckUpdateAfterGen The check and update procedure after the generation of a label. 
IsDomBySol Check if a label is dominated by any solution found. 
IsDomByFront Check if a label 𝑙 is dominated by any label in  (𝑣(𝑙)). 
FilterAndAddFront Use a label 𝑙 to filter  (𝑣(𝑙)) and then add 𝑙 to  (𝑣(𝑙)). 
DC The Dominance Check Problem (Definition 3). 
NSU The Non-Dominated Set Update Problem (Definition 4). 
BBST Balanced Binary Search Tree. 
BS Binary Search. 
EMOA* A general multi-objective search framework. 
EMOA*-Early An instantiation of EMOA* framework with early dominance checking. 
EMOA*-Late An instantiation of EMOA* framework with late dominance checking. 
EMOA*-Late-LINEAR An algorithm that implements EMOA*-Late using simple approaches to solve the DC and NSU problems. 
EMOA*-Late-BBST An algorithm that implements EMOA*-Late using BBST-based approaches to solve the DC and NSU problems. 
TOA*-Late-BBST An improved version of EMOA*-Late-BBST when 𝑀 = 3. 
EMOA*-Late-BS An algorithm that implements EMOA*-Late using BS-based approaches to solve the DC and NSU problems. 
TOA*-Late-BS An improved version of EMOA*-Late-BS when 𝑀 = 3. 

Algorithm 2 EMOA* with Early Dominance Checking (NAMOA*dr).
CheckUpdateAfterGen(𝑙′)

1: if IsDomByFront (𝑙′) or IsDomBySol (𝑙′) then

2: return true ⊳ 𝑙′ is pruned.

3: 𝐿 ←FilterAndAddFront (𝑙′)

4: RemoveOpen (𝐿)

5: return false ⊳ 𝑙′ is not pruned.

CheckUpdateBeforeExp(𝑙)

6: if IsDomBySol (𝑙) then

7: remove 𝑙 from  (𝑣(𝑙))
8: return true ⊳ 𝑙 is pruned.

9: return false ⊳ 𝑙 is not pruned.

After the initialization, in each expansion cycle (Lines 4-15), the label with the lexicographic minimum 𝑓 -value is popped from 
OPEN and is denoted as 𝑙 in Algorithm 1. EMOA* then conducts procedure CheckUpdateBeforeExp on Line 6, where label 𝑙 is 
checked for dominance and is used to update  (𝑣) if 𝑙 is non-dominated. Specifically, if 𝑙 is dominated in CheckUpdateBeforeExp, 
𝑙 is discarded and the current expansion cycle ends, because 𝑙 cannot lead to a cost-unique Pareto-optimal solution. Otherwise (i.e., 
𝑙 is non-dominated), 𝑙 is used to update  (𝑣(𝑙)) in CheckUpdateBeforeExp. We will discuss two different implementations of

CheckUpdateBeforeExp later, which lead to different search algorithms. Afterwards, label 𝑙 is verfied whether 𝑣(𝑙) = 𝑣𝑑 (Line 8). 
If 𝑣(𝑙) = 𝑣𝑑 , the current expansion cycle ends; Otherwise, 𝑙 is expanded, as explained next.

To expand a label 𝑙 (i.e., to expand the path represented by label 𝑙), for each successor vertex 𝑣′ of 𝑣(𝑙) in 𝐺, EMOA* creates a new 
label 𝑙′ = (𝑣′, 𝑔(𝑙) + 𝑐(𝑣, 𝑣′)), which represents a new path from 𝑣𝑜 to 𝑣′ via 𝑣(𝑙) by extending 𝑙 (i.e., extending the path represented 
by 𝑙). The parent pointer 𝑝𝑎𝑟𝑒𝑛𝑡(𝑙′) is set to 𝑙, which helps reconstruct the path represented by 𝑙′ after the search terminates. Then,

EMOA* conducts CheckUpdateAfterGen on Line 13, where the newly generated label 𝑙′ is checked for dominance. If 𝑙′ is non

dominated, depending on the implementation, CheckUpdateAfterGen will either use 𝑙′ to update  (𝑣(𝑙′)), or simply do nothing 
as discussed later. Finally, if 𝑙′ is non-dominated in CheckUpdateAfterGen, 𝑙′ is added to OPEN for future expansion.

In EMOA*, the search terminates when OPEN is empty. At termination, EMOA* returns  (𝑣𝑑 ) (Line 17), which is a set of labels 
where each label represents a solution. This set of solutions is a maximal cost-unique Pareto-optimal set. The cost vectors of these 
solutions are the Pareto-optimal front.

3.3. EMOA* with early dominance check

The first instantiation of EMOA* is shown in Algorithm 2 and is referred to as EMOA*-Early. The search process of EMOA*-Early
is similar to the search process of NAMOA* [33] and NAMOA*dr [19]. We discuss the relationship between them at the end of this 
section.

In EMOA*-Early, when a new label 𝑙′ is generated on Line 11 in Algorithm 1, CheckUpdateAfterGen (Line 1-5 in Algorithm 2) 
first invokes the procedure IsDomByFront to compare 𝑙′ against the existing labels 𝑙′′ ∈  (𝑣(𝑙′)) and check if 𝑔(𝑙′) is weakly domi

nated by 𝑔(𝑙′′). Similarly, CheckUpdateAfterGen also calls the procedure IsDomBySol to compare 𝑙′ against the existing solutions 
represented by label 𝑙′′ ∈  (𝑣𝑑 ) to check if 𝑓 (𝑙′) is weakly dominated by 𝑓 (𝑙′′). If 𝑙′ is dominated in either IsDomByFront or
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Fig. 4. Examples of early and late dominance checking. (a) shows the example and the initial label in OPEN after initialization. In this example, we assume the 
heuristics of all vertices are zero vectors (i.e., 𝑓 (𝑙) = 𝑔(𝑙) for any label 𝑙 generated during the search). (b) shows that in the first iteration, label (𝑣 = 𝐴,𝑓 = (0,0)) is 
extracted from OPEN and expanded, which generates two new labels that are added to OPEN. (c1) and (c2) show that the label (𝑣 = 𝐵,𝑓 = (1,3)) is extracted from 
OPEN for expansion, and demonstrate the difference between Early Dominance Checking and Late Dominance Checking. In (c1), since the newly generated label 
(𝑣 = 𝐶,𝑓 = (4,5)) dominates the existing label (𝑣 = 𝐶,𝑓 = (7,7)), Early Dominance Checking removes (𝑣= 𝐶,𝑓 = (7,7)) from OPEN. In (c2), Late Dominance Checking 
does not remove (𝑣 = 𝐶,𝑓 = (7,7)) from OPEN after the generation of (𝑣 = 𝐶,𝑓 = (7,7)), and (𝑣 = 𝐶,𝑓 = (7,7)) will be discarded in a future expansion cycle when 
(𝑣 = 𝐶,𝑓 = (7,7)) is extracted from OPEN before expansion.

IsDomBySol, 𝑙′ should be discarded and CheckUpdateAfterGen returns true. Otherwise (i.e., 𝑙′ is non-dominated), CheckUp
dateAfterGen first calls the procedure FilterAndAddFront (Line 3 in Algorithm 2) to use 𝑙′ to filter  (𝑣), where any existing 
label 𝑙′′ ∈  (𝑣(𝑙′)) are removed if 𝑔(𝑙′) weakly dominates 𝑔(𝑙′′), then adds 𝑙′ to  (𝑣(𝑙′)), and finally returns false.

In EMOA*-Early, a non-dominated label 𝑙′ is added to  (𝑣(𝑙′)) after its generation. As a result,  (𝑢), 𝑢 ∈ 𝑉 contains both labels 
that are in OPEN and labels that have been expanded (i.e., closed). In other words,  (𝑢) = open(𝑢) ∪ closed(𝑢). Therefore, when an 
existing label 𝑙 is removed from  (𝑢) in FilterAndAddFront on Line 3 in Algorithm 2, if 𝑙 is in OPEN, the search should also 
remove 𝑙 from OPEN to avoid expanding 𝑙 in the future. This is achieved by RemoveOpen (𝐿) on Line 4 in Algorithm 2, where 𝐿
denotes the set of labels that are filtered in FilterAndAddFront on Line 3.

The existence of RemoveOpen ensures that at any time of the search, for any label 𝑙 ∈ OPEN, there does not exist another label 
𝑙′ ∈ OPEN such that 𝑔(𝑙′) weakly dominates 𝑔(𝑙) (Fig. 4). Therefore, in each expansion cycle, after a label 𝑙 is extracted from OPEN,

CheckUpdateBeforeExp (Lines 6-9 in Algorithm 2) does not need to compare 𝑙 against the existing labels in  (𝑣(𝑙)) any more. 
Instead, CheckUpdateBeforeExp only need to check if 𝑓 (𝑙) is weakly dominated by 𝑓 (𝑙𝑑 ) for some 𝑙𝑑 ∈  (𝑣𝑑 ), where 𝑙𝑑 represents 
an existing solution and 𝑓 (𝑙𝑑 ) = 𝑔(𝑙𝑑 ) since ⃗ℎ(𝑣𝑑 ) = 0. If 𝑙, the extracted label from OPEN in the current expansion cycle, is dominated, 
then 𝑙 is removed from  (𝑣(𝑙)).

