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Abstract

Goal-directed Markov Decision Process models (GDMDPs)
are good modelsfor many decision-theoretic planning tasks.
They have been used in conjunction with two different re-
ward structures, namely the goal-reward representation and
the action-penalty representation. We apply GDMDPs to
planning tasks in the presence of traps such as steep slopes
for outdoor robots or staircases for indoor robots, and study
the differences between the two reward structures. In these
situations, achieving the goal is often the primary objec-
tive while minimizing the travel time is only of secondary
importance. We show that the action-penalty representation
without discounting guaranteesthat the optimal plan achieves
the goal for sure (if this is possible) but neither the action-
penalty representation with discounting nor the goal-reward
representation with discounting have this property. We then
show exactly when this trapping phenomenon occurs, using
anovel interpretation for discounting, namely that it models
agentsthat use convex exponential utility functions and thus
are optimistic in the face of uncertainty. Finally, we show
how the trapping phenomenon can be eliminated with our
Selective State-Deletion Method.

Introduction

Representations of planning tasks are studied in the plan-
ning literature often in the context of operator representa-
tions that ensure a good trade-off between being able to
represent awide range of planning tasks and being able to
solve them efficiently. Decision theory provides a formal
framework for choosing optima plans from a set of viable
plans. Therefore, in the context of decision-theoretic plan-
ning, it is also important to study how representations of
planning tasks affect which plans are optimal. We study
two different reward structuresthat have often been used in
the decision-theoretic planning and reinforcement-learning
literature!. The action-penalty representation penalizes the
agent for every action that it executes, but does not reward
or penalize it for stopping in agoa state. The goal-reward
representation, on the other hand, rewards the agent for
stopping in agoal state, but does not reward or penalize it
for executing actions. We study what the two representa
tions have in common and how they differ, by combining
ideas from artificial intelligence planning, operations re-

!Reinforcement learning interleaves decision-theoretic plan-
ning, plan execution, and parameter estimation (Barto et al. 1989;
Kaelblingetal. 1996). For the purpose of this paper, reinforcement
learning can be treated as an on-line version of decision-theoretic
planning.

search, and utility theory and using robot-navigation tasks
as examples.

We show that the two representations are equivalent if
the discount factor (that is necessary for the goal-reward
representation) is close to one. In actua implementations,
however, thediscount factor cannot be set arbitrarily closely
to one. We show that, in this case, the action-penalty rep-
resentation without discounting guarantees that the optimal
plan achieves the goal for sure (if thisis possible) but nei-
ther the action-penalty representation with discounting nor
the goa-reward representation with discounting have this
property. Thus, although it is often convenient to use dis-
counting, it cannot be used to solve planning tasksfor which
achieving the goal is the primary objective while minimiz-
ing the execution cost is only of secondary importance.
Planning tasks with this lexicographic preference ordering
often include planning for robot navigation in the presence
of traps such as steep slopesfor outdoor robots or staircases
for indoor robots. We show exactly when thistrapping phe-
nomenon occurs. As part of our analysis, we show that the
expected tota discounted reward of any plan for the goal-
reward representation equal sits expected total undiscounted
utility for the action-penalty representation with a convex
exponentia utility function, that maps (total) rewards to
(total) utilities. This result provides a novel interpretation
for discounting in the context of the goal-reward represen-
tation, namely that it models agents that are optimistic in
the face of uncertainty and thus do not avoid traps at al
cost. It relates planning with the goal-reward representa:
tion to planning with exponential utility functions, that has
been studiedin theplanning literaturein the context of plan-
ning in high-stakedecision situations, such as managing en-
vironmenta crisis situations (Koenig and Simmons 1994,
Koenig 1998), and enables us to use insights from util-
ity theory to improve our understanding of planning with
the goa-reward representation. Findly, we show how the
trapping phenomenon can be diminated with our Selective
State-Del etion Method.

