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Abstract

The multi-objective search problem is the problem of finding paths from a start state to a goal

state in a graph where each edge is annotated with multiple costs. Each cost quantifies a type of

resource consumed when traversing the edge. This problem is important for many applications,

such as transporting hazardous materials, where travel distance and risk are two costs that need

to be considered. We say that a path π dominates another path π′ iff π is no larger than π′ in

all costs and is smaller than π′ in at least one cost. A typical task of multi-objective search is to

find the Pareto frontier, that is, a maximal subset of all undominated paths from the start state to

the goal state such that no two paths have the same cost. Researchers have developed a class of

multi-objective search algorithms that generalize best-first (single-objective) search algorithms,

such as A*, to multi-objective search.

Different from single-objective search, two issues need to be carefully considered in multi-

objective search. First, the size of the Pareto frontier can be exponential in the size of the graph.

Therefore, computing the entire Pareto frontier can be very time-consuming. Second, multi-

objective search algorithms need to maintain multiple paths from the start state to each state

encountered during the search. This requires multi-objective search algorithms to perform addi-

tional check operations to determine if a path should be discarded or not, which slows down the

xiii



search. Therefore, existing multi-objective search algorithms do not scale well to large graphs or

many objectives.

While researchers have developed various techniques over the past years for speeding up

(single-objective) searches on large graphs, many of them have not been investigated in the

context of multi-objective search. I hypothesize that one can speed up multi-objective search

algorithms by applying insights gained from single-objective search algorithms after proper gen-

eralization. Specifically, I consider the following four classes of techniques that have been used to

speed up single-objective search algorithms, namely, (1) by trading off solution quality with effi-

ciency, (2) by anytime search, (3) by preprocessing techniques, and (4) by efficient data structures

for time-consuming operations.

To validate our hypothesis, we make the following contributions:

1. We introduce A*pex, which speeds up multi-objective search by trading off solution qual-

ity with efficiency. Given an approximation factor ε, A*pex computes an ε-approximate

Pareto frontier, that is, for every path π from the start state to the goal state, A*pex finds at

least one path π′ from the start state to the goal state such that π′ is no worse than 1 + ε

times π in every cost. A*pex relies on a clever data structure that merges paths with similar

costs. Merging paths reduces the search effort and hence speeds up the search. We empir-

ically show the efficiency advantage of A*pex over state-of-the-art multi-objective search

algorithms and their approximate variants. Our experimental results also validate that the

runtime of A*pex decreases as the given approximation factor increases.

2. We introduce A-A*pex, an anytime multi-objective search algorithm that builds upon

A*pex. It computes an initial approximate Pareto frontier quickly and then finds better
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approximate Pareto frontiers until eventually finding the entire Pareto frontier. In each it-

eration of its main loop, A-A*pex runs A*pex with an approximation factor that is smaller

than those of the previous iterations. Additionally, we propose a speed-up technique that

reuses previous search effort by resuming the search from paths that were pruned in the

previous iterations. We empirically show that, given the same amount of time, A-A*pex

often computes paths that collectively approximate the Pareto frontier much better than

state-of-the-art multi-objective search algorithms.

3. We introduce a preprocessing technique for multi-objective search based on Contraction

Hierarchies (CHs). CHs have been successfully used as a preprocessing technique in single-

objective search. Our approach generalizes CHs to any number of objectives. Furthermore,

we observe that CHs in multi-objective search can contain a large number of edges, which

slows down the search algorithm. Consequently, we introduce a (general) partial-expansion

technique that dramatically speeds up the search algorithm by reducing the number of

unnecessarily generated search nodes. We empirically show that our CH-based approach

can speed up state-of-the-art multi-objective search algorithms by up to three orders of

magnitude.

4. We introduce bucket arrays, a data structure for speeding up time-consuming operations

in multi-objective search algorithms. When a multi-objective search algorithm considers

a new path from the start state to some state s, it needs to check if this path is dominated

by any of the previously found paths to s. These check operations are called dominance

checks. We propose to use bucket arrays to store the cost vectors of the previously found

paths. In bucket arrays, these cost vectors are slotted into different predefined buckets

xv



based on their values. Therefore, when performing dominance checks, the multi-objective

search algorithm often does not need to iterate over all vectors in a bucket. We empirically

show that bucket arrays can speed up LTMOA*, a state-of-the-art multi-objective search

algorithm, by up to 4.3 times on average for problem instances with five objectives.
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Chapter 1

Introduction

In the single-objective search problem, one is given a graph, a start state, and a goal state. Each

edge in the graph is annotated with a cost, which quantifies a resource consumedwhen traversing

the edge, such as the traversal time. The task is to find a path from the given start state to the

given goal state in the graph that minimizes the path cost, that is, the sum of the costs of the

edges that it contains. On the other hand, many applications are concerned with two or more

competing resources, represented by multiple costs that annotate each edge. For example, when

planning a route for transporting hazardous material, one needs to consider costs such as the

travel time and the number of residents that would be exposed to the hazardous material in case

of a traffic accident [11]. When planning a bicycling route, one needs to consider costs such as

cycling time and climbing altitude gain [69]. Often, a path with a small amount of one cost can

have a large amount of some other cost and vice versa, meaning that no path minimizes all costs

simultaneously. Therefore, we are often interested in computing a set of paths that trade-off

between the different costs.

The multi-objective search problem generalizes the single-objective search problem to con-

sider multiple costs. In multi-objective search, each edge in the graph is annotated with a cost
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vector of length N . The cost of a path is the component-wise sum of the costs of the edges that

this path contains. Path π dominates another path π′ iff π is no larger than π′ in all costs and is

smaller than π′ in at least one cost. A solution is a path from the start state to the goal state. Each

component of the solution cost corresponds to an objective function to minimize, and we haveN

objectives. A typical task of multi-objective search is to find a Pareto frontier, that is, a maximal

subset of all undominated solutions such that no two solutions have the same cost. Intuitively,

the set of all undominated solutions contains all “efficient” candidate solutions that allow the

decision-maker to choose from and make trade-offs. When there are multiple undominated solu-

tions with the same cost, we are interested in finding only one of them. Themulti-objective search

problem is important for many real-world applications, including route planning for trucks [11]

and robots [15], planning power-transmission lines [6], scheduling satellites [26], and inspecting

regions of interest with robots [23, 24].

Researchers have developed several multi-objective search algorithms that extend single-

objective best-first search algorithms, such as A*, to finding Pareto frontiers. These algorithms

include BOA* [37], EMOA* [59], and LTMOA* [36]. Like A*, these algorithms conform to a best-

first search framework and utilize heuristic guidance. Unlike A*, they do not terminate when

finding the first solution because they need to find a set of solutions instead of only one solu-

tion. While A* needs to consider only the minimum-cost path from the start state to each state,

a multi-objective search algorithm needs to consider the set of undominated paths from the start

state to each state during the search. When a multi-objective search algorithm considers a new

path to some state s, it checks if this path is dominated by any of the previously found paths to

state s and prunes the path if so. These check operations are called dominance checks.
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Compared to single-objective search, two issues need to be carefully considered in multi-

objective search. The first one is that the size of the Pareto frontier can be exponential in the size of

the graph being searched [19, 10], which often makes existing multi-objective search algorithms

very time-consuming. Moreover, dominance checks are performed frequently, that is, in the

inner loop of the search, and require iterating over sets of vectors, which introduces additional

complexity to multi-objective search algorithms and slows down the search. Therefore, existing

multi-objective search algorithms do not scale well to large graphs or many objectives.

In a broader perspective, themulti-objective search problem is a special case ofmulti-objective

optimization problems [62, 20]. Different approaches have been proposed to solve different multi-

objective optimization problems. These approaches include SAT-based approaches [38, 66] and

multi-objective evolutionary algorithms [9, 16, 20]. Although these approaches are out of the

scope of this dissertation, the techniques proposed in this dissertation might be relevant to them.

1.1 Hypotheses

Due to the similarity of multi-objective and single-objective search algorithms, my hypothesis is

as follows:

One can speed up multi-objective search algorithms by applying insights gained from

single-objective search algorithms after proper generalization.

Specifically, I consider the following four classes of techniques that have been used to speed up

single-objective search algorithms in existing work:
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1. One can speed up multi-objective search algorithms by trading off solution quality with

efficiency. In single-objective search, a bounded-suboptimal search algorithm finds a solu-

tion whose cost is at most the minimum solution cost times a given suboptimality factor.

Such algorithms include WA* [53], focal search [50], optimistic search [73], and EES [72].

Bounded-suboptimal search algorithms have been shown to find solutionsmuch faster than

A*. Their runtime typically decreases as the given suboptimality factor increases. In multi-

objective search, instead of computing the Pareto frontier, one can compute an approximate

Pareto frontier, which satisfies that, for every solution π of the problem instance, there ex-

ists a solution in the approximate Pareto frontier that “approximately dominates” π for a

given approximation factor. I hypothesize that one can find an approximate Pareto frontier

much faster than finding the Pareto frontier, and the runtime will decrease as the given

approximation factor increases.

2. One can speed up multi-objective search algorithms by anytime search. In single-objective

search, an anytime search algorithm computes a suboptimal solution quickly and then finds

better solutions until eventually finding an optimal solution. Examples of anytime single-

objective search algorithms are AWA* [33], ARA* [43], and AFS [13]. Typically, an any-

time algorithm calls a bounded-suboptimal search algorithm with a decreasing sequence

of suboptimality factors. It is slower than A* in finding the optimal solution but can find

better solutions than A* when the given time is insufficient for finding the optimal solu-

tion. I hypothesize that one can generalize anytime search to the multi-objective case by

using the approximate multi-objective search algorithms that are addressed in the previous
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point. Such an anytime multi-objective search algorithm can find a set of solutions that ap-

proximates the Pareto frontier better than the one found by existing multi-objective search

algorithms when the given time is insufficient for finding the Pareto frontier.

3. One can speed upmulti-objective search algorithms by preprocessing techniques. In single-

objective search, using preprocessing techniques is a common approach to speeding up

solvingmultiple problem instances on the same graph. Such techniques include contraction

hierarchies [28], true distance heuristics [70], embedding in Euclidean spaces [14], and

sub-goal graphs [76]. These preprocessing techniques often exploit the structure of the

given graph. For example, contraction hierarchies and sub-goal graphs are based on the

observation that many minimum-cost paths in graphs, such as road networks and grids,

traverse the same set of “important” states, and, hence, the search can be performed in

a hierarchical manner. In multi-objective search, the graph can also have an exploitable

structure with each individual cost. Therefore, I hypothesize that one can speed up multi-

objective search algorithms via preprocessing techniques.

4. One can speed up multi-objective search algorithms by using efficient data structures for

time-consuming operations. In single-objective search, heap operations are often the most

time-consuming part of the search, and existing work has investigated using bucket-based

heaps to speed up the search algorithms [12]. Different from single-objective search, in

multi-objective search, dominance checks are often the most time-consuming operations

of the search. Therefore, I hypothesize that one can speed up multi-objective search algo-

rithms via efficient data structures for storing vectors and enabling more efficient domi-

nance checks.
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1.2 Contributions

Although multi-objective search algorithms can be viewed as a generalization of single-objective

search algorithms, they are sufficiently different from single-objective search algorithms in that

many techniques of single-objective search algorithms cannot be trivially applied. In this disser-

tation, we make the following contributions to speeding up multi-objective search algorithms:

1. To validate the hypothesis that multi-objective search algorithms can be sped up by trad-

ing off solution quality with efficiency, we introduce A*pex, an approximate multi-objective

search algorithm. Although A*pex and (single-objective) bounded-suboptimal search algo-

rithms are based on similar insights, they use very different techniques: While bounded-

suboptimal search algorithms rely on different node expansion orders to guide the search

and find solutions faster, A*pex relies on a clever data structure that merges paths with

similar costs. By merging paths, A*pex reduces the search effort and hence speeds up the

search. Given an approximation factor ε, A*pex guarantees that, for every solution π of

the given problem instance, it computes a solution π′ such that π′ is no worse than (1 + ε)

times π in every cost. A*pex extends PP-A* [31], a previous approximate bi-objective search

algorithm (which only works with two objectives) by generalizing the data structure used

by PP-A* to make PP-A* more efficient for bi-objective search and work with any num-

ber of objectives. We empirically show the efficiency advantage of A*pex over PP-A* for

bi-objective search and an approximate baseline algorithm derived from LTMOA*, a state-

of-the-art multi-objective search algorithm, for problem instances with more than two ob-

jectives. Our experimental results also validate that the runtime of A*pex decreases as the

given approximation factor increases.
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2. To validate the hypothesis that multi-objective search algorithms can be sped up by any-

time search, we introduce Anytime A*pex (A-A*pex), which builds upon A*pex. From one

iteration to the next, A-A*pex can either reuse its previous search effort or restart the search

from scratch. We propose a technique for reusing previous search effort by resuming the

search from paths that were pruned in the previous iteration. Additionally, we propose a

hybrid variant of A-A*pex which first restarts the search from scratch for each iteration and

then starts to reuse its search effort in later iterations. Existing work on anytime single-

objective search has investigated reusing search effort [43] or restarting the search from

scratch [60]. We show how to reuse the search effort of A*pex despite its unique merging

operations. We empirically show that A-A*pex often computes solutions that collectively

approximate the Pareto frontier much better than the solutions found by LTMOA* for short

runtimes.