Remark 1. EMOA*-Early has the same search process as NAMOA* [33]. In the literature, NAMOA* has been expedited in NAMOA*dr
by employing a technique called dimensionality reduction [19], which can be summarized as follows. With (i) a consistent heuristic 
and (ii) an OPEN priority queue where labels are prioritized in lexicographic order, then, the first component of the cost vectors 
corresponding to labels that are extracted from OPEN are guaranteed to be monotonically non-decreasing. The set of labels that 
are expanded at a vertex is a subset of all labels that are extracted from OPEN. Therefore, the first component of the cost vector 
of labels that are expanded at a vertex must be non-decreasing during the search and can be ignored for dominance checking. In 
other words, given a label 𝑙, to check if any existing label 𝑙′ ∈ closed(𝑣(𝑙)) weakly dominates 𝑙, NAMOA*dr only needs to check if the 
truncated vectors Trunc(𝑔(𝑙′)) weakly dominates Trunc(𝑔(𝑙)). This idea of truncating vectors for dominance checking is referred to 
as the ``dimensionality reduction'' in [19], which has been shown to speed up the search.

It is worthwhile to point out that, this dimensionality reduction is only applicable to the closed set, i.e., closed(𝑢), at a vertex 𝑢, 
and is not applicable to the open set open(𝑢). The reason is that: the first component of the cost vector of labels 𝑙 that are added to 
open(𝑣(𝑙)) during the search may not be monotonically non-decreasing, and the first component cannot be ignored for dominance 
checking. As a result, in EMOA*-Early, to employ the dimensionality reduction technique, the algorithm has to separate  (𝑢) at a 
vertex 𝑢 ∈ 𝑉 into closed(𝑢) and open(𝑢) so that the dimensionality reduction can be applied to closed(𝑢).

In the next section, we present EMOA*-Late, the second implementation of EMOA*, which defers the dominance checking of 
a newly generated label 𝑙 related to open(𝑣(𝑙)) until 𝑙 is about to be expanded, and is able to apply the dimensionality reduction 
technique to all dominance checking operations.

3.4. EMOA* with late dominance check

The second instantiation of EMOA* is shown in Algorithm 3 and we refer to it as EMOA*-Late. EMOA*-Late is similar to BOA* [11] 
and their relationship is discussed at the end of this section.

In EMOA*-Late, when a new label 𝑙′ is generated on Line 11 in Algorithm 1, CheckUpdateAfterGen (i.e., Line 1-3 in Algorithm 3) 
first invokes both IsDomByFront and IsDomBySol to check if 𝑙′ is dominated. If 𝑙′ is dominated in either IsDomByFront or

IsDomBySol, 𝑙′ should be discarded and CheckUpdateAfterGen returns true. Otherwise, 𝑙′ is non-dominated. In this case, EMOA*
Late directly adds 𝑙′ to OPEN for future expansion, without invoking the procedure FilterAndAddFront in comparison to EMOA*
Early.
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Algorithm 3 EMOA* with Late Dominance Checking (BOA*).
CheckUpdateAfterGen(𝑙′)

1: if IsDomByFront (𝑙′) or IsDomBySol (𝑙′) then

2: return true ⊳ 𝑙′ is pruned.

3: return false ⊳ 𝑙′ is not pruned.

CheckUpdateBeforeExp(𝑙)

4: if IsDomByFront (𝑙) or IsDomBySol (𝑙) then

5: return true ⊳ 𝑙 is pruned.

6: FilterAndAddFront (𝑙)

7: return false ⊳ 𝑙 is not pruned.

When a label 𝑙 is extracted from OPEN, both IsDomByFront and IsDomBySol are called by CheckUpdateAfterGen on Line 4
to check if 𝑙 is dominated. If 𝑙 is dominated, 𝑙 is simply discarded and the current expansion cycle ends. Otherwise, 𝑙 is used to filter 
 (𝑣(𝑙)) at first and then added to  (𝑣(𝑙)).

In EMOA*-Late,  (𝑢), 𝑢 ∈ 𝑉 only contains labels that are extracted from OPEN and never contains labels that are generated and in 
OPEN. In other words,  (𝑢) = closed(𝑢) during the search in EMOA*-Late. As a result, EMOA*-Late avoids the operations on Line 4 in 
Algorithm 2 in EMOA*-Early; and EMOA*-Late defers the operations on Line 3 in Algorithm 2 in EMOA*-Early until a label is extracted 
from OPEN before being expanded (Fig. 4). In practice, open(𝑢), 𝑢 ∈ 𝑉 is often a large set, and it can be computationally expensive 
to run dominance checking against open(𝑢) every time a new label is generated. As shown in BOA* [11], this modfication of the 
search also allows BOA* to implement the IsDomByFront, IsDomBySol and FilterAndAddFront procedures as a constant-time 
operation in the presence of two objectives.

Remark 2. EMOA*-Late is similar to BOA* [11] with the only difference that EMOA*-Late introduces the IsDomByFront, IsDom
BySol and FilterAndAddFront procedures to encapsulate some common operations on  (𝑣), 𝑣 ∈ 𝑉 that are related to dominance 
checking. Within the EMOA*-Late framework, BOA* can be regarded as an instantiation of the framework when there are two objec

tives.

We briefly summarize BOA* as follows. BOA* leverages the aforementioned dimensionality reduction in NAMOA*dr. Since there 
are two objectives only, after the dimensionality reduction, the cost vector of a label becomes a scalar value. Correspondingly, to 
represent  (𝑣), 𝑣 ∈ 𝑉 , BOA* only needs to store the minimum scalar value (denoted as 𝑔min

2 (𝑣)) among labels that are expanded at 𝑣
during the search. As a result, IsDomByFront, IsDomBySol for a label 𝑙 can be implemented by comparing the second component 
of 𝑔(𝑙), i.e., 𝑔2(𝑙), against 𝑔min

2 (𝑣(𝑙)), which is a constant-time operation, and FilterAndAddFront can be implemented by updating 
𝑔min
2 (𝑣(𝑙)) with 𝑔2(𝑙) when 𝑔2(𝑙) < 𝑔min

2 (𝑣(𝑙)), which is also a constant-time operation.

It has been shown that when there are two objectives (𝑀 = 2), BOA* runs faster than NAMOA*dr in general due to the late 
dominance check and the resulting constant dominance checking operations [11].

3.5. Solving the check and update problems

Solving DC and NSU problems with different approaches within the EMOA* framework lead to different algorithms. As an example, 
a simple approach that solves the DC problem iterates each vector 𝑏⃗′ ∈ 𝐵 and check if 𝑏⃗′ ⪯ 𝑏⃗, which has a runtime complexity of 
𝑂(|𝐵| ⋅𝐾). A simple method that solves the NSU problem takes two steps: (i) filter 𝐵 by removing from 𝐵 all vectors that are weakly 
dominated by 𝑏⃗, and (ii) add 𝑏⃗ into 𝐵. Here, a simple method for step (i) needs to iterate the vectors in 𝐵 in order to remove all 
dominated vectors and has a runtime complexity of 𝑂(|𝐵| ⋅ 𝐾), and step (ii) takes constant time. Consequently, the overall runtime 
complexity is 𝑂(|𝐵| ⋅𝐾). With these simple approaches to solve the DC and NSU problems, for either EMOA*-Early or EMOA*-Late, 
a corresponding search algorithm is determined. For EMOA*-Late, we call the corresponding algorithm EMOA*-Late-LINEAR, where 
LINEAR means the algorithm uses a linear scan of vectors in 𝐵 for dominance checking. For EMOA*-Early, the resulting algorithm is
NAMOA* [33], which does not use the dimensionality reduction technique in comparison to NAMOA*dr.

Remark 3. We are now ready to revisit the aforementioned Kung’s method [20] and discuss its relationship to this article. Kung’s 
method aims to solve the following problem (hereafter referred to as Kung’s problem for simplicity). Given an arbitrary set 𝐵 of 
𝐾 -dimensional vectors (𝐾 ≥ 2), Kung’s problem seeks to compute (𝐵). We refer the reader to [20] for more detail about Kung’s 
method and the runtime complexity. The DC and NSU problems can be regarded as incremental versions of Kung’s problem: specifically, 
after a new vector 𝑏⃗ is generated, 𝑏⃗ is checked for dominance against the existing vectors in 𝐵, which is a DC problem; then, if 𝑏⃗ is 
non-dominated, 𝐵 is updated as (𝐵

⋃
{𝑏⃗}), which is a NSU problem. This incremental formulation of Kung’s problem is important 

to EMOA*, since  (𝑣) at each vertex 𝑣 ∈ 𝑉 is constructed in an incremental manner during the search.