Representing Planning Tasks as GDM DPs

God-directed Markov decision process models (GDMDPs)
are convenient and commonly used models of decision-
theoretic planning tasks (Boutilier et al. 1999). GDMDPs
aretotally observable Markov decision process model swith
goal states in which execution stops. They consist of

o afiniteset of states S
o adstart tate ssiqrt € 5,



e aset of goa states G C S;

o afiniteset of actions A(s) # 0 for each non-goa state s
that can be executed in state s;

e atransition probability p(s’|s, a) and a rea-valued im-
mediate reward r(s, a, s') for each non-god state s, state
s', and action a that can be executed in state s, where
p(s'|s, a) denotes the probability that the agent transi-
tionsto state s’ after it executed action a in state s, and
r(s, a, s') denotes the immediate reward that the agent
receives for the transition;

¢ area-valued god reward g(s) for each goal state s, where
g(s) denotesthegoal reward that the agent recelveswhen-
ever itisin state s and thus stops the plan execution.

The agent starts in the start state and selects actions for
execution according to a given plan. We define plans to be
mappings from non-goal states to actions that can be exe-
cuted in those states, also known as “ stationary, determinis-
tic policies” Although the term “policy” originated in the
field of stochastic dynamic programming, similar schemes
have been proposed in the context of artificia intelligence
planning, including universal plans (Schoppers 1987). The
agent always executes the action that the plan assignsto its
current state. It then receives the corresponding immediate
reward and transitionsto one of the successor states accord-
ing to the corresponding transition probabilities. The agent
always stops in god states (but not otherwise), in which
case it receives the goa reward and then does not receive
any further rewards.

Two Representationsof Planning Tasks

When formulating decision-theoretic planning tasks as
GDMDPs, one has to decide on the (positive or negative)
immediate rewards that the agent receives after every ac-
tion execution. If the agent receives immediate reward
r; during the (¢ + 1)st action execution and reaches goa
state s after n action executions, then its totd reward is
Sy +77¢(s), and the agent wants to maximize the
expectation of thisquantity. The discount factor0 < v < 1
specifies therelative value of animmediate reward received
after ¢ action executions compared to the same immediate
reward received one action execution earlier. If thediscount
factor isone, thetotal reward is called undiscounted, other-
wiseit is caled discounted. Two different representations
are often used in conjunction with GDMDPs, namely the
action-penalty representation and the goal-reward represen-
tation (Koenig and Simmons 1996).

e The action-penalty representation penalizes the agent
for every action that it executes, but does not reward
or pendize it for stopping in a goa state. Formadly,
r(s,a,s’) = —1 for each non-goal stete s, state s’, and
action a that can be executed in state s, and g(s) = 0
for each god state s. The planning objective then is
to maximize the expected total undiscounted reward (or,
equivaently, minimize the expected total undiscounted
execution cost). The agent attemptsto reach agoal state
with as few action executions as possibleto minimizethe

amount of penaty that it receives. The action-penalty
representation has been used in (Barto et al. 1989; Barto
et al. 1995; Dean et al. 1995) in the context of robot
navigation tasks, among others.

e The goal-reward representation rewards the agent for
stopping in agod state, but does not reward or pendize
it for executing actions. Formally, r(s,a,s’) = 0O for
each non-goa state s, state s’, and action a that can be
executedinstates, andg(s) = 1foreachgoal states. The
planning objective then isto maximize the expected total
discounted reward. Discounting is necessary with the
goa-reward representation. Otherwise the agent would
always receive a total undiscounted reward of one if it
achieves the god, and the agent could not distinguish
among paths of different lengths. If discountingis used,
then the goa reward gets discounted with every action
execution, and the agent attempts to reach a goa state
with as few action executions as possible to maximize
the portion of the goal reward that it receives. The god -
reward representation has been used in (Sutton 1990;
Whitehead 1991; Peng and Williams 1992; Thrun 1992;
Lin 1993) inthe context of robot-navigationtasks, among
others.

