
Co-Design of Topology, Scheduling, and Path
Planning in Automated Warehouses

Christopher Leet1, Chanwook Oh1, Michele Lora1,2, Sven Koenig1, Pierluigi Nuzzo1
1University of Southern California, Los Angeles, California, USA

2University of Verona, Verona, Italy
{cjleet|chanwooo|loramich|skoenig|nuzzo}@usc.edu

Abstract—We address the warehouse servicing problem (WSP)
in automated warehouses, which use teams of mobile agents to
bring products from shelves to packing stations. Given a list of
products, the WSP amounts to finding a plan for a team of agents
which brings every product on the list to a station within a given
timeframe. The WSP consists of four subproblems, concerning
what tasks to perform (task formulation), who will perform them
(task allocation), and when (scheduling) and how (path planning)
to perform them. These subproblems are NP-hard individually
and are made more challenging by their interdependence. The
difficulty of the WSP is compounded by the scale of automated
warehouses, which frequently use teams of hundreds of agents.
In this paper, we present a methodology that can solve the
WSP at such scales. We introduce a novel, contract-based design
framework which decomposes an automated warehouse into
traffic system components. By assigning each of these components
a contract describing the traffic flows it can support, we can syn-
thesize a traffic flow satisfying a given WSP instance. Component-
wise search-based path planning is then used to transform this
traffic flow into a plan for discrete agents in a modular way.
Evaluation shows that this methodology can solve WSP instances
on real automated warehouses.

I. INTRODUCTION

An automated warehouse is a warehouse which uses a team
of mobile agents to move products from its shelves to its
packing stations. Over the past decade, automated warehouses
have become increasingly important to industrial logistics and
e-commerce. Today, companies such as Amazon routinely
deploy teams of hundreds of agents to manage large ware-
house complexes [1]. An automated warehouse must solve the
warehouse servicing problem (WSP) to operate. In the WSP,
we are given a warehouse and a list of products termed a
workload, and asked to find a plan for a team of agents which
brings every product on the list to one of the warehouse’s
stations within a given time limit. The WSP consists of four
interdependent sub-problems:

1) Task Formulation. Which shelf and station should a
product be taken and brought to?

2) Task Assignment. Which tasks should an agent perform?
3) Scheduling. When should an agent perform its tasks?
4) Path Planning. What path should an agent take through

the warehouse to perform each of its tasks?

This research was supported in part by the National Science Foundation
(NSF) under Awards 1846524 and 2139982, the Office of Naval Research
(ONR) under Award N00014-20-1-2258, the Defense Advanced Research
Projects Agency (DARPA) under Award HR00112010003, the 2022 Okawa
Research Grant. This project has also received funding from the European
Union’s Horizon 2020 research and innovation program under the Marie
Skłodowska-Curie grant agreement No. 894237.

Task assignment, scheduling, and path planning are NP-
Hard [2]. Interdependence only increases the challenge of
these sub-problems. As a result, existing methodologies for
performing task assignment, scheduling, and path planning
concurrently [3] do not scale beyond tens of agents. Automated
warehouses, however, often have hundreds of agents [1].
Methodologies for each solving subcase of the WSP which
omit one or more of these sub-problems have also been
proposed [4], but it is unclear whether any can be extended to
the full WSP. The question: “is it possible to solve the WSP
at scale?” is thus open and highly relevant.

We answer the question in the affirmative by developing
a novel traffic-system-based methodology for the WSP. In
a traffic-system-based warehouse, each shelf and station is
linked by a network of roads termed a traffic system. The
movement of agents through a traffic system is restricted by the
rules of the traffic system. Well chosen rules prune the space of
potential solutions to the WSP dramatically while preserving
efficient solutions. Almost all automated warehouses today use
traffic systems to plan for their agents.

In this paper, we present the first formal framework for
designing a warehouse traffic system. This framework provides
a designer with a library of traffic system components and
rules for composing these components into a traffic system.
There are three types of components: shelving rows, which
provide access to shelves, station queues, which provide access
to stations, and transports, which connect other components.
The traffic flows that a component can support are captured by
an assume-guarantee contract termed a component contract.