3. To validate the hypothesis that multi-objective search algorithms can be sped up by pre-

processing techniques, we introduce a preprocessing technique for multi-objective search

based on Contraction Hierarchies (CHs). In single-objective search, a CH is a hierarchi-

cal graph that assigns a level number to each state in the given graph and adds additional

edges (known as shortcuts) to the given graph so that the shortest path from a given start

state to a given goal state can be found by searching through the space of only up-down

paths (paths with first increasing and then decreasing level numbers). Similarly, in multi-

objective search, a CH needs to retain the property that the Pareto frontier can be computed

by considering only up-down paths. To the best of our knowledge, CHs have been used

in graphs with two costs but never to compute the Pareto frontier. Specifically, Storandt
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[69] proposed a CH-based approach for solving the constrained shortest-path problem. Its

preprocessing algorithm computes shortcuts heuristically, which avoids the computational

cost of computing the exact shortcuts but can add unnecessary shortcuts. Our approach

leverages recent algorithmic advances to speed up the previous preprocessing algorithm for

bi-objective search and work with any number of objectives. Specifically, it uses LTMOA*

to compute shortcuts. This alternative approach allows us to compute only the necessary

shortcuts, speeding up both the preprocessing and the search. Furthermore, we observe that

CHs in multi-objective search often contain a large number of edges, which slows down

the search algorithm. Consequently, we introduce a (general) partial-expansion technique,

which dramatically speeds up the search algorithm by reducing the number of unnecessar-

ily generated search nodes. We empirically show that our multi-objective CHs can speed

up LTMOA* by up to two orders of magnitude.

4. To validate the hypothesis that multi-objective search algorithms can be sped up by us-

ing efficient data structures for time-consuming operations, we introduce a data structure

called the bucket array. In bucket arrays, vectors are slotted into different predefined buck-

ets based on their values. A multi-objective search algorithm can often determine if a

bucket contains a vector that dominates a given vector without iterating over all vectors in

this bucket. We exploit this property to speed up the dominance checks of multi-objective

search algorithms. We empirically show that bucket arrays are beneficial in many cases.

For example, in a set of problem instances with five objectives, enhancing LTMOA* with

bucket arrays yields a speed-up of 4.3 times on average.

8



Although these contributions are based on insights gained from single-objective search al-

gorithms, these insights cannot be trivially applied to multi-objective search due to differences

between single-objective search and multi-objective search. As we will see in Chapters 3-6, the

techniques we develop based on these insights are often quite different from the techniques in

single-objective search based on the same insights.

1.3 Dissertation Structure

This dissertation is structured as follows: In Chapter 2, we give an overview of themulti-objective

search problem and existing multi-objective search algorithm. We then introduce A*pex in Chap-

ter 3 and A-A*pex in Chapter 4. We describe multi-objective contraction hierarchies in Chapter 5.

Then, we describe bucket arrays in Chapter 6 before concluding this dissertation in Chapter 7.
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Chapter 2

Background

In this chapter, we define themulti-objective search problem and the Pareto frontier in Section 2.1.

We then review existing multi-objective search algorithms for computing Pareto frontiers in Sec-

tion 2.2.

2.1 Problem Definition

We use boldface font to denote a vector v and vi to denote the i-th component of it. The sum

of two vectors v and v′ of the same length N is defined as the vector v + v′ = (v1 + v′1, v2 +

v′2 . . . vN + v′N). v ⪯ v′ denotes that vi ≤ v′i for all i = 1, 2 . . . N . In this case, we say that v

weakly dominates v′. v ≺ v′ denotes that v ⪯ v′ and there exists an i ∈ {1, 2 . . . N}with vi < v′i.

In this case, we say that v dominates v′.

A (multi-objective search) graph is a tuple G = ⟨S,E⟩, where S is a finite set of states, and

E is a finite set of directed edges. Each edge e = ⟨u, v, c⟩ is a tuple consisting of a source state

u ∈ S, a target state v ∈ S, and a cost c ∈ RN
>0. We use src(e), tar(e), and c(e) to denote the

source state, the target state, and the cost of e, respectively. The cost of an edge is a vector of
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N cost components. Each cost component of the graph corresponds to an objective to minimize.

The graph is called bi-objective in case N = 2. We use in(s) = {e ∈ E | tar(e) = s} and

out(s) = {e ∈ E | src(e) = s} to denote the in- and out-edges of state s, respectively. State s′

is an in-neighbor (resp. out-neighbor) of state s iff there exists an edge from s′ to s (resp. from s

to s′). We use in_nbr(s) and out_nbr(s) to denote the sets of all in-neighbor and out-neighbor

states of state s, respectively.

A path from state s to state s′ is a sequence of edges π = [e1, e2 . . . eℓ] with src(e1) = s,

tar(eℓ) = s′, and tar(ej) = src(ej+1) for all j = 1, 2 . . . ℓ − 1. s = sstart unless mentioned

otherwise. We use s(π) to denote the last state of π, that is, s′. c(π) =
∑ℓ

j=1 c(ej) denotes

the cost of π. Path π can be extended with an edge eℓ+1 to obtain path [e1, e2 . . . eℓ, eℓ+1] iff

s(π) = src(eℓ+1). We say that a path π′ extends path π iff π′ can be obtained by extending π with

a sequence of edges. Path π dominates (resp. weakly dominates) a path π′ iff c(π) ≺ c(π′) (resp.

c(π) ⪯ c(π′)).

We allow a graph to contain parallel edges, that is, there can exist multiple edges (with po-

tentially different costs) from the same source state to the same target state. However, in many

examples in this and the following chapters, we consider graphs without parallel edges. In such

cases, each path corresponds to a distinct sequence of states. Therefore, for ease of presentation,

we often refer to a path as a sequence of states.

A (multi-objective search) problem instance is specified by a tuple P = ⟨G, sstart, sgoal⟩, where

G = ⟨S,E⟩ is a graph, sstart ∈ S is the start state, and sgoal ∈ S is the goal state. The instance is

called bi-objective in caseN = 2. A solution is a path from sstart to sgoal. A Pareto-optimal solution

is a solution that is not dominated by any other solution. As Pareto-optimal solutions with the

same cost may exist, a typical task of multi-objective search is computing a maximal subset of
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all Pareto-optimal solutions where no two solutions have the same cost. We call such a set of

solutions the cost-unique Pareto frontier, or Pareto frontier for short.

Definition 2.1. A (cost-unique) Pareto frontier is a maximal subset of all Pareto-optimal solutions

such that no two solutions have the same cost.

A Pareto frontier provides a user with all solutions that might be desirable to them (in the ab-

sence of additional information). Different Pareto frontiers can exist for a multi-objective search

problem instance. However, they are of the same size, which is equal to the number of unique

costs of all Pareto-optimal solutions.

Theorem 2.1. Consider a bi-objective search problem instance. The size of the Pareto frontier can

be exponential in the number of states of the graph.

The above theorem is rephrased from Theorem 2.1 of Breugem, Dollevoet, and Heuvel [10].

A heuristic function h : S → RN
≥0 estimates the cost of a path from any given state s to the

goal state. We assume that the provided heuristic function h is consistent, that is, h(sgoal) = 0

and h(src(e)) ⪯ c(⟨e⟩) + h(tar(e)) for all e ∈ E. We assume that the reader is familiar with

the properties of the A* search framework when used with a consistent heuristic function in

single-objective search, for example, that the sequence of expanded nodes hasmonotonically non-

decreasing f -values. A common approach to computing such consistent heuristics in existing

literature [2, 5, 37, 36, 59, 87] is to use a backward search with Dijkstra’s algorithm (starting from

sgoal ) to compute the minimum cost c∗i (s) from any state s to sgoal for the i-th objective (while

ignoring all other objectives), for all i = 1, 2 . . . N , and h(s) := [c∗1(s), c
∗
2(s) . . . c

∗
N(s)] as the

heuristic function. We call this heuristic the perfect-distance heuristic.
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Figure 2.1: An example bi-objective search problem instance. (a) shows the graph of this problem
instance. The pair of numbers inside each state shows the value of the perfect-distance heuristic.
(b) shows the costs of all solutions for this problem instance. The orange dots in (b) show the
solutions in the Pareto frontier.

Example 1. Figure 2.1 shows an example bi-objective search problem instance and the costs of its

solutions. This problem instance has only one Pareto frontier because all solutions have unique costs.

The Pareto frontier consists of four solutions, namely, solution [sstart , s1, s2, s3, s5, sgoal ] with cost

(6, 11), solution [sstart , s2, s3, s5, sgoal ] with cost (7, 10), solution [sstart , s1, s2, s3, s5, s4, sgoal ] with

cost (11, 6), and solution [sstart , s2, s3, s5, s4, sgoal ] with cost (12, 5).

2.2 Best-First Multi-Objective Search Algorithms

In this section, we describe existing multi-objective search algorithms for computing Pareto fron-

tiers. We begin with a general algorithmic framework called the best-first multi-objective search

algorithm. We then describe dominance checks and the dimensionality-reduction technique,

which is used by state-of-the-artmulti-objective search algorithms to speed up dominance checks.

Finally, we describe some state-of-the-art multi-objective search algorithms within the best-first

multi-objective search framework.
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2.2.1 The Best-First Multi-Objective Search Framework

Most existing multi-objective search algorithms conform to the best-first multi-objective search

framework. A best-first multi-objective search algorithm is similar to best-first single-objective

search algorithms, such as A*, but, unlike them, it needs to consider multiple search nodes—or

simply called nodes—with g-values that do not weakly dominate each other for the same state.

In a best-first multi-objective search algorithm, each node n contains a state s(n) and a g-

value g(n). We define an f -value for the node as f(n) = g(n) + h(s(n)). Node n corresponds to

a path from sstart to state s(n) whose cost is g(n). Additionally, the search algorithm maintains

the parent node p(n) for n. The corresponding path of n extends the corresponding path of p(n)

with an out-edge of state s(p(n)) and can be constructed in reverse by following the parent nodes

from n to the node that contains state sstart . Because the heuristic h is consistent, f(n) weakly

dominates the cost of any solution that extends the corresponding path of n.

The search algorithm maintains a priority queueOpen, which contains the generated but not

yet expanded nodes, and a set of solutions Sols, which stores the Pareto frontier that will be

returned. Open is initialized with a node that contains the start state sstart and the g-value 0.

Sols is initialized to ∅. In each iteration, the algorithm extracts a node from Open whose f -value

is not dominated by the f -value of any node in Open. The algorithm performs dominance checks

for the extracted node to determine whether this node or any of its descendants can result in a

new solution in the Pareto frontier. If not, the node is discarded. If the node is not discarded, the

algorithm checks if the node contains the goal state. If so, the algorithm adds the corresponding

path of the node to Sols. Otherwise, it expands the node by generating a new node for each of the

successors of the state contained in the node. The algorithm performs dominance checks for each
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generated node to determine whether it or any of its descendants can result in a new solution in

the Pareto frontier. If not, the generated node is discarded. Otherwise, it adds the generated node

to Open. When Open becomes empty, the algorithm terminates and returns Sols.

Examples of algorithms that conform to the best-first multi-objective search framework in-

clude NAMOA*-dr [54], BOA* [35], EMOA* [59], and LTMOA* [36]. They only differ in which

node is extracted from Open in each iteration, which information is contained in the nodes, and

how the dominance checks are implemented and interleaved with the search.

2.2.2 Dominance Checks

When a multi-objective search algorithm considers a new node n (before expanding n or after

extracting n from Open), it checks if the corresponding path of n is weakly dominated by any of

the previously found paths to s(n) and, if so, prunes n. Checking this condition requires com-

paring g(n) to a set of vectors, namely, the set of g-values for all previously expanded nodes that

also contain state s(n). The operations for checking such conditions are modeled as dominance

checks:

Definition 2.2. Given a set of vectorsX and a vector y, the dominance check problem is the problem

of checking whether there exists a vector x ∈ X such that x ⪯ y.

Moreover, a multi-objective search algorithm also needs to update a set of undominated vec-

torsX by first removing those vectors from it that are dominated by y and then adding y. These

operations are modeled as undominated set updates:

Definition 2.3. Given a set of vectorsX and a vector y, the undominated set update problem is the

problem of computing the subset of X ∪ {y} that is not dominated by any vector inX ∪ {y}.
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Dominance checks and undominated set updates are often themost time-consuming parts of a

multi-objective search algorithm because they are performed frequently and intrinsically require

iterating over sets of vectors. Therefore, a multi-objective search algorithm needs to perform

them efficiently. A straightforward implementation for these two operations is to store X as an

array of vectors. In this case, both dominance checks and undominated set updates can be done

with O(|X|) vector comparisons.