Both representati ons have often been used in thedecision-
theoretic planning literature. It is easy to show that maxi-
mizing theexpected total discounted or undiscounted reward
for the action-pendty representation and maximizing the
expected total discounted reward for the god-reward rep-
resentation are eguivaent both for deterministic planning
tasks and for decision-theoretic planning tasks where the
discount factor approaches one (under appropriate assump-
tions). Inactua implementationsof decision-theoretic plan-
ning methods, however, the discount factor cannot be set
arbitrarily close to one because, for example, the arithmetic
precision is not sufficiently good, convergence is too slow
(Kaelbling et al. 1996), or the expected total discounted
rewards are systematically overestimated when function ap-
proximators are used (Thrun and Schwartz 1993). In this
case, the various representations are not necessarily equiv-
alent. We therefore study what the representations have
in common and how they differ if the discount factor is
not sufficiently close to one, starting with the goa-reward
representation with discounting and the action-penaty rep-
resentation without discounting.

The Trapping Phenomenon for the
Goal-Reward Representation

There is an important difference between the goal -reward
representation with discounting and the action-penaty rep-
resentation without discounting. Wesay that aplan achieves
the goa if the probability with which an agent starting in
the start state reaches agoal state within a given number of
action executions approaches one as this bound approaches
infinity, otherwise the plan does not achieve the goal. The
action-penalty representation has thedesirable property that
every plan that maximizes the expected total undiscounted
reward for the action-penalty representation also achieves
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Figure 1: Two Plans that Illustrate the Trapping Phe
nomenon

the goal provided that the goa can be achieved, as the fol-
lowing theorem shows.

Theorem 1 Every plan that maximizes the expected total
undiscounted reward for the action-penalty representation
achieves the goal provided that the goal can be achieved.

Proof: Every plan that achieves the goa has a finite
expected total undiscounted reward for the action-penalty
representation. Thisis so, because plans assign actions to
states. Let S’ be the set of states that can be reached with
positive probability during the execution of a given plan
that achieves the goa, and y, be the largest totd undis-
counted reward (that is, the non-positivetotal undiscounted
reward closest to zero) that the agent can receive with posi-
tive probability when it starts in state s € S’ and always
selects the action for execution that the plan assigns to
its current state. It holds that y; > —oo, since the plan
achieves the goal and all immediate rewards are negative
but finite. Let p; > O be the probability that the agent re-
ceives thistotal undiscounted reward. Then, alower bound
on the expected totd undiscounted reward of the plan is
(Minsesr ys)/(Minges: ps) > —oo. On the other hand,
every plan that does not achieve the goal has an expected
total undiscounted reward that is minus infinity. Thisis so
because the total undiscounted reward of every trgectory
(that is, specification of the states of the world over time,
representing one possible course of execution of the plan)
is non-positive, and a total undiscounted reward of minus
infinity is obtained with positive probability (since al im-
mediate rewards are negative and plan execution does not
reach a goa state with positive probability). m

We now show by example that a plan that maximizes the
expected total discounted reward for the goal-reward repre-
sentation does not necessarily achieve the goal even if the
goa can be achieved. We cdl this phenomenon the trap-
ping phenomenon. Consider thefollowing simpleexample,
see Figure 1. Plan 1 always achieves the goa with 11 ac-
tion executions. With probability 0.900, plan 2 achieves
the goa with one action execution. With the complemen-
tary probability, plan 2 cycles forever and thus does not
achieve the goal. Assume that we use the goal -reward rep-
resentation with discount factor v = 0.900. Then, plan
1 has a total discounted reward of 0.900'! = 0.3138,
and plan 2 has an expected tota discounted reward of
0.900 x 0.900' 4 0.100 x 0.900* = 0.8100. Thus, plan 2
is better than plan 1, but does not achieve the goal. In the
next section, we present amorerealistic example that shows

Figure 2: Terrain for the Navigation Task

that this can happen even if the discount factor is0.999 and
thus very close to one.