3.6. Theoretical properties of EMOA*

EMOA*-Early has the same search process as NAMOA* [33] (and NAMOA*dr [19]). As a result, EMOA*-Early has the same proper

ties as NAMOA* as long as the three procedures IsDomByFront, IsDomBySol and FilterAndAddFront are correctly implemented 
to solve the corresponding DC and NSU problems. The analysis of EMOA*-Early is thus omitted. We hereafter analyze only the prop

erties of EMOA*-Late.
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A MO-SPP instance is feasible if there is at least one solution, and otherwise (i.e., there is no path from 𝑣𝑜 to 𝑣𝑑 in 𝐺), the 
instance is infeasible. With an implementation of the three procedures IsDomByFront, IsDomBySol and FilterAndAddFront
that correctly solve the corresponding DC and NSU problems, it is guaranteed that EMOA*-Late terminates in finite time for both 
feasible and infeasible instances (Theorem 1). EMOA*-Late computes a maximal cost-unique Pareto-optimal set at termination for 
feasible instances (Theorem 2).

We say a path 𝜋 = (𝑣1, 𝑣2,⋯ , 𝑣𝑘) forms a loop at 𝑣𝑘, if 𝑣𝑘 is the first vertex in 𝜋 such that 𝑣𝑘 = 𝑣𝑝 for some 𝑝 = 1,2,⋯ , 𝑘− 1.

Lemma 1. EMOA*-Late never adds a label 𝑙 to OPEN if 𝑙 represents a path that forms a loop at 𝑣(𝑙).

Proof. We only need to consider the case where 𝑙 is generated (Line 11) and before being added to OPEN (Line 15). (If 𝑙 is not 
generated, 𝑙 cannot be added to OPEN.) Let 𝑙 denote a label representing a path 𝜋 that forms a loop at 𝑣(𝑙), and let 𝑙′ denote the label 
representing the corresponding path with the loop in 𝜋 removed. Since 𝑙 represents a path that forms a loop at 𝑣(𝑙), by definition, we 
know that 𝑣(𝑙) = 𝑣(𝑙′). The cost vector of edges in 𝐺 are non-negative, and 𝜋 has an additional loop in comparison with 𝜋′ , therefore, 
𝑔(𝑙) is weakly dominated by 𝑔(𝑙′). Furthermore, when 𝑙 is generated, all of its parent labels from 𝑙 to 𝑙𝑜 must have been expanded. 
Therefore, 𝑙′ must have been expanded and must have been added to  (𝑣(𝑙′)). As a result, 𝑙 is discarded at Line 13 since 𝑣(𝑙) = 𝑣(𝑙′)
and 𝑔(𝑙′) ⪯ 𝑔(𝑙). EMOA*-Late thus never adds 𝑙 to OPEN. □

Theorem 1. EMOA*-Late terminates in finite time for both feasible and infeasible instances.

Proof. Since 𝐺 is finite, there is a finite number |Π| of paths without loops from 𝑣𝑜 to any other vertex 𝑣 ∈ 𝑉 in 𝐺. Based on 
Lemma 1, we know that, the maximum possible number of labels in OPEN is no larger than |Π| during the search. EMOA*-Late
eventually extracts all labels from OPEN and therefore terminates in finite time. The proof holds for both feasible and infeasible 
instances. □

Theorem 2. EMOA*-Late computes a maximal cost-unique Pareto-optimal set at termination for feasible instances.

Proof. In each expansion cycle (Lines 4-15 in Algorithm 1), EMOA*-Late extracts a label 𝑙 from OPEN, whose 𝑓 -vector is the 
lexicographic minimum in OPEN. It means none of the remaining labels in OPEN can dominate 𝑙. With procedures IsDomByFront
and IsDomBySol: label 𝑙 is discarded if and only if it is weakly dominated by some other expanded labels. This implies that it can 
not lead to a cost-unique Pareto-optimal solution. If label 𝑙 is not discarded, it is then added to  (𝑣(𝑙)) after filtering  (𝑣(𝑙)) using 𝑙, 
which ensures that  (𝑣(𝑙)) contains only cost-unique non-dominated labels after the filtering. When Algorithm 1 terminates, each of 
the labels in  (𝑣𝑑 ) must represent a cost-unique Pareto-optimal solution. Finally, when a label 𝑙 is expanded, all possible successor 
labels of 𝑙 are generated and the non-dominated ones are inserted into OPEN for future expansion. The algorithm terminates only 
when all labels are either expanded or discarded, which guarantees that a maximal set of cost-unique Pareto-optimal solutions are 
found. □

From now on, we focus on how to correctly implement the three procedures while achieving high computational efficiency. We 
begin with a BBST-based approach in Sec. 4 and a BS-based approach in Sec. 5. Both approaches leverage the dimensionality reduction 
technique and thus require consistent heuristics.

4. The EMOA*-Late-BBST Algorithm

This section presents an algorithm that implements the EMOA*-Late by leveraging balanced binary search trees (BBSTs). We 
review BBSTs in Sec. 4.1 and then elaborate the BBST-based approaches that solve the DC and NSU problems in Sec. 4.2 and Sec. 4.3

respectively. We finally describe the EMOA*-Late-BBST algorithm in Sec. 4.4.

4.1. Balanced Binary Search Trees (BBSTs)

Let 𝑛 denote a node within a binary search tree (BST) with the following attributes:

• 𝑛.𝑘𝑒𝑦 is the key of 𝑛, which is a 𝐾 -dimensional vector. To compare two nodes, their keys are compared using the lexicographic 
order.

• 𝑛.ℎ𝑒𝑖𝑔ℎ𝑡 is the height of 𝑛, which is the number of edges along the longest downwards path between 𝑛 and a leaf node. A leaf 
node has a height of zero. The height of the root node is also called the height of the BST.

• 𝑛.𝑙𝑒𝑓 𝑡 and 𝑛.𝑟𝑖𝑔ℎ𝑡 are the left child and the right child of 𝑛 representing the left sub-tree and the right sub-tree, respectively.

• We say that 𝑛 = 𝑁𝑈𝐿𝐿 if 𝑛 does not exist in the BST. For example, if 𝑛 is a leaf node, then 𝑛.𝑙𝑒𝑓 𝑡 = 𝑁𝑈𝐿𝐿 and 𝑛.𝑟𝑖𝑔ℎ𝑡 = 𝑁𝑈𝐿𝐿.

We limit our focus to the AVL-tree, a popular balanced BST data structure. For any node 𝑛 in an AVL-tree, let 𝑑(𝑛) ∶= 𝑛.𝑙𝑒𝑓 𝑡.ℎ𝑒𝑖𝑔ℎ𝑡−
𝑛.𝑟𝑖𝑔ℎ𝑡.ℎ𝑒𝑖𝑔ℎ𝑡 denote the difference between the height of the left and right children. The AVL-tree is called balanced if 𝑑(𝑛) ∈
{−1,0,1}. To maintain balance at insertion or deletion of nodes, an AVL-tree invokes the so-called rotation operations when |𝑑(𝑛)| ≥ 2
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Algorithm 4 BBST-Check (𝑛, 𝑏⃗).

INPUT: 𝑛 is a node in an AVL-tree and ⃗𝑏 is a vector

1: if 𝑛 = 𝑁𝑈𝐿𝐿 then

2: return false

3: if 𝑛.𝑘𝑒𝑦 ⪯ 𝑏⃗ then

4: return true

5: if 𝑏⃗ <lex 𝑛.𝑘𝑒𝑦 then

6: return BBST-Check (𝑛.𝑙𝑒𝑓 𝑡, 𝑏⃗)

7: else ⊳ i.e., ⃗𝑏 >lex 𝑛.𝑘𝑒𝑦

8: if BBST-Check (𝑛.𝑙𝑒𝑓 𝑡, 𝑏⃗) then ⊳ Removed in TOA*-Late-BBST
9: return true

10: return BBST-Check (𝑛.𝑟𝑖𝑔ℎ𝑡, 𝑏⃗)

Algorithm 5 BBST-Filter (𝑛, 𝑏⃗).

INPUT: 𝑛 is a node in an AVL-tree and ⃗𝑏 is a vector

1: if 𝑛 = 𝑁𝑈𝐿𝐿 then

2: return 𝑁𝑈𝐿𝐿

3: if 𝑏⃗ >lex 𝑛.𝑘𝑒𝑦 then

4: 𝑛.𝑟𝑖𝑔ℎ𝑡 ←BBST-Filter (𝑛.𝑟𝑖𝑔ℎ𝑡, 𝑏⃗)

5: else

6: 𝑛.𝑙𝑒𝑓 𝑡 ←BBST-Filter (𝑛.𝑙𝑒𝑓 𝑡, 𝑏⃗)

7: 𝑛.𝑟𝑖𝑔ℎ𝑡 ←BBST-Filter (𝑛.𝑟𝑖𝑔ℎ𝑡, 𝑏⃗)

8: if 𝑏⃗ ⪯ 𝑛.𝑘𝑒𝑦 then

9: return AVL-Delete(𝑛)

Note: the tree needs to be re-balanced after the entire filtering process.

in order to re-balance the tree. Consequently, given an AVL-tree of size 𝑁 (i.e., containing 𝑁 nodes), the height of the root node is 
bounded by 𝑂(log𝑁).

4.2. BBST-based checking method

Given a set 𝐵 of cost-unique non-dominated vectors, let 𝐵 denote an AVL-tree that stores all vectors in 𝐵 as the keys of tree 
nodes. Given a new vector 𝑏⃗, the DC problem can be solved via Algorithm 4, which traverses the tree recursively while running 
dominance checking.