2.2.3 Dimensionality Reduction

The dimensionality reduction1 technique [54] is a general technique for speeding up dominance

checks and undominated set updates. We need to introduce additional notation before describing

this technique: The truncate function Tr takes a vector x = [x1, x2 . . . xN ] as input and outputs

x with its first component deleted, that is, [x2, x3 . . . xN ]. Given a set of N -dimensional vectors

X, we use Tr(X) = {Tr(x) | x ∈ X} to denote the set of truncated vectors of X. We use

ND(X) = {x ∈ X | ∄x′ ∈ X x′ ≺ x} to denote the undominated subset ofX.

The dimensionality reduction technique is based on the following observations: Given a vec-

tor y and a set of vectors X, if y1 ≥ x1 for all x ∈ X, we do not need to consider the first

component of any vector when performing the dominance check for y overX. Instead of check-

ing if there exists a vector x ∈ X that weakly dominates y, we only need to check if there exists

an (N − 1)-dimensional vector x′ ∈ ND(Tr(X)) that weakly dominates Tr(y). Doing so can

greatly reduce the number of vector comparisons becauseND(Tr(X)) can be much smaller than

X. When we perform dominance checks and undominated set updates, if the given set of vectors
1In multi-objective search, dimensionality reduction does not have the same meaning as popularly used in ma-

chine learning and data science.
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X and the given vector y always satisfy the condition that y1 ≥ x1 for all x ∈ X, we canmaintain

onlyND(Tr(X)) instead of maintainingX explicitly. As we will see shortly, this condition often

holds in best-first multi-objective search algorithms when consistent heuristics are used.

Example 2. (adapted from Salzman et al. [63]) Consider the set X = {[6, 2, 4], [4, 4, 5], [2, 3, 6]}

and note that X = ND(X) and ND(Tr(X)) = ND([2, 4], [4, 5], [3, 6]) = {[2, 4]}. Checking

whether y = [7, 2, 5] is weakly dominated by a vector inX without using dimensionality reduction

requires three vector comparisons. However, we can apply dimensionality reduction because y1 ≥ x1

for all x ∈ X and, hence, we only need one vector comparison (between Tr(y) = [2, 5] and [2, 4] ∈

ND(Tr(X))) to conclude that there is a vector inX that weakly dominates y.

2.2.4 BOA*

In this section, we describe Bi-Objective A* (BOA*) [37]. Given a bi-objective search problem

instance, BOA* computes a Pareto frontier for it. Algorithm 1 shows the pseudocode for BOA*.

It initializes Open with a node that contains state sstart and whose g-value is 0 (Lines 1-2). This

node corresponds to path [sstart ]. In each iteration, BOA* extracts a node n from Open with the

lexicographically smallest f -value. BOA* performs dominance checks after extracting a node from

Open (that is, after Line 7) and before adding a node to Open (that is, before Line 18). It discards

a node n if

• (Condition 1) there exists an expanded node nsol that contains state sgoal and whose g-value

weakly dominates f(n) or

• (Condition 2) there exists an expanded node n′ that contains state s(n) and whose g-value

weakly dominates g(n).
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Algorithm 1: BOA*
Input : A bi-objective search problem instance ⟨G, sstart , sgoal⟩ and a consistent

heuristic function h
Output: A Pareto frontier

1 n← new node with s(n) = sstart , g(n) = 0, and p(n) = null
2 Open← {n}
3 Sols← ∅
4 foreach s ∈ S do
5 gmin

2 (s)←∞
6 while Open ̸= ∅ do
7 extract a node n from Open with the lexicographically smallest f -value
8 if IsDominated(n) then
9 continue

10 gmin
2 (s)← g2(n)

11 if s(n) = sgoal then
12 add the corresponding solution of n to Sols
13 continue
14 for each e ∈ out(s(n)) do
15 n′ ← new node with s(n′) = tar(e), g(n′) = g(n) + c(e), and p(n′) = n
16 if IsDominated(n′) then
17 continue
18 add n′ to Open
19 return Sols

20 Function IsDominated(n):
21 if gmin

2 (sgoal) ≤ f2(n) then
22 return true
23 if gmin

2 (s(n)) ≤ g2(n) then
24 return true
25 return false

Because the heuristic is required to be consistent, all solutions that can be found via node

n must have costs that are weakly dominated by f(n). Each expanded node nsol that contains

state sgoal corresponds to a solution (that is, a path from sstart to sgoal ) πsol with cost g(nsol). If

Condition 1 holds for such an expanded node nsol, BOA* discards node n because all solutions

that can be found via node n are weakly dominated by πsol. If Condition 2 holds, BOA* discards

node n because all solutions that can be found via node n must be weakly dominated by some

solution that can be found via node n′.
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A straightforward approach to checking Conditions 1 and 2 is to perform dominance checks

for f(n) over the set of g-values of all expanded nodes that contain state sgoal and g(n) over

the set of g-values of all expanded nodes that contain state s(n), respectively. However, because

BOA* always extracts a node from Open with the lexicographically smallest f -value of all nodes

inOpen and also because the heuristic is consistent, the f1-values of the extracted nodes of BOA*

are monotonically non-decreasing. Therefore, BOA* uses dimensionality reduction to speed up

dominance checks and does not check the g1- and f1-values. Instead of maintaining the set of g-

values of all expanded nodes, BOA*maintains its undominated truncated set, which is represented

by the minimum g2-value of all expanded nodes that contains state s and denoted as gmin
2 (s).

BOA* updates gmin
2 (s) on Line 10 right after expanding a node that contains s. When performing

dominance checks on node n, f1(n) is no smaller than the g1-value of any expanded node nsol

that contains state sgoal because f1(n) ≥ f1(nsol) and g1(nsol) = f1(nsol). Therefore, Condition

1 holds iff gmin
2 (sgoal) is no larger than f2(n). Similarly, g1(n) is no smaller than the g1-value

of any expanded node n′ that contains state s(n) because f1(n) ≥ f1(n
′) and h1(n) = h1(n

′).

Therefore, Condition 2 holds iff gmin
2 (s(n)) is no larger than g2(n). Conditions 1 and 2 are checked

on Lines 21 and 23, respectively. Both checks are done in constant time.

Let n be a node extracted by BOA* and not discarded after the dominance checks. If s(n) =

sgoal , BOA* then adds the corresponding path (which is a solution) of n to Sols. Otherwise, BOA*

expands n by generating a new child node for each successor of s(n). WhenOpen becomes empty,

the algorithm terminates and returns Sols. Hernández et al. [37] shows that BOA* terminates in

finite time and returns Sols as a Pareto frontier.
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Iter Open ⟨s(n),g(n), f(n)⟩ Generated ⟨s(n),g(n), f(n)⟩ Update of gmin
2 (s(n))

1
⟨sstart , (0, 0), (6, 5)⟩∗ ⟨s1, (1, 1), (6, 6)⟩

gmin
2 (sstart) = 0⟨s2, (3, 1), (7, 5)⟩

2
⟨s1, (1, 1), (6, 6)⟩∗ ⟨s2, (2, 2), (6, 6)⟩

gmin
2 (s1) = 1⟨s2, (3, 1), (7, 5)⟩ ⟨s3, (3, 4), (6, 7)⟩

3
⟨s2, (2, 2), (6, 6)⟩∗ ⟨s3, (3, 3), (6, 6)⟩

gmin
2 (s2) = 2⟨s3, (3, 4), (6, 7)⟩

⟨s2, (3, 1), (7, 5)⟩

4
⟨s3, (3, 3), (6, 6)⟩∗ ⟨s5, (4, 4), (6, 6)⟩

gmin
2 (s3) = 3⟨s3, (3, 4), (6, 7)⟩ ⟨s4, (4, 10), (10, 11)⟩

⟨s2, (3, 1), (7, 5)⟩

5

⟨s5, (4, 4), (6, 6)⟩∗ ⟨s4, (5, 5), (11, 6)⟩

gmin
2 (s5) = 4

⟨s3, (3, 4), (6, 7)⟩ ⟨sgoal , (6, 11), (6, 11)⟩
⟨s2, (3, 1), (7, 5)⟩
⟨s4, (4, 10), (10, 11)⟩

6

⟨s3, (3, 4), (6, 7)⟩∗ (discarded)
⟨sgoal , (6, 11), (6, 11)⟩
⟨s2, (3, 1), (7, 5)⟩
⟨s4, (4, 10), (10, 11)⟩
⟨s4, (5, 5), (11, 6)⟩

7

⟨sgoal , (6, 11), (6, 11)⟩∗

gmin
2 (sgoal ) = 11

⟨s2, (3, 1), (7, 5)⟩
⟨s4, (4, 10), (10, 11)⟩
⟨s4, (5, 5), (11, 6)⟩

8
⟨s2, (3, 1), (7, 5)⟩∗ ⟨s3, (4, 2), (7, 5)⟩

gmin
2 (s2) = 1⟨s4, (4, 10), (10, 11)⟩

⟨s4, (5, 5), (11, 6)⟩

9
⟨s3, (4, 2), (7, 5)⟩∗ ⟨s5, (5, 3), (7, 5)⟩

gmin
2 (s3) = 2⟨s4, (4, 10), (10, 11)⟩ ⟨s4, (5, 9), (11, 10)⟩

⟨s4, (5, 5), (11, 6)⟩

10

⟨s5, (5, 3), (7, 5)⟩∗ ⟨sgoal , (7, 10), (7, 10)⟩

gmin
2 (s5) = 3

⟨s4, (4, 10), (10, 11)⟩ ⟨s4, (6, 4), (12, 5)⟩
⟨s4, (5, 5), (11, 6)⟩
⟨s4, (5, 9), (11, 10)⟩

11

⟨sgoal , (7, 10), (7, 10)⟩∗

gmin
2 (sgoal ) = 10

⟨s4, (4, 10), (10, 11)⟩
⟨s4, (5, 5), (11, 6)⟩
⟨s4, (5, 9), (11, 10)⟩
⟨s4, (6, 4), (12, 5)⟩

12

⟨s4, (4, 10), (10, 11)⟩∗ (discarded)
⟨s4, (5, 5), (11, 6)⟩
⟨s4, (5, 9), (11, 10)⟩
⟨s4, (6, 4), (12, 5)⟩

13
⟨s4, (5, 5), (11, 6)⟩∗ ⟨sgoal , (11, 6), (11, 6)⟩

gmin
2 (s4) = 5⟨s4, (5, 9), (11, 10)⟩

⟨s4, (6, 4), (12, 5)⟩
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Iter Open ⟨s(n),g(n), f(n)⟩ Generated ⟨s(n),g(n), f(n)⟩ Update of gmin
2 (s(n))

14
⟨sgoal , (11, 6), (11, 6)⟩∗

gmin
2 (sgoal ) = 6⟨s4, (5, 9), (11, 10)⟩

⟨s4, (6, 4), (12, 5)⟩

15
⟨s4, (5, 9), (11, 10)⟩∗ (discarded)
⟨s4, (6, 4), (12, 5)⟩

16 ⟨s4, (6, 4), (12, 5)⟩∗ ⟨sgoal , (12, 5), (12, 5)⟩ gmin
2 (s4) = 4

17 ⟨sgoal , (12, 5), (12, 5)⟩∗ gmin
2 (sgoal ) = 5

18 empty

Table 2.1: Trace of Open, generated nodes, and gmin
2 in each iteration of BOA* on solving the

example problem instance in Figure 2.1. “∗" marks the node that is extracted in that iteration.

Example 3. Consider the bi-objective search problem instance in Figure 2.1. Table 2.1 shows a trace

of Open, generated nodes, and changes to gmin
2 in each iteration of BOA*.

In Iteration 6, node ⟨s3, (3, 4), (6, 7)⟩ is extracted and pruned because its truncated g-value is no

smaller than the minimum g2-values of expanded nodes that contain state s3. Conceptually, node

⟨s3, (3, 4), (6, 7)⟩ corresponds to path [sstart , s1, s3]. Because path [sstart , s1, s3] is dominated by path

[sstart , s1, s2, s3] with cost (3, 3), it cannot be extended to any Pareto-optimal solution.

In Iterations 12 and 15, the extracted nodes are pruned because their f2-values are no

smaller than the minimum g2-values of expanded nodes that contain state sgoal . Consider node

⟨s4, (4, 10), (10, 11)⟩ pruned in Iteration 12, which corresponds to path [sstart , s1, s2, s3, s4]. The

only solution that extends this path is solution [sstart , s1, s2, s3, s4, sgoal ], and Figure 2.1b has al-

ready shown that this solution is not Pareto-optimal.

In Iterations 7, 11, 14, and 17, BOA* expands nodes that contain state sgoal and finds solutions.