This compositional formalization of a traffic system allows
for a compositional formulation of the planning problem. In
this formulation, a plan is composed out of a set of agent
cycles. An agent cycle is a cycle of traffic system components
containing a target shelving row and target station queue. The
agents in an agent cycle loop through this cycle of components,
carrying products from the target shelving row to the target
station queue. We synthesize a plan for a WSP instance by
finding a set of agent cycles which solves this instance and
satisfies the constraints posed by a given traffic system.

Based on this compositional view of a plan, our method-
ology for synthesizing a plan for a WSP instance proceeds
as follows. The traffic flow required to service the instance’s
workload within the instance’s time limit is captured by an
assume-guarantee contract termed a workload contract. A
traffic flow is found which satisfies the conjunction of this
workload contract with the composition of the traffic system’s



Fig. 1. (left) An example warehouse and (right) its floorplan graph.

component contracts. This traffic flow both solves the WSP
instance and can be supported by the traffic system.

This traffic flow is then mapped to a set of agent cycles,
which is converted to a plan in a modular fashion. Each
timestep, a component moves each agent that it contains
toward the next component in its agent cycle. Evaluations
show that our methodology can solve WSP instances with
hundreds of agents and thousands of tasks on real warehouse
layouts in under a minute.

II. BACKGROUND

A. Prior Work
While this paper is the first to formalize and solve the WSP

problem, a related problem termed the Multi-Agent Pickup and
Delivery (MAPD) problem has been studied [3]. In MAPD,
we are given a set of tasks characterized by a pickup vertex
vi, a delivery vertex vj , and a release time t, and asked to
execute each task by moving an agent from vi to vj after
time t. Studied variants include lifelong MAPD [5], where a
task is not revealed until its release time, and deadline aware
MAPD [6], where each task has a deadline. These solvers are
not directly applicable to the WSP problem, however, because
they do not perform task formulation and have not been shown
to scale beyond 50-75 agents.

B. Assume-Guarantee Contracts
We provide an overview of the Assume-Guarantee (A/G)

contract framework by starting with the notion of a component.
A component M is an element of a design, which can be
connected with other components to form larger systems. An
A/G contract C̃ := (V, Ã, G̃) is a triple where V is a set
of component variables, Ã is a set of assumptions, that is,
the set of behaviors that a component M expects from the
environment, and G̃ is the guarantees, that is, the set of
behaviors promised by the component M if the assumptions
hold. A/G contracts can be combined via the composition (⊗)
or conjunction (∧) operators. Let C̃1 and C̃2 be contracts de-
scribing the components M1 and M2. Taking the composition
of C̃1 and C̃2 produces a contract which describes the system
formed by composing the components M1 and M2. Taking the
conjunction of C̃1 and C̃2 produces a contract which combines
the requirements of the two contracts. Further details on the
A/G contract framework can be found in the literature [7], [8].

III. PROBLEM FORMULATION

An automated warehouse W := (G,S,R,ρ,Λ) is repre-
sented as a 5-tuple containing the following elements:

• Floorplan Graph G := (V ,E). An undirected graph
representing the warehouse’s floorplan where each vertex
vi ∈ V represents a one-agent-wide cell in the floorplan.
There is an edge (vi, vj) ∈ E if and only if (iff) an agent
can move from vi to vj without traversing another cell.

• Shelf Access Vertices S ⊂ V . The vertices in V which
an agent can access a shelf from.

• Station Vertices R ⊂ V . The vertices in V which workers
can access an agent from.

• Product Vector ρ := ⟨ρ1, . . . , ρn⟩. The products that
warehouse W contains.

• Location Matrix Λ. A |ρ|×|S| matrix where Λk,l ∈ N is
the number of units of product ρk accessible from shelf
access vertex vl.

Fig. 1 (left) shows a warehouse with two shelves and
two stations. Shelves are accessed from the east and west.
Fig. 1 (right) shows the floorplan graph G := (V ,E) of
this warehouse. If vx,y is the vertex in V representing the
cell at coordinates (x, y), this warehouse has shelf access
vertices S = {v0,2, v2,2, v4,2} and stations R = {v1,0, v3,0}.
If the shelves at (1, 2) and (3, 2) contain 10 units of product
ρ1 and ρ2, respectively, this warehouse has product vector
ρ := ⟨ρ1, ρ2⟩ and location matrix:

Λ =

[
10 10 0
0 10 10

]
.