Example: Robot-Navigation Tasks

To illustrate the trapping phenomenon, we use robot-
navigation tasksin aknown terrain. Thetask of therobotis
to reach agiven goa location fromits start location. Move-
ment of therobot isnoisy but therobot observesitslocation
at regular interva swith certainty, using aglobal positioning
system. Following (Dean et al. 1995), we discretize thelo-
cations and model the robot-navigation tasks as GDMDPs.
The states of the GDM DPs correspond to thelocations. The
actions of the GDMDPs correspond to moving in the four
main compass directions. Figure2 showstheterrainthat the
robot operatesin, taken from (Stentz 1995). We assume that
thedarker theterrain, thehigheritis. For smplicity, wedis-
tinguishonly three elevation level sand discretizetheterrain
into 22x22 square locations. Figure 3 shows the resulting
grid-world. The task of the robot is to navigate from the
upper left location (A1) to the lower right location (V22).
The robot can dways move to any of its four neighboring
locations but its movement is noisy since the robot can fail
tomoveor stray off fromitsnominal direction by onesquare
to the left or right due to movement noise and not facing
precisaly in theright direction. For example, if therobot is
in location C2 and moves north, it can end up in location
C2, B1, B2, or B3. The higher the elevation of the current
location of therobot with respect to itsintended destination,
the less likely it is to stray off or dide back to its current
location. However, if the elevation of its current locationis
high and the elevation of the location that it actually moves
toislow, it can tip over. Inthiscase, no matter in which di-
rection it attempts to move subsequently, itswheels aways
spinintheair anditisthusnolonger ableto movetothegoal
location. The actionsthat can lead to the robot tipping over
immediately (“hazardous actions’) are indicated by arrows
in Figure 3. They lead to a state that the robot cannot leave
again. The transition probabilities are explained in more
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Figure 3: The Discretized Grid and Hazardous Actions
(Petterns Indicate Different Elevations)

detail inthe appendix. Asexpected, theoptimal plan for the
action-penalty representation avoidsall of these actionsand
thus ensures that the robot does not tip over, see Figure 4.
(The figure contains only the actionsthat the robot executes
with positive probability.) However, the optima plan for
the goal-reward representation does not avoid al hazardous
actions. Thisistrueif the discount factor is 0.900, see Fig-
ure 5, and remains true even if the discount factor is 0.999
and thus very close to one, see Figure 6. (The hazardous
actions that the robot executes with positive probability are
circled inthefigures.)

Relating the Representations

We now explain why the optimal plan for the goa-reward
representation with discountingis not guaranteed to achieve
the goa for sure. Discounting was originaly motivated
by collecting interest for resources. The discount factor
can be interpreted as modeling agents that save or borrow
resources at interest rate (1 — ) /~. Thisinterpretation can
be relevant for money that agents save and borrow, but most
agents cannot invest their resources and earn interest. For
exampl e, timeoften cannot besaved or invested. Sometimes
the discount factor isalso interpreted as the probability that
agents do not die during each action execution. Often,
however, the discount factor is only used as amathematical
convenience (because the expected tota discounted reward
of every plan is guaranteed to be finite). In the following,
we provide a novel interpretation of discounting, namely
that it models agents whose risk attitudes can be described
using convex exponential utility functions, which implies
that the agents are optimistic (risk seeking) in the face of
uncertainty and thus do not avoid traps a all cost. The
discount factor determines the shape of the utility function
and thusthe amount of optimism of the agents.

Our interpretation is based on the expected total undis-
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Figure 4. The Optimal Policy for the Action-Penaty Rep-
resentation with Discount Factor 1.000

counted utility of plans. If the execution of a plan leads
with probabilities p; to total undiscounted rewards r;, then
its expected total undiscounted utility is >, [p;u(r;)] and
its certainty equivalent is u=(>";[piu(r;)]), where u is
a monotonicaly increasing utility function that maps (to-
tal) rewards r to their (total) utilitiesu(r) (Bernoulli 1738;
von Neumann and Morgenstern 1947). We show that the
expected tota discounted reward of any plan for the goal-
reward representation equal sits expected total undiscounted
utility for the action-penalty representation and aconvex ex-
ponential utility function. Convex exponentia utility func-
tions have the form u(r) = =" for 0 < v < 1. The
following theorem rel ates the two representations.