Eventually, BOA* returns Sols, which consists of the Pareto frontier for this problem instance.
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Algorithm 2: EMOA* and LTMOA*
Input : A problem instance ⟨G, sstart , sgoal⟩ and a consistent heuristic function h
Output: A Pareto frontier

1 n← new node with s(n) = sstart , g(n) = 0, and p(n) = null
2 Open← {n}
3 Sols← ∅
4 foreach s ∈ S do
5 Gtr

cl(s)← ∅
6 while Open ̸= ∅ do
7 extract a node n from Open with the lexicographically smallest f -value
8 if IsDominated(n) then
9 continue

10 Update(Gtr
cl(s(n)),Tr(g(n)))

11 if s(n) = sgoal then
12 add the corresponding solution of n to Sols
13 continue
14 for each e ∈ out(s(n)) do
15 n′ ← new node with s(n′) = tar(e), g(n′) = g(n) + c(e), and p(n′) = n
16 if IsDominated(n′) then
17 continue
18 add n′ to Open
19 return Sols

20 Function IsDominated(n):
21 if ∃x ∈ Gtr

cl(sgoal) : x ⪯ Tr(f(n)) then
22 return true
23 if ∃x ∈ Gtr

cl(s(n)) : x ⪯ Tr(g(n)) then
24 return true
25 return false

26 Function Update(X,y):
27 remove the vectors weakly dominated by y from X
28 add y toX

2.2.5 EMOA*, LTMOA*, and NAMOA*

In this section, we describe some existing best-first multi-objective search algorithms. We be-

gin with Enhanced Multi-Objective A* (EMOA*) [59] and Linear-Time Multi-Objective A* (LT-

MOA*) [36] because these two algorithms directly follow BOA* and generalize BOA* to more
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than two objectives. Algorithm 2 shows the pseudocode for them. These two algorithms share

the same pseudocode and are only different in how dominance checks are implemented.

The pruning conditions of EMOA* and LTMOA* generalize the pruning conditions of BOA*

to more than two objectives. EMOA* and LTMOA* discard a node n if

• (Condition 1) there exists an expanded node that contains state sgoal and whose g-value

weakly dominates f(n) or

• (Condition 2) there exists an expanded node that contains state s(n) and whose g-value

weakly dominates g(n).

In each iteration, EMOA* and LTMOA* extract a node from Open with the lexicographically

smallest f -value of all nodes in Open. Because the heuristic is consistent, the f1-values of the

extracted nodes are monotonically non-decreasing. Therefore, EMOA* and LTMOA* apply di-

mensionality reduction to dominance checks and do not check the g1- and f1-values. Instead

of maintaining the set of g-values of all expanded nodes, EMOA* and LTMOA* maintain only

the often-significantly-smaller set Gtr
cl(s) (where “tr” and “cl” stand for “truncated” and “closed,”

respectively) of undominated truncated g-values for each state s (which is updated on Line 10).

Conditions 1 and 2 are checked on Lines 21 and 23, respectively.

The difference between EMOA* and LTMOA* lies in which data structures are used to store

Gtr
cl(s) for each state s and how Lines 21 and 23 are implemented. EMOA* uses an AVL tree to

store Gtr
cl(s) while LTMOA* uses an array to store Gtr

cl(s). In the special case of three objectives,

EMOA* achieves better time complexity than LTMOA* in terms of dominance checks, that is,

O(log(|Gtr
cl(s)|)) versusO(|Gtr

cl(s)|). However, even in this case, in practice, the runtime overhead

of AVL trees makes EMOA* less efficient than LTMOA* [36].
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NAMOA* [46] and NAMOA*-dr [54], the variant of NAMOA* that uses dimensionality re-

duction, are two other existing algorithms. They differ from EMOA* and LTMOA* in that they

also discard a node n if there exists some node in Open that contains the same state as n and

whose g-value weakly dominates g(n). These additional checks on Open make NAMOA* and

NAMOA*-dr more eager than EMOA* and LTMOA* in terms of dominance checks. However,

it is unclear how to apply the dimensionality reduction technique for these dominance checks

(on Open) because the f1-values of the generated nodes are not necessarily monotonically non-

decreasing. NAMOA* and NAMOA*-dr have been shown to be less efficient than EMOA* and

LTMOA* in practice [59, 36].

Among the different algorithmswe have described in this section, LTMOA* has been shown to

be the most efficient one in practice. Hence, we focus on LTMOA* for the rest of this dissertation.
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Chapter 3

Speeding up Multi-Objective Search via Approximation

Many real-world situations admit, or even encourage, a trade-off between efficiency and solu-

tion quality. In single-objective search, researchers have investigated bounded-suboptimal search

algorithms, which trade off solution quality for efficiency while still guaranteeing that the subop-

timality of the reported solution is within a given suboptimality bound. Such algorithms include

WA* [53], focal search [50], optimistic search [73], and EES [72]. These algorithms typically rely

on different node expansion orders to guide the search and find solutions faster.

In multi-objective search, computing the Pareto frontier can be very time-consuming because

its size can be exponential in the size of the graph being searched [19, 10]. Hence, researchers

have proposed to compute an ε-approximate Pareto frontier instead [10, 74, 78, 31, 51], that is, a

set of solutions such that any solution in the Pareto frontier is ε-dominated by some solution in

the set. A solution π ε-dominates a solution π′ for a given approximation factor ε ≥ 0 iff each cost

component of c(π) is no larger than (1+ε) times the corresponding cost component of c(π′). For

the same ε-value, different ε-approximate Pareto frontiers can exist, and they can be of different

This chapter is based on [87].
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Figure 3.1: The Pareto frontier (9114 solutions), a 0.001-approximate Pareto frontier (30 so-
lutions), and a 0.01-approximate Pareto frontier (4 solutions) computed by BOA*, A*pex with
ε = 0.001, and A*pex with ε = 0.01, respectively, for a road-network problem instance with two
objectives.

sizes. However, their sizes are typically much smaller than those of the Pareto frontiers, even for

small approximation factors, as exemplified later. One can exploit this property to design efficient

approximate multi-objective search algorithms.

Although the possibility of speeding up multi-objective search by allowing approximation of

the Pareto frontier is intuitive, it remains unclear how to do so efficiently. Existing work [51] has

proposed a technique that speeds up the search by pruning paths that can only result in solutions

that are ε-dominated by previously computed solutions.1 This technique can be combined with

different multi-objective search algorithms, resulting in approximate variants of these algorithms.

However, this technique by itself prunes only a small subset of the paths that can be pruned. PP-

A* [31] is a recent approximate bi-objective search algorithm that prunes more paths by using a

different data structure for representing paths. However, PP-A* only works with two objectives.
1Later in this chapter, we will show why pruning a path to a state s that is ε-dominated by some previously

computed path to the same state s does not necessarily yield an ε-approximate Pareto frontier.
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In this chapter, we introduce a new approximate multi-objective search algorithm called

A*pex. A*pex extends PP-A* by generalizing the data structure used by PP-A* to (1) make PP-A*

more efficient for bi-objective search and (2) generalize it to any number of objectives. Our ex-

perimental results show that A*pex can outperform state-of-the-art approximate multi-objective

search algorithms by orders of magnitude in terms of runtime. They also show that the runtime

of A*pex decreases as the given ε-value increases.

As an example, Figure 3.1 shows the solutions computed by different algorithms for a bi-

objective search problem instance. While it takes BOA* 170 seconds to compute the Pareto fron-

tier, it takes A*pex, our proposed algorithm, only 15 seconds and 7 seconds to compute the ap-

proximate Pareto frontiers with ε = 0.001 and ε = 0.01, respectively. For every solution π′,

there exists a solution π in the 0.001-approximate (resp. 0.01-approximate) Pareto frontier such

that π is at most 0.1% (resp. 1%) worse than π′ for all objectives, which is satisfactory for many

real-world problems.

This chapter is organized as follows: We begin with the background material for our work in

Section 3.1. Next, we provide a detailed description of A*pex in Section 3.2 and its correctness and

completeness in Section 3.3. We then provide experimental results in Section 3.4 and our sum-

mary in Section 3.5. While this dissertation focuses on the multi-objective search problem, our

previous works have also extended the algorithmic techniques behind A*pex to other problems.

We end the chapter with two such extensions in Section 3.6.

27



3.1 Background

In this section, we formally define ε-approximate Pareto frontiers in Section 3.1.1. We then de-

scribe previous approaches for computing ε-approximate Pareto frontiers and other approaches

for approximating Pareto frontiers, which are different from computing ε-approximate Pareto

frontiers.

3.1.1 ε-Approximate Pareto Frontiers

Given two vectors v and v′, v ⪯ε v′ for an approximation factor ε ∈ R≥0 denotes that vi ≤

(1 + ε)v′i for all i = 1, 2 . . . N . In this case, we say that v ε-dominates v′. v ε-dominates v′ for

any ε-value if v weakly dominates v′, but the opposite is not necessarily true. We say that a path

π ε-dominates another path π′, denoted as π ⪯ε π
′, iff c(π) ⪯ε c(π

′).

Definition 3.1. Consider a multi-objective search problem instance and an approximation factor ε.

An ε-approximate Pareto frontier is a set of solutions such that, for any Pareto-optimal solution π′,

there exists a solution π in the ε-approximate Pareto frontier with π ⪯ε π
′.

The Pareto frontier is a 0-approximate Pareto frontier, but the opposite is not necessarily

true. For example, the set of all solutions is also a 0-approximate Pareto frontier. Our task is

to efficiently find an explicit representation, ideally of small size, of an ε-approximate Pareto

frontier for a given instance. A multi-objective search algorithm that finds an ε-approximate

Pareto frontier is also called an (ε-)approximate multi-objective search algorithm.

We can generalize the definitions of ε-dominance and ε-approximate Pareto frontier to allow

for different approximation factors for different objectives. Our proposed algorithm, A*pex, can
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Figure 3.2: Two different 0.2-approximate Pareto frontiers for the problem instance in Figure 2.1.
The orange dots show the solutions in each 0.2-approximate Pareto frontier, and the shaded
regions show the regions that are 0.2-dominated by the 0.2-approximate Pareto frontiers.

directly work with these generalized definitions while retaining its theoretical properties in Sec-

tion 3.3. However, for ease of exposition, we will stick to the above definitions in this dissertation.

Example 4. Figure 3.2 shows two 0.2-approximate Pareto frontiers for the problem instance in Fig-

ure 2.1. Each 0.2-approximate Pareto frontier consists of two solutions, shown by the orange dots.

Each solution of the problem instance is 0.2-dominated by at least one solution in the 0.2-approximate

Pareto frontier. For example, consider the 0.2-approximate Pareto frontier in Figure 3.2a. The so-

lution with cost (6, 11) is 0.2-dominated by the top-left orange solution with cost (7, 10) because

7 ≤ (1 + 0.2) × 6 and 10 ≤ (1 + 0.2) × 11. Note that although both 0.2-approximate Pareto

frontiers in this example contain only Pareto-optimal solutions, this is not required by the definition

of approximate Pareto frontiers.
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Algorithm 3: The IsDominated function for LTMOA*-ε
1 Function IsDominated(n):
2 if ∃x ∈ Gtr

cl(sgoal) : x ⪯ε Tr(f(n)) then
3 return true
4 if ∃x ∈ Gtr

cl(s(n)) : x ⪯ Tr(g(n)) then
5 return true
6 return false

3.1.2 Relaxing the Pruning Condition

Perny and Spanjaard [51] suggest computing an ε-approximate Pareto frontier by relaxing the

pruning condition of a multi-objective search algorithm that computes the Pareto frontier: In-

stead of discarding nodes whose f -values are weakly dominated by the cost of a previously found

solution, we discard nodes whose f -values are ε-dominated by the cost of a previously found

solution. Doing so allows the search algorithm to prune more nodes and only requires a slight

modification to the algorithm. For example, Algorithm 3 shows the modified IsDominated func-

tion for a variant of LTMOA* that adopts this relaxed pruning condition, called LTMOA*-ε. The

only change is on Lines 2-3, where the modified IsDominated function returns true if there ex-

ists a vector in Gtr
cl(sgoal) that ε-dominates the truncated f -value of the given node n. Existing

work has also applied this technique to BOA*, resulting in an approximate variant of BOA* called

BOA*-ε [31]. The only difference between BOA* and BOA*-ε is on Line 21 of Algorithm 1, where

BOA*-ε discards a node n if gmin
2 (sgoal) is no larger than (1 + ε)f2(n).

One might consider further relaxing the pruning condition of a multi-objective search algo-

rithm by discarding a node n if its g-value is ε-dominated by the g-value of some expanded node

n′ that contains state s(n). For BOA*, this would require a change to Line 23 of Algorithm 1,

where the algorithm now discards a node n if gmin
2 (s(n)) is no larger than (1+ ε)g2(n). However,
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Figure 3.3: An example bi-objective search problem instance which shows that pruning a node
n if its g-value is ε-dominated by the g-value of some expanded node n′ that contains state s(n)
does not necessarily yield an ε-approximate Pareto frontier. The pair of numbers inside each state
shows the value of the perfect-distance heuristic.