Products are carried by a team of mobile agents A :=
⟨a1, a2, . . .⟩. Time in a warehouse is discretized. At each
timestep t, an agent ai has state (πi,t, ϕi,t) ∈ V × {ρ0} ∪ ρ,
where πi,t and ϕi,t are the vertex that agent ai occupies and
the product ρk ∈ ρ that it holds at time t respectively. If agent
ai is not holding a product at time t, ϕi,t = ρ0.

A T timestep plan (π,ϕ) for a team of c agents is a pair
of c × T matrices such that (πi,t, ϕi,t) is the state of agent
ai ∈ A at time t ∈ [1, T ]. A T -timestep plan is feasible iff:

(1) An agent ai moves by 0 or 1 vertices per timestep, that
is, the vertex πi,t+1 that ai occupies at step t+1 is the same
as or adjacent to the vertex πi,t that ai occupies at step t:

∀ t ∈ [1, T ], ∀ ai ∈ A, πi,t+1 ∈ {πi,t} ∪Adj(πi,t).

(2) Two agents do not collide, that is, two agents ai, aj ∈ A
do not occupy the same vertex or traverse the same edge in
opposite directions at the same timestep:

∀ t ∈ [1, T ], ∀ ai, aj ∈ A,

πi,t ̸= πj,t ∧ ¬(πi,t+1 = πj,t ∧ πi,t = πj,t+1).

(3) An agent can only pick up a product ρk at a shelf access
vertex containing ρk and put down a product at a station. Let
PRODUCTSAT(v) be the set of products accessible at vertex v
(if v /∈ S, PRODUCTSAT(v) = ∅); then,

∀ t ∈ [1, T ], ∀ ai ∈ A,

ϕi,t+1 ∈


{ρ0} ∪ PRODUCTSAT(πi,t) ϕi,t = ρ0
{ρ0, ϕi,t} πi,t ∈ R

{ϕi,t} otherwise.

A workload is a vector w := ⟨w1, . . . , wn⟩ where wk is
the number of units of product ρk which must be transferred



Fig. 2. The high-level workflow of the methodology.

to a station. We say that a T timestep plan services workload
w iff it is feasible and it transfers wk units of each product
ρk ∈ ρ to the warehouse’s stations R.

Problem 3.1 (Warehouse Servicing Problem): Given a ware-
house W , a workload w, and a timestep limit T , find a T
timestep plan containing an arbitrary number of agents which
services workload w.

IV. CO-DESIGN METHODOLOGY

Figure 2 shows the high-level workflow of the methodology.
The methodology provides a designer with a framework for
designing a traffic system (Subsection IV-A). This framework
consists of a set of rules for grouping the vertices in a
floorplan graph into traffic system components. The high-level
movement of agents through a traffic system is represented by
an agent cycle set (Subsection IV-B). An agent cycle set is
converted into a plan in a modular fashion (Subsection IV-C).

The methodology finds an agent cycle set for a traffic system
which services a workload w within T timesteps as follows.
The rate at which each component can accept and emit agents
is compiled into an A/G contract. The properties that the
pattern of traffic in the traffic system must have to service
a workload w within T timesteps are also compiled into an
A/G contract (Subsection IV-D). An agent flow set satisfying
the conjunction of these contracts is found (Subsection IV-D)
and mapped to an agent cycle set (Subsection IV-E).

A. Traffic System Design Framework
An operator can construct a traffic system for a warehouse

by dividing the vertices in its floorplan graph into disjoint
simple paths called traffic system components. A component
Ci behaves similarly to a one way road. Agents enter a
component Ci at its head HEAD(Ci) and exit it from its tail
TAIL(Ci). A component may not contain both shelf access
vertices and station access vertices. A component is termed a:

1) shelving row if it contains shelf access vertices;
2) station queue if it contains station vertices;
3) transport if it contains neither.

Every station and shelf access vertex must be contained by
a component. Other vertices, however, need not be. Vertices
which are not part of any component are termed unused
vertices since they will not be traversed by any agent.