Theorem 2 Every plan that maximizes the expected to-
tal discounted reward for the goal-reward representation
and discount factor v also maximizes the expected total
undiscounted utility for the action-penalty representation
and the convex exponential utility function u(r) = ="
(0O< v < 1), andvice versa.

Proof: Consider anarbitrary planandany of itstrajectory.
If thetrgjectory needs: action executionsto achieve thegoal
(¢ can befinite or infinite), then its discounted total reward
for the god-reward representation is *. Its undiscounted
total reward for the action-penalty representation is —:, and
its total undiscounted utility is 4*. This shows that the
discounted total reward of every trgectory for the goal-
reward representation equals its total undiscounted utility
for the action-penalty representation. This means that the
expected total discounted reward of every plan for the goal-
reward representation equal sits expected total undiscounted
utility for the action-penalty representation. =

Utility theory states that agents should select the plan for
execution that maximizes the expected total undiscounted
utility. Exponentia utility functionsare perhapsthe most of -
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Figure 5: The Optimal Policy for the Goa-Reward Repre-
sentation with Discount Factor 0.900

ten used utility functionsin utility theory (Watson and Buede
1987) and specidized assessment procedures are available
that make it easy to dicit them from human decision mak-
ers (Farquhar 1984; Farquhar and Nakamura 1988). Con-
vex exponentia utility functions can express a continuum
of optimistic risk attitudes. Optimistic (or, synonymously,
risk-seeking) agents focus more on the best-case outcomes
than the worst-case outcomes. From the theory of risk-
sensitive Markov decision processes (Marcus et al. 1997)
we know that, given that the execution of a plan leads with
positive probability p; to atrgectory withfinitetotal undis-
counted reward »; (for all 7), the certainty equivalent of any
plan for the convex exponential utility functionu(r) = v~
(0 < v < 1) approachesits best-case total undiscounted re-
ward as~y approaches zero (under appropriate assumptions).
Thus, the agent becomes more and more optimisticasy ap-
proaches zero. From the theory of risk-sensitive Markov
decision processes we also know that, given that the execu-
tion of aplan leadswith positive probability p; to atrg ectory
withfinitereward r; (for al 7), thecertainty equivalent of any
plan for the convex exponential utility functionu(r) = v="
(0 < v < 1) approaches the expected total undiscounted
reward as v approaches one (under appropriate assump-
tions). Thus, the agent becomes more and morerisk-neutral
as v approaches one. Vaues of v between zero and one
trade off between maximizing the best-case and expected
total undiscounted reward. Consequently, Theorem 2 re-
lates the discount factor of the god-reward representation
with discounting to the parameter of convex exponentia
utility functions that expresses how optimistic an agent is.
The smaller the discount factor, the more optimistic the
agent and thusthe more it pays attention to the outcomesin
the best case, not the outcomesintheworst case. Thus, itis
more likely to get trapped. For example, Figure 7 contains
alog-log plot that shows for the robot-navigation example
how the probability of tipping over while executing the plan
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Figure 6: The Optimal Policy for the Goa-Reward Repre-
sentation with Discount Factor 0.999

that maximizes the expected totd discounted reward for the
goa-reward representation depends on the discount factor
(ties among optima plans are broken randomly). The fig-
ure confirms that the smaller the discount factor, the more
pronounced the trapping phenomenon.

Eliminating the Trapping Phenomenon

So far, we have shown that a plan that maximizes the ex-
pected total discounted reward for the goal-reward represen-
tation does not necessarily achieve the goa even if the goa
can be achieved. Whileit can be rational or even necessary
to trade off a smaller probability of not achieving the goal
and asmaller number of action executionsin casethegoad is
achieved (for example, if the goal cannot be achieved with
probability one), this is a problem when solving planning
tasks for which goal achievement is the primary objective
and cost minimizationisonly of secondary importance. For
example, when solving robot-navigation tasks one often
wantsto rule out plans that risk the destruction of the robot
such as getting too close to steep slopes for outdoor robots
or staircases for indoor robots, as convincingly argued in
(Dean et al. 1995). We now explain how to avoid the
trapping phenomenon in these cases.