Algorithm 4 is invoked with BBST-Check (𝐵.𝑟𝑜𝑜𝑡, 𝑏⃗), where 𝐵.𝑟𝑜𝑜𝑡 is the root node of the tree and 𝑏⃗ is an input vector to be 
checked for dominance. As the base case (Line 1), if the input node 𝑛 is 𝑁𝑈𝐿𝐿, the algorithm terminates and returns false, which 
means ⃗𝑏 is non-dominated. When the input node is not 𝑁𝑈𝐿𝐿, ⃗𝑏 is checked for dominance against 𝑛.𝑘𝑒𝑦 and returns true if 𝑛.𝑘𝑒𝑦 ⪯ 𝑏⃗. 
Otherwise, the algorithm verfies if 𝑏⃗ is lexicographically smaller than 𝑛.𝑘𝑒𝑦.

Case 1 If 𝑏⃗ <lex 𝑛.𝑘𝑒𝑦, there is no need to traverse the right sub-tree of 𝑛, since any node in the right sub-tree of 𝑛 must be lexico

graphically larger than 𝑛 and thus cannot weakly dominate 𝑏. The algorithm then recursively invokes itself to traverse only the 
left sub-tree for dominance checking.

Case 2 Otherwise (i.e., 𝑏⃗ >lex 𝑛.𝑘𝑒𝑦), the algorithm first invokes itself to traverse the left sub-tree (Line 8) and then the right sub-tree 
(Line 10) for dominance checking. Note that, in this case, both child nodes need recursive traversal to ensure correctness.

4.3. BBST-based update method

Similarly, given a set of non-dominated vectors 𝐵 that is stored as a BBST 𝐵 and a non-dominated vector ⃗𝑏, the NSU problem can 
be solved by (i) invoking Algorithm 5 to remove nodes from the tree 𝐵 whose keys are dominated by 𝑏⃗ and (ii) inserting the input 
(non-dominated) vector 𝑏⃗ into the tree. Here, step (ii) is a regular AVL-tree insertion operation, which takes 𝑂(log |𝐵|) time, and we 
will focus on step (i) in the ensuing paragraphs.

For step (i), Algorithm 5 is invoked with BBST-Filter (𝐵.𝑟𝑜𝑜𝑡, 𝑏⃗), where 𝐵.𝑟𝑜𝑜𝑡 is the root node of the tree. As shown in 
Algorithm 5, as the base case (Line 1), if the input node is 𝑁𝑈𝐿𝐿, the algorithm terminates and returns 𝑁𝑈𝐿𝐿. When the input 
node 𝑛 is not 𝑁𝑈𝐿𝐿, the algorithm verfies whether 𝑏⃗ >lex 𝑛.𝑘𝑒𝑦.

Case 1 If 𝑏⃗ >lex 𝑛.𝑘𝑒𝑦, there is no need to filter the left sub-tree of 𝑛, since any node in the left sub-tree of 𝑛 must be non-dominated 
by 𝑏⃗. The algorithm recursively invokes itself to only traverse the right sub-tree for filtering.
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Fig. 5. (a) A visualization of  (𝑣) at some vertex 𝑣 in the graph 𝐺 during the EMOA* search. Here, there are five labels in  (𝑣). The underlined three numbers of 
each 𝑔-vector indicate the corresponding truncated vector Trunc(𝑔) (as dfined in Sec. 4.4). (b) The corresponding balanced binary search tree. The keys of the nodes 
in this tree form the non-dominated subset of the truncated vectors. The dashed blue arrows show the sequence of tree nodes that are traversed when running the

IsDomByFront procedure (Algorithm 4). The truncated vector (9,9,7) in the tree weakly dominates the input vector (9,9,9), which indicates that the new label 𝑙 (in 
blue) with 𝑔-vector (13,9,9,9) is weakly dominated and should be discarded.

Case 2 Otherwise (i.e., ⃗𝑏 <lex 𝑛.𝑘𝑒𝑦),4 the algorithm first invokes itself to traverse the left sub-tree (Line 6) and then the right sub-tree 
(Line 7) for filtering. Note that, in this case, both child nodes need to be traversed for further dominance checking to ensure 
correctness.

At the end (Line 8), 𝑛.𝑘𝑒𝑦 is checked for dominance against 𝑏⃗. If 𝑛.𝑘𝑒𝑦 is dominated, 𝑛 is removed from the tree. After invoking 
Algorithm 5, if nodes are deleted, the tree needs to be re-balanced. Specifically, the tree can become unbalanced after running 
Algorithm 5 where the height difference between the left sub-tree and right sub-tree of a node 𝑛 can be greater than 2, i.e., |𝑑(𝑛)| ≥ 2. 
In this case, a single rotation operation related to 𝑛 cannot re-balance the tree, and one possible implementation to re-balance the tree 
is to first mark the node to be deleted during the filtering process as described in Algorithm 5, and then conduct an in-order traversal 
of the tree, while skipping the marked nodes, to rebuild an AVL-tree. This implementation takes 𝑂(|𝐵| ⋅𝐾) time with respect to the 
size of the tree. For the filtering part (Algorithm 5), in the worst case, the entire tree is traversed and all nodes in the tree are to be 
deleted (from the leave nodes to the root node), which takes 𝑂(|𝐵| ⋅𝐾) time.

Theoretically, both Algorithm 4 and 5 run in 𝑂(|𝐵| ⋅ 𝐾) time in the worst case, which is the same as the aforementioned linear 
approaches (i.e., iterates the vectors in 𝐵) in Sec. 3.5. However, as shown in our experimental results in Sec. 6, the BBST-based 
methods can solve the DC and NSU problems more efficiently in practice. The intuitive reason behind such efficiency is that, the AVL

tree is organized based on the lexicographic order, which can provide guidance when traversing the tree for dominance checking. As 
a result, only a small portion of the tree is traversed. Finally, note that the method in this section does not put any restriction on 𝐾 .

4.4. EMOA* with BBST-based checking and update

This section elaborates how the aforementioned BBST-based algorithms (Algorithm 4 and 5) are used within the EMOA* framework 
(Algorithm 1). We refer to the resulting algorithm as EMOA*-Late-BBST. EMOA*-Late-BBST leverages the idea of dimensionality 
reduction as in NAMOA*-dr, which can expedite the BBST-based checking and update by reducing the length of the cost vectors by 
one.

Specifically, when the heuristic is consistent, and all labels are extracted from OPEN based on the lexicographic order of their 
𝑓 -vectors from the minimum to the maximum, the sequence of labels being extracted at the same vertex has non-decreasing 𝑓1 values, 
where 𝑓1 represents the first component of the 𝑓 -vector of a label. Additionally, since all labels at the same vertex 𝑣 have the same 
ℎ⃗-vector, the sequence of labels being extracted at the same vertex also has non-decreasing 𝑔1 values, where 𝑔1 represents the first 
component of the 𝑔-vector of a label. During the search of EMOA*-Late-BBST, when a new label 𝑙 is generated, IsDomByFront only 
needs to perform dominance checking between Trunc(𝑔(𝑙)) and Trunc(𝑔(𝑙′)),∀𝑙′ ∈  (𝑣(𝑙)), instead of comparing 𝑔(𝑙) with 𝑔(𝑙′),∀𝑙′ ∈
 (𝑣(𝑙)). Consequently, in EMOA*-Late-BBST, for each vertex 𝑣 ∈ 𝑉 , a BBST tree 𝐵 is constructed with 𝐵 =({Trunc(𝑔(𝑙′)),∀𝑙′ ∈
 (𝑣)}) as aforementioned. In other words, the key of nodes in 𝐵 forms a maximal cost-unique non-dominated subset of the truncated 
cost vector of labels in  (𝑣).

To run IsDomByFront for a label 𝑙 that is extracted from OPEN (Line 6 in Algorithm 1), BBST-Check (𝑛, 𝑏⃗) in Algorithm 4
is invoked with 𝑏⃗ = Trunc(𝑔(𝑙)) and 𝑛 being the root node of the tree 𝐵 . We provide a toy example for IsDomByFront in Fig. 5. 
Similarly, for IsDomBySol (Line 6 in Algorithm 1), BBST-Check (𝑛, 𝑏⃗) in Algorithm 4 is invoked with 𝑏⃗ = Trunc(𝑓 (𝑙)) and 𝑛 being 
the root node of the tree 𝐵′ with 𝐵′ = ({Trunc(𝑔(𝑙′)),∀𝑙′ ∈  (𝑣𝑑 )}) (i.e., the set of all non-dominated truncated vectors of 
labels in the front set at the destination node). During the search, when a label 𝑙 is extracted from OPEN and is used to update the 
front set in the procedure FilterAndAddFront (Line 8 in Algorithm 1), BBST-Filter (𝑛, 𝑏⃗) in Algorithm 5 is first invoked with 
𝑏⃗ = Trunc(𝑔(𝑙)) and 𝑛 being the root node of the tree 𝐵 where 𝐵 =({Trunc(𝑔(𝑙′)),∀𝑙′ ∈  (𝑣(𝑙))}). Then, 𝑏⃗ = Trunc(𝑔(𝑙)) is added 
to 𝐵 .