A component Ci has 1 or 2 inlet components INLETS(Ci)
and 1 or 2 outlet components OUTLETS(Ci). Agents must enter
Ci from one of its inlets and exit Ci from one of its outlets.
There must be an edge in the floorplan graph between the
head of a component and the tail of each of its inlets and
the tail of a component and the head of each of its outlets.

A component with 1 vertex cannot be the inlet or outlet of
another component with 1 vertex.

The connections between the components of a traffic system
are represented by a directed graph termed a traffic system
graph Gs := (Vs, Es). Each vertex in Vs is a component of the
traffic system. There is an arc (Ci, Cj) in Vs iff component Ci

is one of component Cj’s inlets. A traffic system graph must be
strongly connected, that is, there must be a path between any
two components in a traffic system graph. Since every shelf
access and station access vertex is in a component, it follows
that there is a way for an agent to move from any shelf access
vertex to any station access vertex and vice versa.

B. Agent Cycle Set
We synthesize a plan for a traffic system Gs which satisfies

a workload w within T timesteps from an agent cycle set Σ.
An agent cycle is a cycle of b components in the traffic system
graph Gs. associated with a set of b or fewer agents. These
components must include a target shelving row and a target
station queue. The agents in an agent cycle transfer products
from the target shelving row to the target station queue.

An agent cycle set has a cycle time tc. At timestep t =
1, each agent in an agent cycle is positioned on a unique
component. Every tc timesteps, each agent in an agent cycle
advances one component. Thus, an agent cycle delivers one
product from its target shelving row to its target station queue
every tc timesteps. In Subsection IV-C we show how we find
a plan that realizes the agent movement specified by an agent
cycle set. (Due to space constraints, we do not specify the
exact timesteps at which an agent cycle picks up and drops
off products at its target shelving row and target station queue.)
In Subsection IV-D, we show how we find an agent cycle set
that services a workload w within T timesteps.

C. Realizing an Agent Cycle Set
Let the time interval [1, T ] be divided into the ⌊T/tc⌋ cycle

periods [1, tc], [tc + 1, 2tc], etc. Let |Ci| be the number of
vertices in a component Ci and m be the length of the longest
component in a traffic system, i.e.,

m := max(|Ci| : Ci ∈ Vs).

The realization algorithm has the following property:
Property 4.1: Our realization algorithm can realize an agent

cycle set Σ if it has cycle time 2m and there is no component
Ci contained by more than max(1, ⌊|Ci|/2⌋) agent cycles.

Proof Sketch. The realization algorithm moves an agent
at least once every other timestep until the agent advances
to the next component in its agent cycle. It therefore takes
at most 2m timesteps for the realization algorithm to ad-
vance any agent in any agent cycle by one component. The
realization algorithm assumes, however, that a component
Ci can send an agent to its outlets at least once every
other timestep. This condition is violated if a component’s
outlets fill up with agents, preventing them from accepting
additional agents. To prevent a component from filling up, the
realization algorithm prevents agents from advancing multiple
components in a single cycle period. Since each component
Ci is in at most max(1, ⌊|Ci|/2⌋) agent cycles, no more



Algorithm 1 COMPONENTTIMESTEP(Ci, t+ 1, π1,t, π2,t, . . .)
1: ts ← CYCLEPERIODSTARTT(t)
2: aj ← HEAD(AGENTS(Ci, t))
3: if πj,t = HEAD(Ci) ∧ ADVANCET(aj) < ts then
4: k ← CYCLEI(aj) + 1 mod |CYCLE(aj)|
5: if ACCEPTING(Ci, CYCLE(aj)[k]) then
6: πj,t+1 ← TAIL(CYCLE(aj)[k])
7: CYCLEI(aj)← k
8: ADVANCET(aj)← t+ 1

9: for aj ∈ AGENTS(Ci, t) do
10: v ← NEXT(Ci, πj,1)
11: if v ̸= ⊥ ∧ ¬∃ ak ∈ AGENTS(Ci, t) : πk,t = v then
12: πj,t+1 ← v
13: else
14: πj,t+1 ← πj,t

than 2 · max(1, ⌊|Ci|/2⌋) unique agents will occupy any
component Ci every cycle period. Since 2 · ⌊|Ci|/2⌋ ≤ |Ci|,
a component cannot fill up unless it has a single vertex. If no
two single-vertex components are adjacent and each single-
vertex component discharges its agent on the first timestep of
a cycle period, no component will ever fill up.