According to Theorem 1, one way of avoiding the trap-
ping phenomenon is to use the action-penalty representa-
tion without discounting. This is not aways an option.
Reinforcement-learning researchers, for example, often pre-
fer the goa-reward representation over the action-penalty
representation because it fits the reinforcement-learning
framework better. The goa-reward representation rewards
an agent for completing a task, whereas the action-penalty
representation neither rewards the agent for good results
nor penalizesit for bad results of abehavior. One can avoid
the trapping phenomenon for the goal-reward representa
tion with discounting by choosing a plan that maximizes
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the expected discounted total reward among all plans that
achieve the goal. Since the number of these plans can be
exponentia in the number of states, we cannot enumerate
al of them and thus have to investigate how one can use
dynamic programming techniques instead. In the follow-
ing, we show that one can reduce the problem of finding a
plan that maximizes the expected discounted total reward
among all plans that achieve the goal to a problem that we
know how to solve, namely the problem of finding a plan
that maximizes the expected discounted total reward. We
say that the god can be achieved from state s if aplan exists
that achieves the goa when its execution starts in state s.
We call al other states traps. We then use the following

property.

Theorem 3 Every plan that maximizes the expected total
undiscounted utility for the action-penalty representation
and the convex exponential utility function u(r) = =~
(0 < 4 < 1) achieves the goal provided that the goal can
be achieved from all states.

Proof by contradiction: Suppose that there exists a plan
plan that maximizes the expected total undiscounted utility
for the action-penalty representation but does not achieve
the goal. Since the god can be achieved from all states,
there must be some state s that is reached with positive
probability during the execution of plan plan such that plan
plan reaches agoal state with probability zero from state s,
but there exists a plan plan’ that reaches a goa state with
positive probability from state s, and both plans differ only
intheaction assigned to state s. To seethis, consider the set
of all states that are reached with positive probability dur-
ing the execution of plan plan and from which plan plan
reaches a goal state with probability zero. At least one
such state exists and al of them are non-goa states. The
statement then follows for one of these states, which we
caled s, since the goal can be achieved from all of those
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Figure 8: Actions Deleted after Selective State Deletion

states. Now consider dl trgjectory of plan plan that do not
contain state s. Plan plan’ has the same trgjectories with
the same probabilities and total undiscounted utilities. The
total undiscounted rewards of all trgjectories of plan plan
that contain state s are minus infinity (since al immediate
rewards are negative and the trajectories contain infinitely
many actions) and thustheir total undiscounted utilitiesare
zero. On the other hand, at least one trgjectory of plan
plan’ that contains state s achieves thegoal. Itsprobability
ispositive, itstotal undiscounted reward isfinite, and itsto-
tal undiscounted utility is positive. The tota undiscounted
utilities of the other trajectories of plan plan’ that contain
state s are nonnegetive. Therefore, the expected total undis-
counted utility of plan plan’ is larger than the expected
total undiscounted utility of plan plan. This, however, isa
contradiction. m

Corollary 1 Every plan that maximizes the expected total
discounted reward for the goal-reward representation also
achieves the goal provided that the goal can be achieved
fromall states.

To summarize, if there are no traps and the goa can thus
be achieved from all states, then every plan that maximizes
the expected tota discounted reward for the goal-reward
representation necessarily also achievesthegod. If thegoal
cannot be achieved from all states, one can delete al traps
from the state space and all actions whose execution can
lead to these states. The states and actions can be deleted,
for example, with our Selective State-Del etion Method, that
discovers the communicating structure of a GDMDP (Put-
erman 1994) toidentify the statesand actionsthat it needsto
delete. In the following, we describe a simple but easy-to-
understand version of the Selective State-Deletion Method
for didactical reasons.