In summary, in EMOA*-Late-BBST, procedures IsDomByFront, IsDomBySol and FilterAndAddFront only need to operate 
on the truncated vectors of labels, instead of the original vectors.

4 Note that it’s impossible to have ⃗𝑏 = 𝑛.𝑘𝑒𝑦: Within EMOA* (Algorithm 1), FilterAndAddFront is always invoked after IsDomByFront. If we have that ⃗𝑏= 𝑛.𝑘𝑒𝑦, 
the IsDomByFront removes it and FilterAndAddFront will not be invoked (Line 6-8 in Algorithm 1).
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Table 2
Runtime complexity of related methods as a function of the dimension 𝑀 , and the size 𝐵 of 
the AVL tree. Note that BOA* is a special case of EMOA* when 𝑀 = 2, and TOA*-Late-BBST
is an improved version of EMOA*-Late-BBST when 𝑀 = 3.

BOA* TOA*-Late-BBST EMOA*-Late-BBST

𝑀 = 2 = 3 ≥ 2
Dominance Checking Problem 𝑂(1) 𝑂(log |𝐵|) 𝑂(|𝐵| ⋅ (𝑀 − 1))
Non-Dominated Set Update Problem 𝑂(1) 𝑂(|𝐵|) 𝑂(|𝐵| ⋅ (𝑀 − 1))

4.5. Discussion—EMOA*-Late-BBST as a generalization of BOA*

EMOA*-Late-BBST generalizes BOA* in the following sense. When 𝑀 = 2, for any cost vector 𝑔 of a label, the truncated vector 
Trunc(𝑔) is of length one and is thus a scalar value. In this case, the AVL-tree corresponding to  (𝑣) of any vertex 𝑣 ∈ 𝑉 in EMOA*
Late-BBST becomes a singleton tree: a tree with a single root node 𝐵.𝑟𝑜𝑜𝑡. The key value of 𝐵.𝑟𝑜𝑜𝑡 is the minimum value of 𝑔2(𝑙)
among all labels 𝑙 ∈  (𝑣), which is the same as the auxiliary variable 𝑔min

2 introduced at each vertex in BOA*. Solving a DC problem 
requires only a scalar comparison between 𝐵.𝑟𝑜𝑜𝑡.𝑘𝑒𝑦 and the scalar Trunc(𝑔), i.e., the truncated cost vector of the label selected 
from OPEN in each search iteration. Clearly, this scalar comparison takes constant time. Additionally, the FilterAndAddFront in

EMOA*-Late-BBST requires simply assigning the scalar Trunc(𝑔) to 𝐵.𝑟𝑜𝑜𝑡.𝑘𝑒𝑦 (i.e., 𝑔min
2 ), which also takes constant time. Therefore,

BOA* is a special case of EMOA* when 𝑀 = 2.

4.6. BBST-Based Tri-Objective A* (TOA*-Late-BBST)

When 𝑀 = 3, Algorithm 4 can be further improved to achieve better theoretic runtime complexity, which then further expedites

EMOA*-Late-BBST. We name this improved algorithm TOA*-Late-BBST (Tri-Objective A*), which differs from the EMOA*-Late
BBST by removing Lines 8-9 in Algorithm 4. In other words, when 𝑀 = 3, each truncated vector 𝑏⃗ as well as the key of all nodes in 
the tree 𝐵 have length (𝑀 − 1) = 2. In this case, in Algorithm 4, when 𝑏⃗ >lex 𝑛.𝑘𝑒𝑦 (i.e., Line 8 in Algorithm 4), there is no need to 
further traverse the left sub-tree. This property can be formally stated via the following theorem.

Theorem 3. Given a two-dimensional vector 𝑏⃗, and an arbitrary node 𝑛 in 𝐵 with 𝐵 denoting a set of cost-unique non-dominated two

dimensional vectors, if (i) 𝑛.𝑘𝑒𝑦 neither dominates nor is equal to 𝑏⃗ and (ii) 𝑏⃗ >lex 𝑛.𝑘𝑒𝑦, then the key of any nodes in the left sub-tree of 𝑛
cannot dominate 𝑏⃗.

Proof. Recall that we use subscripts to denote the specific component of a vector. From (i) and (ii), we know that 𝑏1 > 𝑛.𝑘𝑒𝑦1 and 
𝑏2 < 𝑛.𝑘𝑒𝑦2. For any node 𝑛′ in the left sub-tree of 𝑛, by construction of the tree, 𝑛′ <lex 𝑛 and thus 𝑛′.𝑘𝑒𝑦1 ≤ 𝑛.𝑘𝑒𝑦1. Additionally, by 
definition, the key of every pair of nodes in 𝐵 are non-dominated and non-equal to each other, thus 𝑛′.𝑘𝑒𝑦2 > 𝑛.𝑘𝑒𝑦2. Combining 
these together, we know that

𝑏2 < 𝑛.𝑘𝑒𝑦2 < 𝑛′.𝑘𝑒𝑦2.

Thus, 𝑏⃗ is not dominated by 𝑛′.𝑘𝑒𝑦. Since 𝑛′ can be any node in the left sub-tree of 𝑛, the theorem is hence proved. □

In TOA*-Late-BBST, the modfied version of Algorithm 4 traverses the AVL tree either to the left sub-tree (when 𝑏⃗ <lex 𝑛.𝑘𝑒𝑦) or 
to the right sub-tree (when 𝑏⃗ >lex 𝑛.𝑘𝑒𝑦), which leads to a runtime complexity of 𝑂(log |𝐵|) (note that 𝐾 = 𝑀 − 1 = 2 is a constant 
number and is thus omitted from 𝑂(log |𝐵| ⋅𝐾)). We say that TOA*-Late-BBST is an improved version of EMOA*-Late-BBST when 
𝑀 = 3 because the theoretic runtime complexity is reduced from 𝑂(|𝐵|) to 𝑂(log |𝐵|). Finally, we summarize the runtime complexity 
of solving DC and NSU problems in both the existing BOA* [11] and our algorithms (TOA*-Late-BBST and EMOA*-Late-BBST) in 
Table 2.

5. The EMOA*-Late-BS Algorithm

This section provides a different implementation of the three procedures in EMOA*-Late by (i) using a lexicographically sorted 
list to represent  (𝑣) at a vertex 𝑣 ∈ 𝑉 , instead of using a BBST as in the previous section, and (ii) using a binary search to conduct 
fast dominance checking. We begin with the general case, i.e., an arbitrary number of objectives, in Sec. 5.1, and name this new 
approach as EMOA*-Late-BS, where BS stands for Binary Search. We then present the approach when there are three objectives in 
Sec. 5.2, and we refer to this approach as TOA*-Late-BS. TOA*-Late-BS (and EMOA*-Late-BS) have the same worst-case runtime 
complexity as TOA*-Late-BBST (and EMOA*-Late-BBST) as shown in Table 2. However, this BS-based approach can still be regarded 
as an improved version of the BBST-based approach since rotation operations that are required to maintain BBSTs are saved.
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Algorithm 6 BS-Check (𝐵, 𝑏⃗).

INPUT: 𝐵 is a lexicographically sorted list of vectors; ⃗𝑏 is a vector to be checked for dominance.

1: run BinarySearch to find ⃗𝑏max , the lexicographically largest vector in 𝐵 that is no larger than ⃗𝑏; let 𝐵′ denote the list of vectors from the beginning of 𝐵 till ⃗𝑏max .

2: if 𝑏⃗max does not exist then

3: return false ⊳ 𝑏⃗ is non-dominated.

4: for all 𝑏⃗′ ∈ 𝐵′ do

5: if 𝑏⃗′ ⪯ 𝑏⃗ then

6: return true ⊳ 𝑏⃗ is dominated.

7: return false ⊳ 𝑏⃗ is non-dominated.

Algorithm 7 BS-Filter (𝐵, 𝑏⃗).

INPUT: 𝐵 is a lexicographically sorted list of vectors and ⃗𝑏 is a vector used to filter 𝐵.

1: run BinarySearch to find ⃗𝑏max , the lexicographically largest vector in 𝐵 that is no larger than ⃗𝑏; let 𝐵′ denote the list of vectors starting after ⃗𝑏max till the end 
of 𝐵.

2: if 𝑏⃗max does not exist then

3: 𝐵′ ← 𝐵.

4: for all 𝑏⃗′ ∈ 𝐵′ do

5: if 𝑏⃗ ⪯ 𝑏⃗′ then

6: remove ⃗𝑏′ from 𝐵.

7: return 𝐵.