Realization Algorithm Initialization. At timestep t = 1, we
place an agent associated with an agent cycle on an arbitrary
vertex of each component that the agent cycle passes through.

Realization Algorithm Timestep. We realize the loca-
tion of the agents in a traffic system at time t + 1
from their locations at time t by calling the function
COMPONENTTIMESTEP(Ci, t, π1,t, π2,t, . . .), Algorithm 1, on
every component Ci in the traffic system.

Let ts be the time at which the current cycle period starts
(Line 1), AGENTS(Ci, t) be a list of the agents in Ci at time t
ordered by their distance from HEAD(Ci), and aj be the agent
at the head of this list (Line 2). If aj is at the head of Ci and
ADVANCET(aj), the timestep when aj advanced to Ci, was
before ts, we check if aj can advance to the next component
in its agent cycle CYCLE(aj) (Line 3). A component with
a single vertex advances its agent at the start of the cycle
period. Otherwise, a component can advance an agent every
other timestep in a cycle period.

We compute the index k of the next component in
CYCLE(aj) from the index CYCLEI(aj) of the current compo-
nent in CYCLE(aj) (Line 4). If the component CYCLE(aj)[k]
is accepting agents from Ci, we move agent aj to this
component’s tail (Lines 6-8). Next, we move agents within
Ci. Let NEXT(Ci, u) be the vertex in Ci following vertex
u, if one exists, and ⊥ otherwise. We move each agent
aj ∈ AGENTS(Ci, t) to vertex NEXT(Ci, πj,1) if it exists and
is not occupied by another agent (Lines 9-14).

D. Synthesizing an Agent Flow Set
Let an agent flow fi,j,k ∈ {0}∪N be the number of agents

that move from component Ci to component Cj carrying
product ρk every tc timestep period in a plan. Let an agent
flow set F be the set containing all of a plan’s agent flows:

F := {fi,j,k : (Ci, Cj) ∈ Es ∧ ρk ∈ ρ}.

An agent flow set completely describes how agents move
between the components in a traffic system each cycle period.

Fig. 3. Synthesizing agent flows using contracts.

We synthesize an agent flow set which services workload w
within T timesteps as follows.

A component Ci assumes that the agent flows entering it
have certain properties and guarantees that the agent flows
leaving it have certain properties. These assumptions and
guarantees are compiled into an A/G contract C̃i := (Ãi, G̃i),
termed a component contract (Fig. 3, yellow). Component
contracts are composed into a traffic system contract C̃TS

(Fig. 3, red) describing the agent flow sets that the traffic
system allows, i.e.,

C̃TS :=
⊗

Ci∈Vs

C̃i.

The properties that a traffic system’s agent flow set must
have to service workload w within T timesteps are compiled
into an A/G contract termed a workload contract C̃w (Fig. 3,
blue). We attempt to synthesize an agent flow set which
satisfies the conjunction of the traffic system contract and
workload contract C̃w (Fig. 3). If no such agent flow set exists,
a plan which services workload w within T timesteps cannot
be synthesized using our methodology.

Component Contract Assumptions. As discussed in Subsec-
tion IV-C, at most max(1, ⌊|Ci|/2⌋) agents may enter any
component Ci ∈ Vs in any cycle period, i.e.,

∀ Ci ∈ Vs,
∑

Cj∈INLETS(Ci)

∑
ρk∈ρ

fj,i,k ≤ max
(
1,

⌊
|Ci|
2

⌋)
.

Since a flow fi,j,k is defined as a non-negative integer, the
minimum flow entering any component Ci ∈ Vs is 0.

Component Contract Guarantees. Let fout
i,k ∈ {0} ∪ N be

the number of units of product ρk transferred from an agent to
a station in component Ci each cycle period. If component Ci

does not contain a station, fout
i,k = 0. If component Ci contains

stations, fout
i,k is between 0 and the number of agents entering

component Ci carrying ρk each cycle period, that is,

fout
i,k ∈

{
{0} |Ci ∩R| = 0

[0,
∑

Cj∈INLETS(Ci)
fj,i,k] otherwise

.