Selective State-Deletion M ethod
Repeat thefollowing stepsuntil no states have been
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Figure 9: The Optimal Policy for the Goa-Reward Repre-
sentation with Discount Factor 0.900 after Selective State
Deletion

deleted during an iteration:

1. Construct the graph whose vertices are the statesin
the state space and that has a directed edge from
vertex s to vertex s’ if there exists an action that
can be executed in state s and leads to state s’ with
positive probability.

2. Use standard methods from graph theory (Corman
et al. 1990) to determine the strongly connected
components of the graph.

3. Deleted| statesfromthestatespacethat areincluded
inleaf components that do not contain vertices that
correspond to goal states.

4, Delete dl actions that lead to deleted states with
positive probability.

The resulting state space isthe same as the origind state
space except that al traps and al actions whose execution
can lead to these states have been removed. The deletion
of these states and actions does not eliminate any plan that
achieves the god, and it does not change the expected tota
discounted rewards of the unaffected plans. It only eimi-
nates some of the plans that do not achieve thegoal. It does
not eliminate all such plans (for example it does not nec-
essarily eliminate an action that does not change a state if
thereisanother action that can be executed in the same state
and leaves it with positiveprobability), and thus Corollary 1
is non-trivia. However, every plan that maximizes the ex-
pected total discounted reward among the unaffected plans
necessarily aso achieves the goal, and consequently aso
maximizes the expected total discounted reward among al
plans that achieve the goal before the deletion of the states
and actions. This allows one to use the goal-reward repre-
sentation and determine a plan that maximizes the expected
total discounted reward among al plans that achieve the
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Figure 10: The Optimal Policy for the Goa-Reward Rep-
resentation with Discount Factor 0.999 after Selective State
Deletion

goal, without any changes to the planning method itself. If
there is no plan that achieves the goal after the Selective
State-Del etion Method has been applied, then there was no
such plan before the Selective State-Del etion Methods was
applied either, and the planning task has to be solved with a
preference model that trades off the probability of achieving
thegoal and theexecution cost of aplan, and thusgivesup on
the goal-oriented preference model of traditional artificial
intelligence planning (Wellman 1990).

As an example, we use the Selective State-Deletion
Method to determine a plan for the robot-navigation exam-
plethat maximizes the expected total discounted reward for
the goal-reward representation among al plans that avoid
the hazardous actions. Figure 8 shows the actions that the
Selective State-Deletion Method deletes. This includes dl
hazardous actions (filled arrows), see Figure 3, and all ac-
tions after whose execution therobot is eventually forced to
execute a hazardous action (hollow arrows). Figures9 and
10 show theresulting plans that avoid the hazardous actions
and thus ensure that the robot does not tip over.

The Trapping Phenomenon for the
Action-Penalty Representation

Discounting has also been used in the decision-theoretic
planning literature in conjunction with the action-penalty
representation. While it is not necessary to use discount-
ing in this context, it is often convenient because then the
expected total discounted reward of every plan is guar-
anteed to be finite. Unfortunately, we now show by ex-
ample that a plan that maximizes the expected total dis-
counted reward for the action-penalty representation does
not necessarily achieve the goa even if the goa can be
achieved. Thus, the trapping phenomenon can occur for
the action-penaty representation with discounting. Con-



sider again the simple example from Figure 1 and as-
sume that we use the action-penalty representation with
discount factor v = 0.900. Then, plan 1 has a tota dis-
counted reward of —(1—0.900%1)/(1—0.900) = —6.8619,
and plan 2 has an expected tota discounted reward of
—0.900x 1—0.100x 1/(1—0.900) = —1.9000. Thus, plan
2 is better than plan 1, but does not achieve the goal. Itis
easy to show that theoptimal planfor theaction-penalty rep-
resentation with discounting isthe same as the optimal plan
for the god-reward representation with the same discount
factor. Suppose the discount factor is+. Consider an arbi-
trary plan and any of itstrgjectories. If the trgjectory needs
i action executions to achieve the goal (i can befiniteor in-
finite), then its discounted total reward for the goa-reward
representation is v*. Its discounted total reward for the