5.1. EMOA*-Late-BS

EMOA*-Late-BS also leverages the dimensionality reduction technique. Here, for every 𝑣 ∈ 𝑉 ,  (𝑣) stores the truncated vectors, 
which are of length 𝑀 − 1. EMOA*-Late-BS represents the  (𝑣) at each vertex 𝑣 ∈ 𝑉 as a lexicographically sorted list 𝐵 from the 
minimum to the maximum,5 and runs a binary search over 𝐵 to realize IsDomByFront which checks if an input vector 𝑏 is weakly 
dominated by any existing vector in 𝐵. We show this BS-based checking procedure in Algorithm 6. Specifically, Algorithm 6 first 
uses BinarySearch (Line 1) to find the lexicographically largest vector 𝑏⃗max in 𝐵 that is lexicographically no larger than 𝑏⃗, which 
has a runtime complexity of 𝑂(log(|𝐵|)) in the worst case. Note that any vector in 𝐵 that is lexicographically larger than 𝑏⃗max is 
also lexicographically larger than 𝑏⃗ and thus cannot dominate 𝑏⃗. Let 𝐵′ denote the list of vectors from the beginning of 𝐵 till 𝑏⃗max. 
Algorithm 6 iterates 𝐵′ to check if any existing vector in 𝐵′ weakly dominates the given 𝑏⃗. As an edge case, if no such a 𝑏⃗max is 
found during BinarySearch (Line 2), all vectors in 𝐵 are lexicographically larger than 𝑏⃗ and no vector in 𝐵 can dominate 𝑏⃗. In the 
worst case, 𝐵′ = 𝐵 and the iteration of 𝐵′ has a runtime complexity of 𝑂(|𝐵|). As a result, the entire Algorithm 6 has a worst-case 
runtime complexity of 𝑂(|𝐵|). Finally, to realize IsDomBySol, EMOA*-Late-BS compares the given vector 𝑏⃗ against the vectors in 
𝐵𝑣𝑑

, where 𝐵𝑣𝑑
is a set of cost-unique non-dominated truncated cost vectors corresponding to labels in  (𝑣𝑑 ), with the exactly same 

algorithm shown in Algorithm 6.

We have presented how to implement IsDomByFront and IsDomBySol, and we now present the implementation of FilterAn
dAddFront (Line 8 in Algorithm 1) using binary search. To update 𝐵 with a new non-dominated vector 𝑏⃗, EMOA*-Late-BS begins 
by filtering 𝐵 and then adds 𝑏⃗ into 𝐵 to compute (𝐵

⋃
{𝑏⃗}). We elaborate the filtering procedure in Algorithm 7. To filter 𝐵

with 𝑏⃗, Algorithm 7 first runs BinarySearch over 𝐵 to find the lexicographically largest vector 𝑏⃗max that is lexicographically no 
larger than 𝑏⃗ (Line 1). In 𝐵, any vector that is lexicographically smaller than 𝑏⃗max cannot be dominated by 𝑏⃗. Let 𝐵′ denote the list 
of vectors starting after 𝑏⃗max till the end of 𝐵. Algorithm 7 then iterates 𝐵′ (Line 4) and removes any existing vector in 𝐵′ that is 
dominated by 𝑏⃗. As a special case, if 𝑏⃗max does not exist, Algorithm 7 iterates the entire 𝐵 (Line 3).

After running Algorithm 7 to filter 𝐵 (which takes 𝑂(|𝐵|) time), the vector 𝑏⃗ is added to 𝐵 at the position immediately after 𝑏⃗max

in 𝐵 so that 𝐵 is still lexicographically sorted after the insertion. For the special case where 𝑏⃗max does not exist, i.e., no vector in 𝐵
is lexicographically smaller than 𝑏⃗, 𝑏⃗ is added to the beginning of 𝐵, since 𝑏 is the lexicographically minimum vector in 𝐵. Overall, 
this implementation of FilterAndAddFront has a worst-case runtime complexity of 𝑂(|𝐵|).

Intuitively, both the BS-based approach in this section and the BBST-based approach in the previous section hinge on running a 
binary search for fast dominance checking. However, the BBST-based approach relies on a binary tree, which requires rotation opera

tions to re-balance the trees when vectors are added or deleted, while the BS-based approach directly operates on a lexicographically 
sorted list and can bypass the rotation operations needed by the BBST.

5.2. TOA*-Late-BS

When there are only three objectives (𝑀 = 3), the BS-based checking procedure in EMOA*-Late-BS can be further improved, 
which leads to the algorithm TOA*-Late-BS that is outlined in Algorithm 8. Specifically, Algorithm 8 first runs a binary search 
(Line 1) to find the lexicographically largest vector 𝑏⃗max in 𝐵 that is lexicographically no larger than 𝑏⃗, which takes log(|𝐵|) time 
in the worst case. This vector 𝑏⃗max has the property that 𝑏max

1 ≤ 𝑏1, since 𝑏⃗max is lexicographically no larger than 𝑏⃗. To check if 𝑏⃗ is 
dominated or not, we now only need to check if 𝑏max

2 ≤ 𝑏2 (this will be explained in the next paragraph). If so (Line 4), 𝑏⃗ is weakly 

5 Strictly speaking, each vertex 𝑣 is associated with its own lexicographically sorted list 𝐵, thus we should write 𝐵(𝑣). However, to simplify notation, we omit 𝑣.
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Algorithm 8 BS-Check-TOA∗ (𝐵, 𝑏⃗).

INPUT: 𝐵 is a lexicographically sorted list of two-dimensional vectors and ⃗𝑏 is two-dimensional vector to be checked for dominance.

1: run BinarySearch to find ⃗𝑏max , the largest vector in 𝐵 that is no larger than ⃗𝑏.

2: if 𝑏⃗max does not exist then

3: return false

4: if 𝑏max
2 ≤ 𝑏2 then

5: return true

6: else

7: return false

dominated by 𝑏⃗max and should be discarded; otherwise (Line 6), 𝑏⃗ is non-dominated by any existing vector in 𝐵. As an edge case 
(Line 2), if no such a 𝑏⃗max is found during the binary search (e.g., when |𝐵| is empty), then it indicates there does not exist a vector 
in 𝐵 that weakly dominates 𝑏⃗. Finally, for IsDomBySol, TOA*-Late-BS compares the given vector 𝑏⃗ against the vectors in 𝐵𝑣𝑑

, a 
maximal set of cost-unique non-dominated truncated cost vectors corresponding to labels in  (𝑣𝑑 ), with the same algorithm outlined 
in Algorithm 8.

To argue that Algorithm 8 is correct, note that every lexicographically sorted list 𝐵 stores truncated vectors, each of which is 
of length two. Since the vectors in 𝐵 are lexicographically sorted, all first components of the vectors in 𝐵 are monotonically non

decreasing while all second components of the vectors must be monotonically non-increasing. Then, (i) among vectors that are 
lexicographically larger than 𝑏⃗, none of them can dominate 𝑏⃗; (ii) among vectors that are lexicographically no larger than 𝑏⃗, 𝑏⃗max has 
the smallest second component, and if 𝑏max

2 is larger than 𝑏2, 𝑏⃗ cannot be weakly dominated by any existing vector in 𝐵. Algorithm 8
has a runtime complexity of 𝑂(log |𝐵|) in the worst case.

Finally, the FilterAndAddFront procedure in TOA*-Late-BS is same as the one in EMOA*-Late-BS as aforementioned.

Remark 4. The aforementioned EMOA*-Late-BBST and EMOA*-Late-BS algorithms are two instantiations of EMOA*-Late, and this 
section presents the instantiation of EMOA*-Early. The BBST-based and BS-based approaches in Sec. 4 and Sec. 5 can be applied to
EMOA*-Early to expedite the dominance checking operations. We refer to the resulting algorithms as EMOA*-Early-BBST (𝑀 > 3),

TOA*-Early-BBST (𝑀 = 3), EMOA*-Early-BS (𝑀 > 3), and TOA*-Early-BS (𝑀 = 3) respectively.

Specifically, as discussed in Sec. 3.3, in EMOA*-Early,  (𝑣) = open(𝑣) ∪ closed(𝑣), 𝑣 ∈ 𝑉 , and the dimensionality reduction tech

nique can only be applied to closed(𝑣) and is not applicable to the open set open(𝑢). It is because that the first component of the cost 
vector of labels 𝑙 that are added to open(𝑣(𝑙)) during the search may not be monotonically non-decreasing, and the first component 
cannot be ignored for dominance checking. We therefore choose to apply the BBST-based or BS-based approaches to closed(𝑣) in 
these four EMOA*-Early algorithms. In other words, to check if a label 𝑙 is dominated by any existing labels in  (𝑣(𝑙)), we use the 
BBST-based or BS-based approaches to check 𝑙 for dominance against closed(𝑣(𝑙)), and then we use a linear scan over open(𝑣(𝑙)) to 
check if 𝑙 is dominated. Note that all these four EMOA*-Early algorithms are similar to NAMOA*dr with the only difference that the 
dominance checking related to closed(𝑣), 𝑣 ∈ 𝑉 now uses the BBST-based or BS-based approaches, as opposed to a linear scan over 
closed(𝑣) as in NAMOA*dr.