Let f in
i,k ∈ {0} ∪ N be the number of units of product

ρk transferred from a shelf in component Ci each cycle
period. If component Ci does not contain shelves, f in

i,k = 0.
If component Ci contains shelves, f in

i,k is limited by the
number of units of product ρk that component Ci contains.
Let UNITSAT(Ci, ρk) be the total number of units of product
ρk available at Ci:

UNITSAT(Ci, ρk) :=
∑

vj∈Ci∩S

Λk,j .



Let qc := ⌊tc/T ⌋ be the number of cycle periods executable
in T timesteps. In qc cycle periods, a component can transfer
at most UNITSAT(Ci, ρk)/qc units of product ρk each cycle
period. It follows that:

f in
i,k ∈

{
{0} |Ci ∩ S| = 0

[0, UNITSAT(Ci, ρk)/q] otherwise
.

A product can only be transferred to an unburdened agent.
Thus, the total number of products transferred to agents in Ci

each cycle period is limited by the total number of unburdened
agents entering Ci each cycle period.∑

ρk∈ρ

f in
i,k ≤

∑
Cj∈INLETS(Ci)

fj,i,0.

Agents cannot appear or disappear. Thus, the total flow of
agents carrying product ρk out of component Ci is:

1) the total flow of agents carrying product ρk into Ci,
2) plus the total number of unburdened agents given a unit

of product ρk from a shelf in Ci each cycle period,
3) minus the total number of agents which transfer a unit of

product ρk to a station in Ci each cycle period. Overall,

∀ Ci, ρk ∈ Vs × ρ,
∑

Cj∈OUTLETS(Ci)

fi,j,k =
∑

Cj∈INLETS(Ci)

fj,i,k + f in
i,k − fout

i,k .

An analogous expression can be written relating the total flow
of unburdened agents leaving and entering a component Ci:

∀ Ci ∈ Vs,
∑

Cj∈OUTLETS(Ci)

fi,j,0 =
∑

Cj∈INLETS(Ci)

fj,i,0 +
∑
ρk∈ρ

f in
i,k −

∑
ρk∈ρ

fout
i,k .

Workload Contract. A workload contract C̃w makes no
assumptions. It guarantees that the total number of units of
product ρk transferred to the warehouse’s stations each cycle
period is greater than wk/qc, where wk is the demand for
ρk in workload w and qc is the number of cycle periods qc
executable in T timesteps, i.e.,

∀ ρk ∈ ρ,
∑

Ci∈Vs

fout
i,k ≥ wk

qc
.

The above contracts (and associated constraints) are used
to generate a formula in propositional logic augmented with
arithmetic constraints over the reals, which is solved using a
satisfiability modulo theory (SMT) solver to produce the flow
rate through every component for every product.

E. Mapping the Agent Flow Set to an Agent Cycle Set

By construction, an agent flow set F has the properties:
Property 4.2: There is a set of paths Pk on Gs for each

product ρk such that:
1) There are exactly f in

i,k paths in Pk beginning at each
component Ci ∈ Vs.

2) There are exactly fout
i,k paths in Pk ending at each

component Ci ∈ Vs.
3) There are exactly fi,j,k paths that contain the edge

(Ci, Cj) for each edge (Ci, Cj) ∈ Es.
Property 4.3: There is a set of paths P0 on Gs such that:

Fig. 4. Fulfillment Center Map.

1) There are exactly
∑

ρk∈ρ f
out
i,k paths in P0 beginning at

each component Ci ∈ Vs.
2) There are exactly

∑
ρk∈ρ f

in
i,k paths in P0 ending at each

component Ci ∈ Vs.
3) There are exactly fi,j,0 paths that contain the edge

(Ci, Cj) for each edge (Ci, Cj) ∈ Es.
Properties 4.2 and 4.3 imply that there is a bijection BF :

P0 →
⋃

ρk∈ρ Pk for any agent flow set F such that if path
p ∈ P0 is mapped to path p′ ∈

⋃
ρk∈ρ Pk, then the head of

path p is the tail of path p′ and vice versa:

BF (p) = p′ ⇒ HEAD(p) = TAIL(p′) ∧ HEAD(p′) = TAIL(p).