Iter Open ⟨s(n),g(n), f(n)⟩ Generated ⟨s(n),g(n), f(n)⟩ Update of gmin
2 (s(n))

1
⟨sstart , (0, 0), (2, 10)⟩∗ ⟨s1, (1, 12), (2, 13)⟩

gmin
2 (sstart) = 0⟨s2, (1, 9), (3, 11)⟩

⟨s3, (1, 7), (4, 10)⟩

2
⟨s1, (1, 12), (2, 13)⟩∗ ⟨sgoal , (2, 13), (2, 13)⟩

gmin
2 (s1) = 12⟨s2, (1, 9), (3, 11)⟩

⟨s3, (1, 7), (4, 10)⟩

3
⟨sgoal , (2, 13), (2, 13)⟩∗

gmin
2 (sgoal ) = 13⟨s2, (1, 9), (3, 11)⟩

⟨s3, (1, 7), (4, 10)⟩

4 ⟨s2, (1, 9), (3, 11)⟩∗ ⟨s1, (2, 10), (3, 11)⟩ (pruned) gmin
2 (s2) = 9⟨s3, (1, 7), (4, 10)⟩

5 ⟨s3, (1, 7), (4, 10)⟩∗ ⟨s2, (2, 8), (4, 10)⟩ (pruned) gmin
2 (s3) = 7

6 empty

Table 3.1: Trace of Open, generated nodes, and gmin
2 in each iteration of Example 5 when solving

the example problem instance in Figure 3.3. “∗" marks the node that is extracted in that iteration.

the following counter-example shows that doing so does not necessarily yield an ε-approximate

Pareto frontier.

Example 5. Figure 3.3 shows an example bi-objective search problem instance. This problem in-

stance has three solutions, namely, solution π1 = [sstart , s1, sgoal ] with cost (2, 13), solution π2 =

[sstart , s2, s1, sgoal ] with cost (3, 11), and solution π3 = [sstart , s3, s2, s1, sgoal ] with cost (4, 10). We

consider the variant of BOA* that discards a node n if gmin
2 (s(n)) is no larger than (1 + ε)g2(n) and
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assume that ε = 0.2. Table 3.1 shows the trace of Open, generated nodes, and changes to gmin
2 in

each iteration of this variant of BOA*.

In Iteration 4, node ⟨s2, (1, 9), (3, 11)⟩ is expanded. Its child node ⟨s1, (2, 10), (3, 11)⟩ is pruned

because gmin
2 (s1) = 12 is no larger than (1 + ε) times the g2-value of this child node, which is

(1 + 0.2) · 10 = 12. Similarly, in Iteration 5, node ⟨s3, (1, 7), (4, 10)⟩ is expanded. Its child node

⟨s2, (2, 8), (4, 10)⟩ is pruned because gmin
2 (s2) = 9 is no larger than (1 + ε) times the g2-value of

this child node, which is (1 + 0.2) · 8 = 9.6.

In Iteration 3, the algorithm finds solution π1 = [sstart , s1, sgoal ]. Eventually, it returns Sols,

which contains only this one solution. However, Sols is not a 0.2-approximate Pareto frontier because

π3 = [sstart , s3, s2, s1, sgoal ] with cost (4, 10) is not 0.2-dominated by solution π1 with cost (2, 13).

Intuitively, the algorithm goes wrong when it discards a path ([sstart , s3, s2], which corresponds

to node ⟨s2, (2, 8), (4, 10)⟩) that can be extended to solution π3 because it is 0.2-dominated by some

path ([sstart , s2], which corresponds to node ⟨s2, (1, 9), (3, 11)⟩) that can be extended to solution π2 in

Iteration 5. It also discards the path ([sstart , s2, s1], which corresponds to node ⟨s1, (2, 10), (3, 11)⟩)

that can be extended to solution π2 because it is 0.2-dominated by some path ([sstart , s1], which

corresponds to node ⟨s1, (1, 12), (2, 13)⟩) that can be extended to solution π1 in Iteration 4. However,

the ε-dominance relation is not transitive: Although π1 0.2-dominates π2 and π2 0.2-dominates π3,

π1 does not 0.2-dominate π3. Therefore, a 0.2-approximate Pareto frontier for this problem instance

needs to contain solution π2 or π3.
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c1

c2
πtl

πbr

Figure 3.4: An example of path pair ⟨πtl, πbr⟩ (orange) and the set of paths that it represents (or-
ange and blue). Its g-value (c1(πtl), c2(π

br)) (black) weakly dominates the costs of all represented
paths.

3.1.3 PP-A*

PP-A* [31] is an approximate bi-objective search algorithm that finds an ε-approximate Pareto

frontier for a given approximation factor ε. Similar to BOA*, PP-A* maintains an Open list. Each

node in Open corresponds to a path pair PP = ⟨πtl, πbr⟩ (where “tl” and “br” stand for “top-

left” and “bottom-right,” respectively) with s(πtl) = s(πbr), c1(πtl) ≤ c1(π
br), and c2(πtl) ≥

c2(π
br). The path pair contains state s(PP) = s(πbr) and g-value (also called apex) g(PP) =

(c1(π
tl), c2(π

br)). Its f -value is defined as f(PP) = g(PP) + h(s(PP)). It is ε-bounded iff

c1(π
br) ≤ (1 + ε)c1(π

tl) and c2(πtl) ≤ (1 + ε)c2(π
br) or, equivalently, iff the costs of both paths

πtl and πbr ε-dominate the g-value of path pair PP .

While BOA* reasons about single paths, PP-A* represents sets of paths with the same last

state and similar costs as ε-bounded path pairs, which results in small numbers of path pair

expansions and thus small runtimes. During the search, PP-A* maintains the following properties

of a path pair and the set of paths that it represents: For an ε-bounded path pair ⟨πtl, πbr⟩, the

cost c(πtl) = (c1(π
tl), c2(π

tl)) of top-left path πtl is the lexicographically smallest cost of all paths

in this set, and the vector (c2(πbr), c1(π
br)) of bottom-right path πbr (called its reverse cost) is the

lexicographically smallest such vector of all paths in this set. Also, the g-value (c1(πtl), c2(π
br))
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c1

c2
πtl

πbr
πtl′ 

πbr′ 

merge

c1

c2
(= )πtlnew πtl

πbr
πtl′ 

(= )πbrnew πbr′ 

Figure 3.5: An example of merging path pairs ⟨πtl, πbr⟩ (orange) and ⟨πtl′ , πbr′⟩ (blue) into path
pair ⟨πtl

new, π
br
new⟩ (green).

of the path pair weakly dominates the costs of all paths in this set (because c1(πtl) is the smallest

c1-value of all paths in this set and c2(πbr) is the smallest c2-value of them), and both the top-left

and bottom-right paths ε-dominate all paths in this set [31]. See Figure 3.4 for a visualization of

a path pair and the set of paths that it represents.

Any two path pairs containing the same state can be merged into a single path pair, where

the top-left path of the merged path pair is the top-left path of the two path pairs with the lexi-

cographically smaller cost and the bottom-right path of the merged path pair is the bottom-right

path of the two path pairs with the lexicographically smaller reverse cost. See Figure 3.5 for a

visualization of the outcome.

Algorithm 4 shows the pseudocode of PP-A*. It starts with a single path pair ⟨[sstart], [sstart]⟩ in

Open (Line 1). In each iteration, PP-A* extracts a path pair fromOpen with the lexicographically

smallest f -value (Line 6). Both after extracting (that is, after Line 6) and after generating (that

is, after Line 17) a path pair, PP-A* performs dominance checks with the same pruning strategy

of BOA*-ε, that is, PP-A* discards a path pair PP if gmin
2 (sgoal) is no larger than (1 + ε)f2(PP)

(Line 20) or gmin
2 (s(PP)) is no larger than g2(PP) (Line 22).
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Algorithm 4: PP-A*
Input : A bi-objective problem instance ⟨G, sstart , sgoal⟩, a consistent heuristic function

h, and an approximation factor ε
Output: An ε-approximate Pareto frontier

1 Open← {⟨[sstart], [sstart]⟩}
2 Sols← ∅
3 foreach s ∈ S do
4 gmin

2 (s)←∞
5 while Open ̸= ∅ do
6 extract a path pair PP = ⟨πtl, πbr⟩ from Open with the lexicographically smallest

f -value
7 if IsDominated(PP) then
8 continue
9 gmin

2 (s(PP))← g2(PP)
10 if s(PP) = sgoal then
11 add πbr to Sols
12 continue
13 for each e ∈ out(s(PP)) do
14 PP ′ ← ⟨extend(πtl, e), extend(πbr, e)⟩
15 if IsDominated(PP ′) then
16 continue
17 AddToOpen(PP ′, Open)
18 return Sols
19 Function IsDominated(PP):
20 if gmin

2 (sgoal) ≤ (1 + ε)f2(PP) then
21 return true
22 if gmin

2 (s(PP)) ≤ g2(PP) then
23 return true
24 return false
25 Function AddToOpen(PP):
26 for PP ′ ∈ Open[s(PP)] do
27 PPnew ← merge(PP ,PP ′)
28 if PPnew is ε-bounded then
29 remove PP ′ from Open
30 add PPnew to Open
31 return
32 add PP to Open
33 return

Let PP be a path pair extracted by PP-A* from Open and not discarded after the dominance

checks. PP-A* then expands PP : If s(PP) = sgoal , PP-A* adds its bottom-right path to Sols
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(Line 11). Otherwise, PP-A* generates a child path pair PP ′ for each out-edge e of state s(PP).

The top-left and bottom-right paths of path pair PP ′ are the paths that extend the top-left and

bottom-right paths, respectively, of path pair PP with edge e (Line 14). Let Open[s] be the set

of path pairs in Open that contain state s. PP-A* checks on Line 17 if there exists a path pair

in Open[s(PP ′)] and results in an ε-bounded path pair when merged with path pair PP ′. If so,

PP-A* removes that path pair from Open and then adds the merged path pair to Open (Lines 29-

30). Otherwise, it adds path pair PP ′ to Open (Line 32). When Open becomes empty, PP-A*

terminates and returns Sols as an ε-approximate Pareto frontier (Line 18).

3.1.4 Other Related Work

Existing work [10, 74, 78, 51] has investigated Fully Polynomial-Time Approximation Schemes

(FPTAS) in the context of ε-approximate multi-objective search. The runtime complexities of

these FPTAS algorithms are often polynomial in the size of the graph and 1/ε. Unfortunately,

these algorithms are still impractical for large graphs, such as road networks, that often have

millions of states.

Existing work has also studied other schemes for approximating the Pareto frontier. One such

scheme is to compute the set Πsupport of all supported solutions [64, 88]. A supported solution is a

solution that minimizes a convex combination2 of the different objectives. A supported solution

is a Pareto-optimal solution but not necessarily vice versa. Existing algorithms for computing

Πsupport include an algorithm based on Dijkstra’s Algorithm [64] and an algorithm that performs

a series of single-objective searches [88]. Rivera, Baier, and Hernández [61] propose another

scheme for bi-objective search, which transforms the given bi-objective problem instance P to
2A convex combination is a linear combination where all coefficients are non-negative and sum to 1.
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another bi-objective problem instance P ′ whose costs are two different linear combinations of

the costs in P [61]. They show that the Pareto frontier for P ′ can be a much smaller subset

of the Pareto frontier for P and hence can be much faster to compute. Unlike ε-approximate

multi-objective search algorithms, these approximate schemes do not guarantee that they pro-

duce solutions that ε-dominate every Pareto-optimal solution.

3.2 A*pex

In this section, we introduce A*pex, a best-first multi-objective search algorithm that finds an

ε-approximate Pareto frontier for a given approximation factor ε.

In A*pex, as in PP-A*, nodes correspond to sets of paths with the same last state and similar

costs. But A*pex improves on the representation of these sets, which (1) allows for larger and

thus fewer sets of paths during the search and thus results potentially in a search that is more

efficient and (2) generalizes PP-A* from bi-objective search to multi-objective search with any

number of objectives. PP-A* includes only one path of a path pair in the solution set, namely the

bottom-right path. The top-left path is not used for this purpose. The g-value of a path pair can

be viewed as a vector whose first component is the smallest c1-value of all paths in the set of

paths that the path pair represents and whose second component is the smallest c2-value of all

paths in this set. Again, the top-left path is not used for this purpose. Therefore, in A*pex, we

choose to represent a set of paths with a single representative path and a g-value that is similar

to the one of PP-A*. Having only one representative path instead of two provides flexibility. For

example, the representative path can be chosen more freely than by PP-A*, as we will show in

Section 3.2.2. The representation of a set of paths can now easily be generalized from two to any
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c1
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π

Figure 3.6: An example of apex-path pair AP = ⟨A, π⟩ (red and orange) and the set of paths
ΠAP that it represents (orange and blue). Apex A weakly dominates the costs of all represented
paths.

number of objectives by extending the g-value from a vector of size two to a vector of a size that

equals the number of objectives. The ith component of the g-value is the smallest ci-value of all

paths in this set.

3.2.1 Apex-Path Pairs

Each node of A*pex is an ε-bounded apex-path pair AP = ⟨A, π⟩, where A is a N -dimensional

vector and π is a representative path withA ⪯ c(π). The apex-path pair contains state s(AP) =

s(π) and g-value (called apex) g(AP) = A. Its f -value is defined as f(AP) = g(AP) +

h(s(AP)). An apex-path pair AP = ⟨A, π⟩ is ε-bounded iff f(π) ⪯ε f(AP), where the f -value

of path π is defined as f(π) = c(π) + h(s(π)).