6. Experimental results

The main goal of the experimental section is to show the generality and versatility of our framework by implementing different 
data structure and algorithms. We implement the three procedures IsDomByFront, IsDomBySol and FilterAndAddFront within 
the EMOA* framework (both EMOA*-Late and EMOA*-Early) using different data structures and approaches, and compare the re

sulting algorithms against the baseline algorithm NAMOA*dr [19], a state-of-the-art algorithm that can handle an arbitrary number 
of objectives. All implementations (including the NAMOA*dr baseline) are in the C programming language and use a standard binary 
heap to implement OPEN.6

• Our first implementation of EMOA* is EMOA*-Late-LINEAR, which uses a linked list to represent the front set at each vertex, and 
as mentioned in Sec. 3.5, the three key procedures IsDomByFront, IsDomBySol and FilterAndAddFront are implemented 
by running a for-loop over the front set. We refer to this implementation as TOA*-Late-LL (when 𝑀 = 3) and EMOA*-Late-LL
(𝑀 > 3) where ‘LL’ stands for linked list.

• Our second implementation of EMOA* uses an array (and not a linked list as in TOA*-Late-LL and EMOA*-Late-LL) to represent 
the front set at each vertex. We refer to this implementation as TOA*-Late-AR (when 𝑀 = 3) and EMOA*-Late-AR (𝑀 > 3) 
where ‘AR’ stands for array.

• The third implementation of EMOA* uses a balanced binary search tree as presented in Sec. 4, where the balanced binary search 
trees are implemented as AVL-trees using linked lists (i.e., each tree node has two pointers that points to the left and the right 
child nodes). We refer to this implementation as TOA*-Late-BBST (𝑀 = 3) and EMOA*-Late-BBST (𝑀 > 3) where ‘BBST’ stands 
for balanced binary search tree.

6 Our implementation is at https://github.com/carlos-hu70/moaframework.
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• The fourth implementation of EMOA* is the binary search-based approach as presented in Sec. 5, where the underlying imple

mentation of each front set is an array, so that the indices of the elements in the array can be used to conduct the binary search. 
We refer to this implementation as TOA*-Late-BS (𝑀 = 3) and EMOA*-Late-BS (𝑀 > 3) where ‘BS’ stands for binary search.

• The aforementioned four implementations are all based on EMOA*-Late. We also implement the four algorithms mentioned in 
Sec. 3.3: EMOA*-Early-BBST (𝑀 > 3), TOA*-Early-BBST (𝑀 = 3), EMOA*-Early-BS (𝑀 > 3), and TOA*-Early-BS (𝑀 = 3).

• Finally, as a baseline we use NAMOA*dr [33]. Here, the front sets (both open and closed) at each vertex are implemented by using 
either a linked list (denoted as NAMOA*dr-LL) or an array (denoted as NAMOA*dr-AR). The original paper [33] implemented

NAMOA*dr in Lisp and represented the open and closed using ``ordered lists''. To the best of our best knowledge, ``ordered lists'' 
in Lisp is equivalent to our linked-list implementation in C.

We run tests in the ``NY'' and ``COL'' maps, two large-scale city-like road networks, as provided in the dataset of the 9th DIMACS 
Implementation Challenge, a commonly used dataset for multi-objective planning [11,16,24,30,39].7 The original maps have, for 
each edge, two cost components (i.e., two objectives) representing travel distance 𝑑 and travel time 𝑡. Following Casas et al. [40], 
we use the number of edges 𝑞 in a path as the third cost component. For the experiment with four and five objectives, we used 
the economic cost 𝑚, which combines toll and fuel consumption according to the road category of New York (NY) (see [19] for 
additional details), and 𝑟, a random integer number between 1 and 100. The order of the objectives are: (𝑞-𝑑-𝑡-𝑚) for four objectives 
and (𝑞-𝑑-𝑡-𝑚-𝑟) for five objectives.

Additionally, we run tests in the COL map, which is of bigger size than NY. We used three, four and five cost components in this 
map. Here, we set the edge costs in a different way from the previous tests in the NY map. We use random integer costs for all edges 
and all cost components. The first cost component 𝑐1 is set to 𝑟𝑛𝑑(1,1000) (where 𝑟𝑛𝑑 stands for random), a random number between 
1 and 1000. The other cost components are generated with the formula 𝑐𝑖 = 𝜌 × 𝑐1 +

√
1 − 𝜌2 × 𝑟𝑛𝑑(1,1000), 𝑖 = 2,3⋯ ,𝑀 , where 𝜌

is a parameter that tunes whether a cost component is correlated with 𝑐1 . We use 𝜌 = 0.0001 such that 𝑐𝑖 is uncorrelated with 𝑐1.

All tests are conducted on a Linux machine with 64GB of RAM and a 3.80GHz Intel(R) Core(TM) i7-10700K CPU. We generate 
instances by randomly sampling start-goal pairs from the graph and report the number of instances in the subsequent tables. We also 
report the mean, minimum, maximum and median runtime over these instances in the tables. Each instance has a runtime limit of 
3600 seconds.

We report experimental results with three, four and five objectives, for the linked-list based implementations (i.e., NAMOA*dr-LL,

TOA*-Late-LL, EMOA*-Late-LL, TOA*-Late-BBST and EMOA*-Late-BBST) and for the array-based implementations (i.e., NAMOA*dr
AR, TOA*-Late-AR, EMOA*-Late-AR, TOA*-Late-BS and EMOA*-Late-BS) in the tables. We evaluated 100 instances for three, four 
and five objectives in NY and COL. In our tests, all implementations time out for some of the instances, which are removed from the 
tables. This is the reason that the ``solved'' columns have different total numbers across different tables.

6.1. Experimental results with three objectives

Table 3 shows the number of instances solved within the runtime limit and the runtime statistics for instances with 𝑀 = 3 in NY 
and COL maps. In the NY map, we can see that TOA*-Early-BBST is faster than NAMOA*dr-LL in terms of the median runtime but 
slower in terms of the mean runtime, while in the COL map, TOA*-Early-BBST is only faster than NAMOA*dr-LL in terms of the min 
runtime and slower in all other three runtime metrics. A possible reason is that, with early dominance checking, the front sets are 
filtered and updated after the generation of each label, which leads to more frequent operations on BBSTs such as rotations and thus 
slows down the search.

Among the implementations that use the linked-list, TOA*-Late-BBST is the fastest implementation, due to both its late dominance 
checking and the use of BBSTs to represent the front sets. For the array-based implementations, similar trends to the linked-list based 
implementations can be observed, and TOA*-Late-BS runs faster than the other three array-based implementations, due to late 
dominance checking and binary search.

Additionally, in both maps, we observe that the array-based implementations are faster and solve more instances than their linked

list based counterparts. Such a reduction in runtime shows the runtime benfit of using arrays as the underlying implementation of 
the front set in comparison against using linked-lists. In particular,TOA*-Late-BS runs faster than all implementations, due to the late 
dominance checking, binary search and the use of arrays. Finally, it is worthwhile noting that, regardless of the data structure (i.e., 
array or linked-list) or the dominance checking approach (i.e., binary search or linear scan) used by the specific implementation, 
they all belong to the same EMOA* framework as suggested in this paper, which demonstrates the generality and versatility of the 
proposed framework.

6.2. Experimental results with four and five objectives

Tables 4 and 5 show the number of instances solved within the runtime limit and the runtime statistics for instances with four 
and five objectives, respectively. Here, similar trends to the results of 𝑀 = 3 can be observed. Specifically, EMOA*-Late-BS is still 
the fastest among all the implementations. In addition, as 𝑀 increases from 3 to 5, the runtime of all implementations increases, and 
the number of instances solved by each implementation decreases.

7 This dataset is available at http://www.diag.uniroma1.it/~challenge9/.
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Table 3
Instances solved and statistics on runtimes 𝑡 (in seconds), when an algorithm 
times out after 3,600 seconds, we use 3,600 in the calculations.

solved 𝑡mean 𝑡max 𝑡min 𝑡median

NY with 3 Objectives (avg |𝑠𝑜𝑙𝑠| = 4,396) 
(|𝑉 | = 264,346, |𝐸|= 730,100) 

NAMOA*dr-LL 98/100 127.97 3,600.00 0.12 1.05 
TOA*-Early-BBST 98/100 150.74 3,600.00 0.12 0.88 
TOA*-Late-LL 100/100 95.17 2,541.85 0.13 0.97 
TOA*-Late-BBST 100/100 44.23 1,264.57 0.11 0.70 
NAMOA*dr-AR 100/100 47.73 1,732.40 0.11 0.59 
TOA*-Early-BS 100/100 48.50 1,813.65 0.11 0.57 
TOA*-Late-AR 100/100 20.27 670.94 0.11 0.54 
TOA*-Late-BS 100/100 17.30 587.80 0.11 0.49

COL with 3 Objectives (avg |𝑠𝑜𝑙𝑠| = 6,298) 
(|𝑉 | = 435,666, |𝐸|= 1,042,400) 

NAMOA*dr-LL 100/100 54.97 1,280.97 0.21 1.04 
TOA*-Early-BBST 100/100 70.97 1,014.58 0.19 1.36 
TOA*-Late-LL 100/100 54.52 1,264.80 0.19 1.04 
TOA*-Late-BBST 100/100 34.49 1,017.19 0.19 1.37 
NAMOA*dr-AR 100/100 17.20 227.40 0.20 0.66 
TOA*-Early-BS 100/100 17.16 216.37 0.20 0.63 
TOA*-Late-AR 100/100 8.60 136.76 0.20 0.61 
TOA*-Late-BS 100/100 7.75 99.40 0.20 0.60