An agent cycle set Σ is formed from an agent flow set F
by turning each pair of paths in the bijection BF into a cycle.

V. EVALUATIONS

The methodology is implemented as an automatic toolchain.
The component and workload contracts are compiled and
composed using the CHASE framework [9]. An agent flow
set satisfying these contracts is then found using Z3 [10].
Other toolchain components are implemented in Python 3.11.
The methodology is evaluated on two real industrial scenarios
taken from the literature: a Kiva (now Amazon Robotics)
automated warehouse [11] and a package sorting center [12].

Automated Warehouse. A fulfillment center map is char-
acterized by blocks of shelves in its center and stations on
its perimeter. The proposed approach is evaluated on two
fulfillment center maps, a real map borrowed from our ref-
erence scenario [11] with 1071 cells, 560 shelves, 4 stations,
and 55 unique products and a synthetic map based on the
reference scenario [11] with 793 cells, 240 shelves, 1 station,
and 120 products. The real fulfillment center map is depicted
in Fig. 4. Shelves are depicted as yellow cells, stations as blue
shelves, obstacles as grey cells and empty space as white cells.
Single cell components are depicted as green cells. Multi-cell
components are depicted as paths of purple cells where each
cell has an arrow pointing to the next cell in the component.

Sorting Center. The methodology is also evaluated on a
variant of the WSP which takes place in a sorting center [12].
A sorting center sorts packages by destination. A sorting center
map is characterized by uniformly placed chutes in its center
and bins of unsorted packages on its perimeter. Each chute
leads to a shipping counter bound for a unique destination. An
agent sorts a package by ferrying it from a bin to the chute
associated with its destination. Typically, a bin is modeled as



Fig. 5. Sorting Center Map.

TABLE I
BENCHMARKING THE METHODOLOGY ON 9 WSP INSTANCES.

Map Unique Products Units Moved Runtime (s)
32 160 8.054

Sorting Center 32 320 8.343
32 480 14.437
55 550 6.939

Fulfillment (real) 55 825 7.001
55 1100 8.014
120 1200 65.880

Fulfillment (syn.) 120 1320 65.886
120 1440 67.825

having an unlimited number of packages. The goal is to fill
each shipping container before it is scheduled to depart.

This problem is modeled as an WSP instance as follows.
Let the ith chute be modeled as a shelf containing an arbitrary
amount of the product ρi. Let each bin of unsorted products
be modeled as a station. Let ni be the number of packages
that must be brought to the ith chute. An instance of the WSP
is generated where the demand for product ρi is ni. Solving
this WSP instance produces an agent cycle set where ni units
of product ρi are brought from the ith chute to the bins of
unsorted products. Swapping the locations where agents pick
up and drop off products generates the desired solution.

The sorting center evaluation is conducted on a map based
on [12]. This map contains 406 cells, 32 chutes, and 4 bins.
It is depicted in Fig. 5.

Experimental Hardware. Each evaluation was performed on
an 2.6 GHz Intel(R) Core i7-10705H CPU with 32 GB of
RAM in a Ubuntu 20.04 VM run on Windows 11.

Results. The three WSP instances were generated on each
map. For each WSP instance, Table I lists:

1) the number of unique products placed in the warehouse.
2) the total units of product moved to a station.
3) the time required to generate an agent flow set (the time

required to convert an agent flow set into a plan is small).
The length T of a plan for each WSP instance was limited to
3,600 timesteps. Solver runtime was limited to 1 hour.

The proposed methodology was able to solve an WSP
instance where more than 1400 products had to be moved
to a station in just over a minute. We benchmarked the
methodology on this instance against Iterated EECBS [4], a
state-of-the-art search-based lifelong path planner as follows.
Iterated EECBS was given the start position of each agent in

our solution. It was asked to find a plan where each agent
visited the same sequence of shelves and stations as it did in
our solution. Iterated EECBS failed to terminate after an hour.