In A*pex, each apex-path pairAP = ⟨A, π⟩ corresponds to a set of pathsΠAP (which includes

π) with the same last state s(AP). A*pex does not storeΠAP explicitly during the search. Instead,

it only stores the apex A = minπ′∈ΠAP{c(π′)}, which is the component-wise minimum of (and

hence weakly dominates) the costs of all paths in ΠAP , and a representative path π ∈ ΠAP . See

Figure 3.6 for a visualization of an apex-path pair and the set of paths that it represents. The

following property shows that using an ε-bounded apex-path pair AP to represent ΠAP does
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not prevent us from finding a solution that ε-dominates any solution that extends some path in

ΠAP .

Property 3.1. Consider an apex-path pair AP = ⟨A, π⟩ and the set of paths ΠAP that AP corre-

sponds to. If AP is ε-bounded, every solution that extends some path π′ ∈ ΠAP is ε-dominated by

some solution that extends π.

Proof. By the definitions of AP and ΠAP , π and π′ have the same last state s(AP). Because AP

is ε-bounded, we have

f(π) ⪯ε f(AP)

= g(AP) + h(s(AP))

= A+ h(s(AP)).

(3.1)

Because A weakly dominates the costs of all paths in ΠAP (including π′), we have A ⪯ c(π′).

Combining this property and Eq. 3.1, we have

f(π) ⪯ε c(π
′) + h(s(AP))

= f(π′).

(3.2)

Consider any solution π′
sol that extends π′. Becauseh is required to be consistent, we have f(π′) ⪯

c(π′
sol). Let δ denote c(π′

sol)− f(π′), which is a non-negative vector. The cost of π′
sol can then be
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represented as c(π′
sol) = f(π′)+ δ. Consider solution πsol which extends π with the path πext that

extends π′ to π′
sol. The cost of πext is

c(πext) = c(π′
sol)− c(π′)

= f(π′) + δ − c(π′)

= c(π′) + h(s(π′)) + δ − c(π′)

= δ + h(s(π′))

= δ + h(s(AP)).

The cost of πsol can then be represented as

c(πsol) = c(π) + c(πext)

= c(π) + δ + h(s(AP))

= f(π) + δ.

Because δ ⪯ε δ (which holds because δ is a non-negative vector) and also because f(π) ⪯ε f(π
′)

(Eq. 3.2), we have f(π) + δ ⪯ε f(π
′) + δ, which is equivalent to c(πsol) ⪯ε c(π

′
sol)

We can extend an apex-path pair AP = ⟨A, π⟩ by an edge e. Let AP ′ denote the resulting

apex-path pair. The apex of AP ′ is the sum ofA and c(e), and the representative path of AP ′ is

path π extended by edge e. Conceptually, apex-path pairAP ′ corresponds to the set of pathsΠAP ′
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that extends every path in ΠAP by e. It is easy to verify that the apex of AP ′ is the component-

wise minimum of the costs of the paths in ΠAP ′ . The following property shows that the extend

operation preserves the ε-boundedness of apex-path pairs.

Property 3.2. Consider the apex-path pairAP ′ = ⟨A′, π′⟩ resulting from extending apex-path pair

AP = ⟨A, π⟩ with an edge e. AP ′ is ε-bounded if AP is ε-bounded.

Proof. Let s and s′ denote the states that AP and AP ′ contain, respectively. Assume that AP is

ε-bounded, that is, it satisfies

f(π) ⪯ε f(AP)

f(π) ⪯ε g(AP) + h(s)

c(π) + h(s) ⪯ε A+ h(s),

and, hence,

ci(π) + hi(s) ≤ (1 + ε) · (Ai + hi(s)), i = 1, 2 . . . N. (3.3)

Because the heuristic function h is consistent, we have hi(s) ≤ ci(e)+hi(s
′) for all i = 1, 2 . . . N .

Let δ denote ci(e) + hi(s
′) − hi(s). We have δ ≥ 0 and hence δ ≤ (1 + ε) · δ. By adding δ and

(1 + ε) · δ to the left and the right sides of Eq. 3.3, respectively, we have

ci(π) + hi(s) + δ ≤ (1 + ε) · (Ai + hi(s) + δ)

ci(π) + hi(s) + ci(e) + hi(s
′)− hi(s) ≤ (1 + ε) · (Ai + hi(s) + ci(e) + hi(s

′)− hi(s))

ci(π) + ci(e) + hi(s
′) ≤ (1 + ε) · (Ai + ci(e) + hi(s

′))
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Algorithm 5: The merge function for apex-path pairs
1 Function merge(AP = ⟨A, π⟩, AP ′ = ⟨A′, π′⟩):
2 Anew ← [min(A1, A

′
1),min(A2, A

′
2) . . .min(AN , A

′
N)]

3 πnew ← choose a path between π and π′

4 return ⟨Anew, πnew⟩

g1

g2

A π

A′ 

π′ 
g1

g2

A πnew

A′ 

π′ 

Anew

πnew

g1

g2

A π

A′ Anew

choose  
as the new representative path

π

choose  
as the new representative path

π′ 

merge

Figure 3.7: An example of merging apex-path pairs ⟨A, π⟩ (orange) and ⟨A′, π′⟩ (blue) into Apex-
path pair ⟨Anew, πnew⟩ (green).

for all i = 1, 2 . . . N , that is, c(π)+c(e)+h(s′) ⪯ε A+c(e)+h(s′). Because c(π′) = c(π)+c(e)

andA′ = A+ c(e), we have f(π′) ⪯ε f(AP ′). Thus, AP ′ is ε-bounded.

3.2.2 Merge Operation

Similar to PP-A*, A*pex can merge two apex-path pairs that contain the same state. Algorithm 5

shows the merge function for apex-path pairs. Conceptually, merging two apex-path pairs cor-

responds to merging the two sets of paths that these two apex-path pairs correspond to. Hence,

the apex of the merged apex-path pair is the component-wise minimum of the apexes of the two

apex-path pairs (Line 2). The representative path of the merged apex-path pair is either one of the
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two representative paths of the two apex-path pairs (Line 3). See Figure 3.7 for a visualization of

the two possible outcomes. Each of the two representative paths is considered a candidate for the

representative path of the merged apex-path pair if choosing it results in an ε-bounded merged

apex-path pair. Which candidate A*pex chooses on Line 3 does not affect its correctness but can

affect its efficiency. We consider the following methods:

• Random method: A*pex randomly chooses the representative path from the candidates.

• Lexicographically smallest reverse g-valuemethod: A*pex chooses the representative

path with the lexicographically smaller reverse g-value. If this path is not a candidate,

A*pex does not merge the apex-path pairs. In the bi-objective case, this method is similar

to how PP-A* merges path pairs, namely by picking the bottom-right path.

• Greedy method: A*pex chooses the candidate π with the larger slack

min
i=1.2...N

{
1 + ε− fi(π)/fi(AP)

ε

}
,

where AP is the resulting merged apex-path pair. The ith component of the f -value of

the representative path could be a factor of 1 + ε larger than the ith component of the

f -value of the apex-path pair but is only a factor of fi(π)/fi(AP) larger. The smaller the

difference between these two values, the better path π utilizes the leeway provided by the

approximation factor. The difference, which can range from zero to ε, is divided by ε to

normalize it and thus make the differences for different components comparable. Overall,

the expression above indicates how much room is left to merge the merged apex-path pair
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with other apex-path pairs in the future, and maximizing it chooses the candidate that

leaves more room for future merges.

3.2.3 Search Strategy

Algorithm 6 shows the pseudocode of A*pex. A*pex starts with a single apex-path pair ⟨0, [sstart]⟩

in Open (Line 1). In each iteration, A*pex extracts an apex-path pair from Open with the lexi-

cographically smallest f -value (Line 7). Both after extracting an apex-path pair from Open (that

is, after Line 7) and before attempting to add an apex-path pair to Open (that is, before Line 20),

A*pex performs dominance checks. A*pex uses the dimensionality reduction technique for the

dominance checks. It maintains a setGtr
cl(s) for each state s that contains the undominated trun-

cated g-values (or, in the bi-objective case, gmin
2 (s) for each state s that stores the minimum g2-

value) of all expanded apex-path pairs that contain state s. Additionally, A*pex maintains the set

Ctr
sol of undominated truncated costs of Sols.3 Its pruning strategy is similar to the ones of LT-

MOA* and EMOA*. Let AP denote the apex-path pair being checked, A*pex discards apex-path

pair AP if:

1. (Condition 1) there exists a solution in Sols whose cost ε-dominates f(AP) or

2. (Condition 2) there exists an expanded apex-path pair that contains the same state as AP

and whose g-value weakly dominates g(AP).
3PP-A* does not need tomaintain such an additional data structure for the following reason: In PP-A*, gmin

2 (sgoal)
is the minimum g2-value of all expanded path pairs that contain state sgoal . For each such expanded path pair, its
g2-value is equal to the c2-value of its bottom-right path, and its bottom-right path is a solution in Sols. Therefore,
gmin
2 (sgoal) is equal to the minimum c2-value of Sols. For A*pex, each vector in Gtr

cl(sgoal) is the truncated g-value
of an expanded apex-path pair that contains state sgoal , which is not necessarily equal to the truncated cost of the
representative path of this apex-path pair.
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Algorithm 6: A*pex
Input : A problem instance ⟨G, sstart , sgoal⟩, a consistent heuristic function h, and an

approximation factor ε
Output: An ε-approximate Pareto frontier

1 Open← {⟨0, [sstart]⟩}
2 Sols← ∅
3 Ctr

sol ← ∅
4 foreach s ∈ S do
5 Gtr

cl(s)← ∅
6 while Open ̸= ∅ do
7 extract an apex-path pair AP = ⟨A, π⟩ from Open with the lexicographically

smallest f -value
8 if IsDominated(AP) then
9 continue

10 Update(Gtr
cl(s(AP)),Tr(g(AP)))

11 if s(AP) = sgoal then
12 remove the solutions weakly dominated by π from Sols
13 Update(Ctr

sol,Tr(c(π)))
14 add π to Sols
15 continue
16 for e ∈ out(s(AP)) do
17 AP ′ ← ⟨A+ c(e), extend(π, e)⟩
18 if IsDominated(AP ′) then
19 continue
20 AddToOpen(AP ′)
21 return Sols
22 Function IsDominated(AP = ⟨A, π⟩):
23 if ∃x ∈ Ctr

sol : x ⪯ε Tr(f(AP)) then
24 return true
25 if ∃x ∈ Gtr

cl(s(AP)) : x ⪯ Tr(g(AP)) then
26 return true
27 return false
28 Function AddToOpen(AP):
29 for AP ′ ∈ Open[s(AP)] do
30 APnew ← merge(AP ,AP ′)
31 if APnew is ε-bounded then
32 remove AP ′ from Open
33 add APnew to Open
34 return
35 add AP to Open
36 return
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As we will show in Section 3.3, Condition 1 holds iff there exists a vector inCtr
sol that ε-dominates

Tr(f(AP)) (Lemma 3.3), and Condition 2 holds iff there exists a vector inGtr
cl(s(AP)) that weakly

dominates Tr(g(AP)) (Lemma 3.4). Conditions 1 and 2 are checked on Lines 23 and 25, respec-

tively.

When A*pex expands an apex-path pair that contains state sgoal , it adds the representative

path of this apex-path pair to Sols and updatesCtr
sol (Lines 13-14). When A*pex expands an apex-

path pair that contains a state s ̸= sgoal , it generates a child apex-path pairAP for each out-edge e

of state s by extending the expanded apex-path pair with edge e. Assume that the child apex-

path pairAP is not discarded after the dominance checks, and letOpen[s] be the set of apex-path

pairs in Open that contain state s. A*pex checks on Lines 29-34 if there exists an apex-path pair

AP ′ in Open[s(AP)] that results in an ε-bounded apex-path pair when merged with AP . If so,

A*pex removes AP ′ from Open and then adds the merged apex-path pair to Open (Lines 32-33).

Otherwise, it adds AP to Open (Line 35), just like PP-A*. When Open becomes empty, A*pex

terminates and returns Sols as an ε-approximate Pareto frontier (Line 21).

Example 6. We use the bi-objective search problem instance in Figure 2.1 to demonstrate how A*pex

works. Because this problem instance has only two objectives, we choose to use the minimum g2-value

gmin
2 (s) of all expanded nodes for each state s in the dominance checks. We use the lexicographically

smallest reverse g-value method for choosing the representative paths and assume that ε = 0.2.

Table 3.2 shows the trace of Open, generated apex-path pairs, and changes to gmin
2 in each itera-

tion of A*pex. In the table, we use ⟨s(AP), c(π), f(AP)⟩ to denote an apex-path pairAP = ⟨A, π⟩.