Table 4
Instances solved and statistics on runtimes 𝑡 (in seconds), when an algorithm times 
out after 3,600 seconds, we use 3,600 in the calculations.

solved 𝑡mean 𝑡max 𝑡min 𝑡median

NY with 4 Objectives (avg |𝑠𝑜𝑙𝑠| = 17,719) 
NAMOA*dr-LL 38/40 710.46 3,600.00 0.15 3.11 
EMOA*-Early-BBST 38/40 535.14 3,600.00 0.15 3.26 
EMOA*-Late-LL 38/40 597.67 3,600.00 0.15 2.42 
EMOA*-Late-BBST 38/40 560.19 3,600.00 0.15 2.04 
NAMOA*dr-AR 40/40 98.87 1,038.64 0.15 1.10 
EMOA*-Early-BS 40/40 83.21 1,056.59 0.15 1.09 
EMOA*-Late-AR 40/40 108.71 1,171.57 0.15 1.02 
EMOA*-Late-BS 40/40 71.36 929.41 0.15 0.89

COL with 4 Objectives (avg |𝑠𝑜𝑙𝑠| = 40,500) 
NAMOA*dr-LL 68/91 1,155.03 3,600.00 0.28 81.45 
EMOA*-Early-BBST 68/91 1,139.33 3,600.00 0.26 94.04 
EMOA*-Late-LL 68/91 1.149.07 3,600.00 0.28 80.26 
EMOA*-Late-BBST 69/91 1,100.74 3,600.00 0.27 70.02 
NAMOA*dr-AR 86/91 460.16 3,600.00 0.27 12.63 
EMOA*-Early-BS 87/91 427.32 3,600.00 0.28 11.93 
EMOA*-Late-AR 89/91 367.92 3,600.00 0.26 12.15 
EMOA*-Late-BS 91/91 253.63 3,586.16 0.28 10.60

In addition, we observe that EMOA*-Early sometimes runs faster than their EMOA*-Late counterparts when 𝑀 = 5. For example, 
in Table 5, EMOA*-Early-BBST runs faster than EMOA*-Late-BBST, and NAMOA*dr-AR runs faster than EMOA*-Late-AR, in terms 
of both the mean runtime and the median runtime. The reason is that with five objectives, the open list could be huge since it can 
potentially contain several dominated labels per vertex in the EMOA*-Late based implementations. In contrast, EMOA*-Early based 
implementations can conduct early dominance checks and prune labels to avoid having many labels in OPEN. This can speed up 
heap operations when adding labels into or extracting labels from OPEN. In the 59 instances of the COL map, when 𝑀 = 3, the 
search conducts 9,393 updates of OPEN on average. When 𝑀 = 5, the search conducts 103,723 updates of OPEN on average. This 
demonstrates that when 𝑀 is large, not only dominance checking but also heap operations can become important factors that affect 
the overall computational efficiency of the implementation.

Finally, we observe from Tables 3, 4 and 5 that in certain settings the average runtime of NAMOA*dr-AR is faster than EMOA*
Late-AR. To pinpoint the reason for this, we report in Table 6 the number of dominance checking and filtering operations conducted 
by both implementations. Noteworthy is that NAMOA*dr-AR and EMOA*-Late-AR use the same implementation of the dominance 
checking operation. With three objectives NAMOA*dr-AR performs more dominance checking operations than EMOA*-Late-AR
(2,310M + 1,534M = 3,844M compared to 2,758M) and indeed runs slower. In contrast with four objectives NAMOA*dr-AR per

forms less dominance checking operations than EMOA*-Late-AR (35,889 + 1,385M = 37,274M compared to 40,737M) and indeed 
runs faster.
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Table 5
Instances solved and statistics on runtimes 𝑡 (in seconds), when an algorithm times 
out after 3,600 seconds, we use 3,600 in the calculations.

solved 𝑡mean 𝑡max 𝑡min 𝑡median

NY with 5 Objectives (avg |𝑠𝑜𝑙𝑠| = 34,142) 
NAMOA*dr-LL 21/29 1,140.13 3,600.00 0.20 15.62 
EMOA*-Early-BBST 21/29 1,108.30 3,600.00 0.19 12.98 
EMOA*-Late-LL 21/29 1,139.07 3,600.00 0.20 15.40 
EMOA*-Late-BBST 21/29 1,115.68 3,600.00 0.18 14.71 
NAMOA*dr-AR 26/29 610.63 3,600.00 0.19 2.93 
EMOA*-Early-BS 28/29 477.73 3,600.00 0.18 2.28 
EMOA*-Late-AR 25/29 645.63 3,600.00 0.19 3.60 
EMOA*-Late-BS 29/29 444.60 3,275.12 0.18 2.27

COL with 5 Objectives (avg |𝑠𝑜𝑙𝑠| = 31,857) 
NAMOA*dr-LL 47/59 1,108.73 3,600.00 0.36 422.12 
EMOA*-Early-BBST 49/59 1,034.56 3,600.00 0.33 400.66 
EMOA*-Late-LL 49/59 1,086.85 3,600.00 0.36 418.20 
EMOA*-Late-BBST 49/59 1,041.06 3,600.00 0.33 444.19 
NAMOA*dr-AR 58/59 304.91 3,600.00 0.33 45.61 
EMOA*-Early-BS 59/59 201.01 2,254.37 0.34 35.36 
EMOA*-Late-AR 58/59 314.16 3,600.00 0.33 58.24 
EMOA*-Late-BS 59/59 177.50 2,239.07 0.34 32.46

Table 6
Number of dominance checks and filter operations.

𝐶ℎ𝑒𝑐𝑘Closed 𝐶ℎ𝑒𝑐𝑘Open 𝐹 𝑖𝑙𝑡𝑒𝑟Closed 𝐹 𝑖𝑙𝑡𝑒𝑟Open

NY with 3 Cost Components

NAMOA*dr-AR 2,310M 1,534M 365M 1,447M 
TOA*-Late-AR 2,758M 365M 

NY with 4 Cost Components

NAMOA*dr-AR 35,889M 1,385M 3,379M 1,273M 
EMOA*-Late-AR 40,737M 3,379M 

To understand why NAMOA*dr-AR performs less dominance checking operations than EMOA*-Late-AR, note that in EMOA*
Late-AR,  (𝑣) is identical to the closed set closed(𝑣). NAMOA*dr-AR further maintains open(𝑣) due to the early dominance checking 
it performs. EMOA*-Late-AR avoids early checking [11] and converts early checking against open(𝑣) in NAMOA*dr-AR into late 
checking against closed(𝑣). This conversion can lead to more dominance checking operations while making each checking operation 
computationally cheaper. However, as the number of objectives increases, the size of the front set increases. In such settings, the 
dominance checking against closed(𝑣) typically takes more time. NAMOA*dr-AR is able to avoid some of these dominance checking 
against closed(𝑣) by running early checking against open(𝑣).

7. Conclusion

This article considers the Multi-Objective Shortest-Path Problem (MO-SPP) with an arbitrary number of objectives. We observe 
that, during the search process of MOA*-like algorithms, the front set at each vertex is computed incrementally by solving the 
Dominance Checking (DC) problem and Non-Dominated Set Update (NSU) problems iteratively. Based on this observation, we first 
develop a search framework called Enhanced Multi-Objective A* (EMOA*), which abstracts and highlights the key procedures related 
to these expensive dominance checking. We show that the existing BOA* algorithm [11] is an instantiation of our EMOA* framework 
when there are two objectives. Within the EMOA* framework, we develop two different yet closely-related algorithms with fast 
dominance checking, and discuss their relationship to several other algorithms within the EMOA* framework. Both our algorithms 
can handle an arbitrary number of objectives. We show that both algorithms are guaranteed to find the exact Pareto-optimal front for 
MO-SPP. We analyze the runtime complexity of the proposed methods, and verify our framework by implementing and testing several 
algorithms that follow the EMOA* framework. Our experimental results show that our algorithms runs faster than the baselines on 
average, and is particularly advantageous for problem instances with three objectives.

For future work, we plan to investigate how new approaches and data structures to solve the NSU problem can be incorporated 
into our framework. These include (but are not limited to) skip lists [41] and binary space partitioning [23]. These approaches, 
typically developed by the evolutionary-algorithms community (see, e.g., [42,43] and references within) have the potential to dra

matically improve the running time of algorithms instantiated by our framework. In addition, it remains an open question how to 
analyze the worst-case and average-case number of non-dominated labels at a vertex or over the entire graph after using these fast 
dominance checking techniques, which may provide new insight about these MOA*-based algorithms. Furthermore, the EARLY and 
LATE checking strategy spans a spectrum and the middle ground of this spectrum is worthwhile further investigation. Specifically, 
it is possible for a MOA* search to rely on lightweight early checking, which can be fast but does not remove all dominated labels, 
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and rely on the late checking as well to take care of the remaining dominated labels when needed. Finally, one can consider further 
extending the framework to approximate the Pareto-optimal front for MO-SPP as in [30], handling dynamic environments [26,27] 
or use the algorithms in this article as a building block to solve multi-agent planning problems [44].
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