The runtime of traditional multi-agent path planners is
exponential to the size of their team of agents, the number
of locations that an agent has to visit, and the average
distance between the locations that an agent has to visit.
Our proposed methodology, by contrast, is exponential in the
number of components in the traffic system (finding a set of
agent flows is reducible to the Integer Linear Programming
problem). As a result, our methodology outscales state-of-the-
art path planners. Additionally, our methodology is relatively
insensitive to the number of products in a WSP instance.
On both the sorting center and fulfillment center, doubling
workload size increased runtime by less than 10%.

VI. CONCLUSION

In this paper we introduce the first methodology for solving
the warehouse servicing problem. This methodology provides
a designer with a formal framework, based on assume-
guarantee contracts, for designing a warehouse traffic system.
We show that this methodology can solve WSP instances with
more than 1,000 products in just over a minute. In future work,
we hope to find an optimal solution to the WSP. In particular,
we intend to examine ways to iteratively refine our satisficing
solution into an optimal solution.

REFERENCES

[1] E. Ackerman, “Amazon Uses 800 Robots to Run This Warehouse,”
https://spectrum.ieee.org/amazon-introduces-two-new-warehouse-
robots, IEEE Spectrum, 2021, accessed: 16-May-2022.

[2] J. D. Ullman, “NP-Complete Scheduling Problems,” Journal of Com-
puter and System Sciences, vol. 10, no. 3, pp. 384–393, 1975.

[3] M. Liu, H. Ma, J. Li, and S. Koenig, “Task and Path Planning for
Multi-Agent Pickup and Delivery.” in Proc. of the International Joint
Conference on Autonomous Agents and Multiagent Systems Search,
2019, pp. 11 560–11 565.

[4] J. Li, W. Ruml, and S. Koenig, “EECBS: A Bounded-Suboptimal
Search for Multi-Agent Path Finding,” Proc. of the AAAI Conference
on Artificial Intelligence, vol. 35, pp. 12 353–12 362, 2021.

[5] H. Ma, W. Honig, T. K. Satish, N. Ayanian, and S. Koenig, “Lifelong
Path Planning with Kinematic Constraints for Multi-Agent Pickup and
Delivery.” in Proc. of the AAAI Conference on Artificial Intelligence,
2019, p. 7651–7658.

[6] X. Wu, Y. Liu, X. Tang, W. Cau, F. Bai, G. Khonstantine, and G. Zhao,
“Multi-Agent Pickup and Delivery with Task Deadlines.” in Proc. of the
International Symposium on Combinatorial Search, 2021, p. 206–208.

[7] A. Benveniste, B. Caillaud, D. Nickovic, R. Passerone, J.-B. Raclet,
P. Reinkemeier, A. Sangiovanni-Vincentelli, W. Damm, T. A. Henzinger,
K. G. Larsen et al., “Contracts for System Design,” Foundations and
Trends in Electronic Design Automation, vol. 12, pp. 124–400, 2018.

[8] P. Nuzzo, A. Sangiovanni-Vincentelli, D. Bresolin, L. Geretti, and
T. Villa, “A platform-based design methodology with contracts and
related tools for the design of cyber-physical systems,” Proc. IEEE, vol.
103, no. 11, Nov. 2015.

[9] P. Nuzzo, M. Lora, Y. A. Feldman, and A. L. Sangiovanni-Vincentelli,
“CHASE: Contract-based Requirement Engineering for Cyber-Physical
System Design,” in Proc. of the 2018 Design, Automation & Test in
Europe Conference & Exhibition (DATE). IEEE, 2018, pp. 839–844.

[10] L. d. Moura and N. Bjørner, “Z3: An efficient SMT solver,” in Proc. of
the International conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems. Springer, 2008, pp. 337–340.

[11] P. R. Wurman, R. D’Andrea, and M. Mountz, “Co-ordinating Hundreds
of Cooperative, Autonomous Vehicles in Warehouses,” in Proc. of the
AAAI Conference on Artificial Intelligence, 2007, p. 1752–1760.

[12] Q. Wan, C. Gu, S. Sun, M. Chen, H. Huang, and X. Jia, “Lifelong Multi-
Agent Path Finding in a Dynamic Environment,” in The International
Conference on Control, Automation, Robotics and Vision, 2018, p.
875–882.