In Iterations 2, 3, and 5, A*pex merges the generated apex-path pairs with some apex-path pairs

in Open. For example, in Iteration 2, A*pex generates apex path pair AP = ⟨s2, (2, 2), (6, 6)⟩
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Iter Open ⟨s(AP), c(π), f(AP)⟩ Generated ⟨s(AP), c(π), f(AP)⟩ Update of gmin
2 (s(AP))

1 ⟨sstart , (0, 0), (6, 5)⟩∗ ⟨s1, (1, 1), (6, 6)⟩ gmin
2 (sstart) = 0⟨s2, (3, 1), (7, 5)⟩

2 ⟨s1, (1, 1), (6, 6)⟩∗ ⟨s2, (2, 2), (6, 6)⟩ (merged)
gmin
2 (s1) = 1⟨s2, (3, 1), (7, 5)⟩ ⟨s3, (3, 4), (6, 7)⟩

3 ⟨s2, (3,1), (6,5)⟩∗ ⟨s3, (4, 2), (6, 5)⟩ (merged)
gmin
2 (s2) = 1⟨s3, (3, 4), (6, 7)⟩

4 ⟨s3, (4,2), (6,5)⟩∗ ⟨s4, (5, 9), (10, 10)⟩ gmin
2 (s3) = 2⟨s5, (5, 3), (6, 5)⟩

5 ⟨s5, (5, 3), (6, 5)⟩∗ ⟨sgoal , (7, 10), (6, 10)⟩ gmin
2 (s5) = 3⟨s4, (5, 9), (10, 10)⟩ ⟨s4, (6, 4), (11, 5)⟩ (merged)

6 ⟨sgoal , (7, 10), (6, 10)⟩∗ gmin
2 (sgoal ) = 10⟨s4, (6,4), (10,5)⟩

7 ⟨s4, (6, 4), (10, 5)⟩∗ ⟨sgoal , (12, 5), (10, 5)⟩ gmin
2 (s4) = 4

8 ⟨sgoal , (12, 5), (10, 5)⟩∗ gmin
2 (sgoal ) = 5

9 empty

Table 3.2: Trace of Open, generated apex-path pairs, and gmin
2 in each iteration of A*pex when

solving the example problem instance in Figure 2.1. “∗" marks the apex-path pair that is extracted
in that iteration. Boldface font marks the apex-path pairs that result frommerging two apex-path
pairs in the previous iteration.

and merges it with apex-path pair AP ′ = ⟨s2, (3, 1), (7, 5)⟩ in Open. As shown in Figure 2.1, the

heuristic for state s2 is (4, 4). The g-values for AP and AP ′ are (2, 2) and (3, 1), respectively.

The new apex after merging is (2, 1), and hence the new f -value is (6, 5). A*pex chooses the path

with cost (3, 1) as the new representative path. The resulting apex path pair is 0.2-bounded because

(3, 1) + (4, 4) ⪯0.2 (6, 5).

In Iterations 6 and 8, A*pex expands apex-path pairs that contain state sgoal and adds solutions

with costs (7, 10) and (12, 5) to Sols, respectively. The set of solutions that A*pex returns is the 0.2-

approximate Pareto frontier in Figure 3.2b. It takes A*pex 9 iterations to solve this problem instance,

which is much fewer than the 18 iterations that it takes of BOA*, as previously shown in Example 3.
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3.3 Correctness and Completeness

In this section, we prove the completeness and correctness of A*pex. Theorem 3.1 shows that

A*pex terminates in finite time and computes an ε-approximate Pareto frontier.

Lemma 3.1. A*pex adds only ε-bounded apex-path pairs to Open.

Proof. We prove this lemma by induction on iterations. On Line 1, A*pex adds apex-path pair

⟨0, [sstart]⟩ to Open. Apex-path pair ⟨0, [sstart]⟩ is ε-bounded because the f -value of its represen-

tative path is equal to (and hence weakly dominates) its f -value. In each iteration, A*pex extracts

an apex-path pair fromOpen. Assume that this apex-path pair is ε-bounded. There are two cases

where A*pex adds apex-path pairs to Open:

1. On Line 33, A*pex adds a merged apex-path pairAPnew to Open. Apex-path pairAPnew is

ε-bounded because of the condition on Line 31.

2. On Line 35, A*pex adds an apex-path pairAP toOpen. AP extends the extracted apex-path

pair and is ε-bounded because of Property 3.2.

By induction, A*pex adds only ε-bounded apex-path pairs to Open.

Lemma3.2. The sequence of extracted apex-path pairs hasmonotonically non-decreasing f1-values.

Proof. Consider an apex-path pair AP extracted by A*pex from Open. AP has the smallest f1-

value of all apex-path pairs in Open because its f -value is the lexicographically smallest one.

When A*pex expands AP , the f1-value of any generated apex-path pair is no smaller than that

of AP because the heuristic is consistent. When A*pex adds such a generated apex-path pair to

48



Open, it might merge this apex-path pair with another apex-path pair in Open, whose f1-value

is also no smaller than f1(AP). The apex-path pair resulting from the merge operation cannot

have an f1-value smaller than f1(AP) as well. Thus, the f1-values of all apex-path pairs that are

added to Open when expanding AP are no smaller than f1(AP). Therefore, the f1-value of the

apex-path pair extracted in the next iteration are no smaller than f1(AP).

Lemma 3.3. There exists a truncated cost in Ctr
sol that ε-dominates the truncated f -value of apex-

path pair AP on Line 23 iff there exists a solution in Sols whose cost ε-dominates the f -value of

apex-path pair AP .

Proof. Assume that there exists a solution πsol in Sols whose cost ε-dominates the f -value of

apex-path pair AP . Because A*pex has added Tr(c(πsol)) to Ctr
sol on Line 13, there must exist

some truncated cost x in Ctr
sol that weakly dominates Tr(c(πsol)), which in turn ε-dominates

the truncated f -value of apex-path pair AP . Therefore, x ε-dominates the truncated f -value of

apex-path pair AP .

Assume that there exists a truncated cost x in Ctr
sol that ε-dominates the truncated f -value of

apex-path pairAP . LetAP sol = ⟨Asol, πsol⟩ denote the apex-path pair with which A*pex reached

Line 13 and added x to Ctr
sol. From Line 13, we have Tr(c(πsol)) = x and hence

Tr(c(πsol)) ⪯ε Tr(f(AP)). (3.4)

According to Lemma 3.1, AP sol is ε-bounded. We have c1(πsol) = f1(πsol) ≤ (1 + ε)f1(AP sol).

According to Lemma 3.2 and also because AP sol is extracted before AP , f1(AP sol) ≤ f1(AP).

Therefore, we have c1(πsol) ≤ (1 + ε)f1(AP). By combining this property and Eq. 3.4, we have
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c(πsol) ⪯ε f(AP). Therefore, there exists a solution πsol in Sols whose cost ε-dominates the

f -value of apex-path pair AP .

Lemma 3.4. There exists a truncated g-value inGtr
cl(s(AP)) that weakly dominates the truncated

g-value of apex-path pair AP on Line 25 iff there exists an expanded apex-path pair AP ′ that

contains state s(AP) and whose g-value weakly dominates the g-value of apex-path pair AP .

Proof. Assume that there exists an expanded apex-path pair AP ′ that contains state s(AP) and

whose g-value weakly dominates the one of apex-path pair AP (that is, g(AP ′) ⪯ g(AP)).

Because A*pex has added Tr(g(AP ′) to Gtr
cl(s(AP)) on Line 10, there must exist some vector x

inGtr
cl(s(AP)) that weakly dominates Tr(g(AP)).

Assume that there exists a truncated g-value inGtr
cl(s(AP)) that weakly dominates the trun-

cated g-value of apex-path pair AP . Let apex-path pair AP ′ be the expanded apex-path pair

that contains state s(AP) and with which Line 10 was executed to add this truncated g-value

to Gtr
cl(s(AP)). Hence, we have Tr(g(AP ′)) ⪯ Tr(g(AP)). It holds that f1(AP ′) ≤ f1(AP)

according to Lemma 3.2. Because s(AP) = s(AP ′), we also have g1(AP ′) ≤ g1(AP). Thus, the

g-value of apex-path pair AP ′ weakly dominates the one of apex-path pair AP .

Lemma 3.5. If the apex of an apex-path pair weakly dominates a vector and the apex-path pair is

merged with another apex-path pair, then the apex of the merged apex-path pair weakly dominates

the vector as well.

Proof. The apex of the merged apex-path pair is the component-wise minimum of the apexes of

the two merged apex-path pairs.
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For the rest of this section, we introduce the following notation for ease of presentation: Given

a solution πsol that traverses the sequence of states [s1(= sstart), s2 . . . sL(= sgoal)], we use π(l)
sol ,

l = 1, 2 . . . L, to denote its prefix that traverse the first l states [s1, s2 . . . sl] of πsol.

Lemma3.6. Consider any solution πsol and let [s1, s2 . . . sL] denote the sequence of states it traverses.

At the beginning of each iteration of A*pex (that is, before executing Line 7), if A*pex has expanded

(that is, reached Line 11 with) an apex-path pair AP with g(AP) ⪯ c(π
(j)
sol ) and s(AP) = sj for

some j, then there exists (1) an apex-path pairAP ′ inOpen with g(AP ′) ⪯ c(π
(k)
sol ) and s(AP

′) =

sk for some k > j or (2) a solution in Sols that ε-dominates πsol.

Proof. We prove this lemma by induction on j, starting with j = L and going backward. If A*pex

has expanded an apex-path pair AP with g(AP) ⪯ c(π
(L)
sol ) and s(AP) = sL(= sgoal), A*pex

has added the representative path of AP to Sols on Line 14. Because the heuristic is consistent,

we have h(s(AP)) = h(sgoal) = 0. Because AP is ε-bounded (according to Lemma 3.1), the

cost of its representative path ε-dominates its f -value f(AP) (which is equal to g(AP) because

h(s(AP)) = 0) and hence ε-dominates c(π(L)
sol ).4 Because A*pex removes a solution from Sols

only if it is weakly dominated by a new solution (Line 12), there must exist some solution in Sols

that ε-dominates πsol when A*pex reaches the beginning of all following iterations. Therefore,

the lemma holds for j = L.

Assume that the lemma holds for j = l+1, l ≤ L− 1, and A*pex has expanded an apex-path

pair AP = ⟨A, π⟩ with g(AP) ⪯ c(π
(l)
sol) and s(AP) = sl. Consider the iteration in which AP

was expanded and the child apex-path pair AP ′ = ⟨A′, π′⟩ of AP created on Line 17 for the lth
4Consider any ε-value and vectors x, y, and z. If x ⪯ε y and y ⪯ z, then x ⪯ε z.
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edge e in πsol, which is from state sl to statesl+1. Apex-path pair AP ′ contains state sl+1, and its

apex weakly dominates the cost of path π(l+1)
sol , because

A′ =A+ c(e)

=g(AP) + c(e)

⪯c(π(l)
sol) + c(e)

=c(π
(l+1)
sol ).

(3.5)

Because the heuristic is consistent, we have c(π(l+1)
sol ) + h(sl+1) ≺ c(πsol). Combining this and

Eq. 3.5, we have

f(AP ′) =g(AP ′) + h(s(AP ′))

=A′ + h(s(AP ′))

⪯c(π(l+1)
sol ) + h(s(AP ′))

=c(π
(l+1)
sol ) + h(sl+1)

⪯c(πsol).

(3.6)

We distinguish the following cases:

1. Apex-path pair AP ′ was pruned because the condition on Line 23 held. According to

Lemma 3.3, there existed some solution in Sols whose cost ε-dominated the f -value of

AP ′, which in turn weakly dominated the cost of πsol (because of Eq. 3.6). Because A*pex

removes a solution from Sols only if it is weakly dominated by a new solution (Line 12),
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there must exist some solution in Sols that ε-dominates solution πsol when A*pex reaches

the beginning of all following iterations. Thus, the lemma holds for j = l.

2. Apex-path pair AP ′ was pruned because the condition on Line 25 held, namely, there ex-

isted a truncated g-value in GT
cl(s(AP ′)) that weakly dominated the truncated g-value of

AP ′. Then, according to Lemma 3.4, at the time AP ′ was pruned, A*pex had expanded an

apex-path pair AP ′′ that contains state sl+1 and whose apex weakly dominates the apex

of AP ′ (and hence the cost of path π(l+1)
sol ). Because we assume that the lemma holds for

j = l + 1, when A*pex reaches the beginning of all following iterations, there exists (1) an

apex-path pairAP ′′′ inOpenwith g(AP ′′′) ⪯ c(π
(k)
sol ) and s(AP

′′′) = sk for some k > l+1

(and hence also k > l) or (2) a solution in Sols that ε-dominates πsol. Therefore, the lemma

holds for j = l.

3. Otherwise, A*pex executed Line 20 to add apex-path pairAP ′ toOpen, perhaps after merg-

ing it with another apex-path pair on Line 30. A*pex might merge it several (more) times

with other apex-path pairs on Line 30. The apex of the resulting apex-path pairAP ′′ weakly

dominates c(π(l+1)
sol ) because of Eq. 3.5 and Lemma 3.5. When A*pex reaches the beginning

of an iteration again, we further distinguish the following subcases:

(a) Apex-path pair AP ′′ is still in Open. The lemma holds.