action-penalty representation is — Z};ﬁ N = H This
shows that the discounted total reward of every trajectory
for thegoa -reward representation isalinear transformation
of its discounted total reward for the action-penalty repre-
sentation and the same discount factor. This means that
the expected total discounted reward of every plan for the
goa-reward representation is a linear transformation of its
expected total discounted reward for the action-penalty rep-
resentation and the same discount factor. Consequently, the
optimal plan for the action-penalty representation with dis-
counting isthe same as the optimal plan for the goal-reward
representation with the same discount factor. For example,
Figure5 showsthat the optimal plan for therobot-navigation
example withtheaction-penalty representation and discount
factor 0.900 does not avoid al hazardous actions. Fortu-
nately, the Selective State-Deletion method eliminates this
version of thetrapping phenomenon aswell, ascan beshown
with adightly modified version of the proof of Theorem 3.
This allows one to use the action-penalty representation
with discounting to determine a plan that maximizes the ex-
pected tota discounted reward among all plansthat achieve
the goal, without any changes to the planning method. For
example, Figure 9 shows the optima plan for the robot-
navigation example with the action-penalty representation
and discount factor 0.900 after the Selective State-Deletion
Method has been applied. This plan avoids the hazardous
actions and thus ensures that the robot does not tip over.

Conclusion

We discussed two reward structures that have often been
used in the decision-theoretic planning and reinforcement-
learning literature: the goal-reward representation and the
action-penalty representation. We showed that the action-
penalty representation without discounting guarantees that
the optima plan achieves the goa for sure (if thisis possi-
ble) but neither the action-penalty representation with dis-
counting nor the goal-reward representation with discount-
ing have this property. We explained this trapping phe-
nomenon for the goal-reward representation using a novel
interpretation for discounting, namely that it models agents
that use convex exponentia utility functions. These agents
are optimigtic in the face of uncertainty and thus do not

avoid traps at all cost. This can be a problem for plan-
ning tasks where achieving the goal isthe primary objective
while minimizing the travel time isonly of secondary im-
portance. We then showed how the trapping phenomenon
can beeliminated with our Sel ective State-Del etion Method,
which deletes al states from the state space from which the
goa cannot be achieved with probability one.
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Appendix

In this appendix, we explain the transition probabilities of
our syntheticexamplein detail, to allow thereaderstorepro-
duce our results. Assumethat the robot moves onesquarein
somedirection (say, northin C2). Welet ¢ denotethe current
location of therobot (C2), s theintended destination (B2), !
the location to the I eft of the intended destination (B1), and
r the location to the right of the intended destination (B3).
The probabilities that the robot ends up at these locations
are p., ps, pi, and p,, respectively. If alocation does not
exist (because it is outside of theterrain), the corresponding
probability is set to zero. The probability that the robot tips
over ispy. It dwaysholdsthat p. + ps + pi + pr +pqs = 1.

If location s does not exist, then p. = 1 and p, =
pr = pr = pqg = 0. For the remaining cases, we let

dy € {—2,-1,0,1,2} denote the difference in elevation
between location ¢ and location f, where f € {s,l,r}. For
example, if the elevation of location ¢ ishigh and the eleva
tion of location s islow, then d; = 2. The probabilitiesare
caculated in five steps:

1. Caculatethe probabilitiesp’, p;, and pl.. If location ! (or
r) does not exist, set p; = O (or pl. = 0, respectively).
Otherwise set the probabilitiesas follows

dpn | -2 -1 0 1 2
p’{”} | 001 0.03 0.05 0.07 0.09 -
2. Setp, =1-p —p;.
3. Setp. = P(c|di)p; + P(clds)p, + P(c|d,)p., where

dysry | =2 -1 0 1 2
P(cldy,) |02 01 0 0 0

4. Setpq = P(d|di)p, + P(d|ds)p, + P(d|d,)p., where

dys,y | =2 -1 0 1 2
Pddy,,;) ] 0 0 0 0 01

5. Set | |
P{lsr}y = Pf{hs’,«} (1_ P(Cld{l,s,r}) - P(d|d{l,s,r}))-