(b) Apex-path pairAP ′′ has been extracted fromOpen and pruned because of the condi-

tions on Lines 23 or 25 in a previous iteration. LikeAP ′,AP ′′ contains state sl+1 and

its apex weakly dominates the cost of path π(l+1)
sol . We can apply the same arguments

in cases 1 and 2 for AP ′ to AP ′′ and show that the lemma holds.
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(c) Apex-path pairAP ′′ has been extracted fromOpen and expanded in a previous itera-

tion. Because we assume that the lemma holds for j = l+1, when A*pex reaches the

beginning of all following iterations, there exists (1) an apex-path pair AP ′′′ in Open

with g(AP ′′′) ⪯ c(π
(k)
sol ) and s(AP

′′′) = sk for some k > l+ 1 (and hence also k > l)

or (2) a solution in Sols that ε-dominates πsol. Therefore, the lemma holds for j = l.

Therefore, by induction, the lemma holds for all j = 1, 2 . . . L.

Lemma3.7. Consider any solution πsol and let [s1, s2 . . . sL] denote the sequence of states it traverses.

At the beginning of each iteration of A*pex, there always exists (1) an apex-path pair AP in Open

that satisfies g(AP) ⪯ c(π
(j)
sol ) and s(AP) = sj for some j or (2) a solution in Sols that ε-dominates

πsol.

Proof. Consider the first apex-path pair that A*pex adds to Open, that is, apex-path pair AP0 =

⟨0, [sstart]⟩. At the beginning of the first iteration of A*pex, the Lemma holds becauseAP0 satisfies

g(AP0) ⪯ c(π
(1)
sol ) (because both g(AP0) and c(π

(1)
sol ) are 0) and s(AP0) = s1. A*pex then

expands AP0. The lemma holds for all future iterations according to Lemma 3.6.

Lemma 3.8. A*pex does not expand an apex-path pair AP if there exists a solution πsol with

c(πsol) ≺ f(AP).

Proof. Consider the case where A*pex extracts an apex-path pair AP from Open on Line 7 and

there exists a solution πsol with c(πsol) ≺ f(AP). We prove this lemma by showing that A*pex

will not expand AP . According to Lemma 3.7, we distinguish two cases:

1. There exists an apex-path pairAP ′ in Open that satisfies g(AP ′) ⪯ c(π
(j)
sol ) and s(AP

′) =

sj for some j. Because the heuristic is consistent, we have c(π
(j)
sol ) + h(sj) ≺ c(πsol).
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We have f(AP ′) = g(AP ′) + h(s(AP ′)) ⪯ c(π
(j)
sol ) + h(sj) ⪯ c(πsol). Hence, we have

f(AP ′) ⪯ c(πsol) ≺ f(AP). A*pex would not extract AP from Open while AP ′ is in

Open becauseA*pex extracts the apex-path pair with the lexicographically smallest f -value.

Therefore, this case cannot happen.

2. There exists a solution π′
sol in Sols that ε-dominates πsol. Then, c(π′

sol) ε-dominates c(πsol),

which in turn dominates f(AP). According to Lemma 3.3, there exists a truncated cost in

Ctr
sol that ε-dominates the truncated f -value of AP . Therefore, A*pex will prune AP on

Line 9 because of the condition on Line 23.

Theorem 3.1. A*pex terminates in finite time. For any solution πsol, there exists, when A*pex ter-

minates, a solution in Sols that ε-dominates solution πsol.

Proof. Consider any solution πsol and any expanded apex-path pair AP = ⟨A, π⟩. Because

A*pex generates only ε-bounded apex-path pairs (according to Lemma 3.1), f(π)must ε-dominate

f(AP) (that is, ci(π)+hi(s(AP)) ≤ (1+ε)fi(AP) for all i = 1, 2 . . . N ). According to Lemma 3.8,

f(AP) is not dominated by c(πsol). Hence, fi(AP) ≤ ci(πsol) must hold for some i. Therefore,

ci(π) + hi(s(AP)) ≤ (1 + ε)ci(πsol) must hold for some i. Because heuristic h is non-negative,

ci(π) ≤ (1 + ε)ci(πsol) must hold for some i for the representative path π of any expanded apex-

path pair. Because the graph is finite and has positive edge costs, one can extend a path only a

finite number of times before the resulting path π′ does not satisfy ci(π′) ≤ (1+ε)ci(πsol) for all i.

Thus, only a finite number of representative paths can exist for the apex-path pairs expanded by

A*pex. Because A*pex never creates duplicate representative paths, there are only a finite number

of apex-path pairs that A*pex can expand (and generate). A*pex terminates in finite time.
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Consider the beginning of the last iteration of A*pex before it terminates, where Open be-

comes empty. According to Lemma 3.7, for any solution πsol, there exists a solution in Sols that

ε-dominates πsol.

3.4 Experimental Evaluation

In our experimental evaluation, we compare A*pex with BOA*, BOA*-ε, and PP-A* on problem

instances with two objectives (Section 3.4.1) and A*pex with LTMOA* and LTMOA*-ε on problem

instances with more than two objectives (Section 3.4.2). We implement all algorithms in C++5 and

run all experiments on a MacBook with an M1 Pro chip and 32GB of memory. We use the perfect-

distance heuristic for all problem instances and algorithms. The runtime limit for solving each

problem instance is five minutes.

We use different variants of A*pex with different approaches for choosing the new represen-

tative paths when merging apex-path pairs:

1. A*pex-random uses the Random method.

2. A*pex-rlex uses the Lexicographically smallest reverse g-value method.

3. A*pex-greedy uses the Greedy method.

For each problem instance and each algorithm, we evaluate the approximation factors ε = 0.001,

0.01, 0.1, and 0.2.
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Figure 3.8: Results for BOA*, BOA*-ε, PP-A*, and different variants of A*pex on bi-objective prob-
lem instances with different approximation factors ε.
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3.4.1 Problem Instances with Two Objectives

In this section, we compare different variants of A*pex with BOA*, BOA*-ε, and PP-A* on problem

instances with two objectives. We use five road networks from the 9th DIMACS Implementation

Challenge,6 namely, the NY road network (264K states and 730K edges), the FLA road network

(1.1M states and 2.7M edges), the CAL road network (1.9M states and 4.7M edges), the LKS road

network (2.8M states and 6.9M edges), and the CTR road network (14.1M states and 34.3M edges).

We use the two objectives that are available in the benchmark, namely travel time and travel

distance. We use the 100 problem instances used by Ahmadi et al. [2] for each road network.

Figure 3.8 shows the numbers of solved problem instances, average runtimes (in seconds), and

average numbers of node expansions of all algorithms and speed-ups of BOA*-ε, PP-A*, and all

variants of A*pex over BOA* with respect to their average runtimes. All averages are calculated

over the problem instances solved by all algorithmswithin the runtime limit for all approximation

factors. All variants of A*pex have larger numbers of solved problem instances, smaller average

numbers of node expansions, and smaller average runtimes than BOA*, BOA*-ε, and PP-A* in

most cases. Among the different variants of A*pex, A*pex-greedy slightly outperforms the other

two variants. The numbers of solved instances of A*pex-greedy are at least as high as the ones

of A*pex-rlex and A*pex-random in most cases.

Figure 3.9 shows comparisons of the individual runtimes (in seconds) between A*pex-greedy

and BOA*, BOA*-ε, and PP-A* on all problem instances. The x- and y-coordinates of each point

show the runtimes of the baseline algorithm and A*pex-greedy, respectively, for a problem in-

stance. Different markers represent different approximation factors ε. A*pex-greedy outperforms
5https://github.com/HanZhang39/MultiObjectiveSearch
6http://www.diag.uniroma1.it/challenge9/download.shtml

58

https://github.com/HanZhang39/MultiObjectiveSearch
http://www.diag.uniroma1.it/challenge9/download.shtml


10 2 100 102

BOA*

10 3

10 2

10 1

100

101

102
A*

pe
x-

gr
ee

dy
  0.10x

1x

10x

100x

1000x

= 0.001
= 0.01
= 0.1
= 0.2

10 2 100 102

BOA*-

10 3

10 2

10 1

100

101

102

A*
pe

x-
gr

ee
dy

  0.10x

1x

10x

100x

1000x

10 2 100 102

PP-A*

10 3

10 2

10 1

100

101

102

A*
pe

x-
gr

ee
dy

  0.10x

1x

10x

100x

1000x

Figure 3.9: Runtime comparisons between A*pex-greedy and different algorithms on bi-objective
road-network problem instances with different approximation factors.

all three baseline algorithms except on some easy problem instances where BOA*-ε and PP-A* are

faster than A*pex-greedy. As the approximation factor increases, the speed-ups of A*pex-greedy

over BOA* become more substantial. For all three baseline algorithms, the speed-ups of A*pex-

greedy are more substantial on hard problem instances (represented by the top-right markers).

3.4.2 Problem Instances with More than Two Objectives

In this section, we compare different variants of A*pex with LTMOA* and LTMOA*-ε on problem

instances with more than two objectives. We use the NY road network from the 9th DIMACS

Implementation Challenge. In addition to travel time (t) and travel distance (d), we use the eco-

nomic cost (m) [54], the number of edges (l) [47], and a random integer from 1 to 100 (r) [36] as

the third, fourth, and fifth objectives, respectively. We use the same 100 problem instances used

by Sedeño-Noda and Colebrook [65] and Ahmadi et al. [2].

Figure 3.10 shows the numbers of solved problem instances, average runtimes (in seconds),

and average numbers of node expansions of all algorithms and the speed-ups of LTMOA*-ε and
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Figure 3.10: Results for LTMOA*, LTMOA*-ε, and different variants of A*pex on road-network
problem instances with different objectives and approximation factors.

all variants of A*pex over LTMOA* with respect to their average runtimes. All averages are cal-

culated over problem instances solved by all algorithms within the runtime limit for all approx-

imation factors. Consider different combinations of numbers of objectives and approximation

factors. All variants of A*pex have smaller average numbers of node expansions than LTMOA*

and LTMOA*-ε for all combinations. However, the average runtimes of A*pex are larger than

the ones of LTMOA* and LTMOA*-ε for ε = 0.001, which is due to the runtime overhead of
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Figure 3.11: Runtimes of LTMOA* and A*pex-greedy on road-network problem instances with
different objectives and approximation factors.

A*pex from iterating over Open and merging apex-path pairs. For all other combinations, the

average runtimes of all variants of A*pex are smaller than the ones of LTMOA* and LTMOA*-ε.

The speed-ups of LTMOA*-ε and different variants of A*pex over LTMOA* increase as the ap-

proximation factor ε increases. However, the speed-ups of LTMOA*-ε are much less substantial

than the speed-ups of the different variants of A*pex for larger approximation factors. Similar to

the results for the bi-objective problem instances, the results for the problem instances with more

than two objectives show that A*pex-greedy slightly outperforms the other two A*pex variants.

The numbers of solved instances of A*pex-greedy are at least as high as the ones of A*pex-rlex

and A*pex-random.

Figure 3.11 shows the runtime comparisons between LTMOA* and A*pex-greedy for different

numbers of objectives, and Figure 3.12 shows the runtime comparisons between LTMOA*-ε and

A*pex-greedy for different numbers of objectives. On problem instances with approximation fac-

tor ε = 0.001, A*pex-greedy has similar runtimes as LTMOA* and LTMOA*-ε. On most problem

instances with larger approximation factors, A*pex-greedy outperforms LTMOA* and LTMOA*-

ε. The speed-up of A*pex-greedy over LTMOA* increases as the approximation factor increases.
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Figure 3.12: Runtimes of LTMOA*-ε and A*pex-greedy on road-network problem instances with
different objectives and approximation factors.

For an approximation factor of 0.2, the speed-ups of A*pex-greedy over LTMOA* can be more

than 1000×.

3.5 Summary

In this chapter, we introduced A*pex, an approximate multi-objective search algorithm that finds

an ε-approximate Pareto frontier for a given approximation factor ε. It builds upon PP-A* but

(1) makes PP-A* more efficient for bi-objective search and (2) generalizes it from two objectives

to any number of objectives. We analyzed the correctness and completeness of A*pex and ex-

perimentally demonstrated its efficiency advantage over state-of-the-art multi-objective search

algorithms. Our results validate the hypothesis that one can find an approximate Pareto frontier

much faster than the Pareto frontier, and the runtime decreases as the given approximation factor

increases.
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3.6 Extensions

This chapter showed that, in multi-objective search, apex-path pairs can represent sets of paths

while bounding the approximation factor of the resulting solution sets. We might be able to ap-

ply similar techniques to different problems and develop efficient approximate/suboptimal algo-

rithms for them. This section gives a brief overview of our works on two such problems, namely,

the Weight-Constrained Shortest Path (WCSP) problem (Section 3.6.1) and the Multi-Objective

Multi-Agent Path Finding (MO-MAPF) problem (Section 3.6.2).

3.6.1 The Weight-Constrained Shortest Path Problem

Given a bi-objective search graph, a start state, a goal state, and a weight limit W , the Weight-

Constrained Shortest Path (WCSP) problem is the problem of computing a path from the start

state to the goal state that minimizes the c1-value under the constraint that the c2-value is no

larger than W . The WCSP problem is important for many applications. In an electric vehicle

domain, for example, the graph represents a road network, and the c1- and c2-values correspond

to the driving time and the battery consumption, respectively [7]. Here, a desired route mini-

mizes the driving time without depleting the battery. The WCSP problem is also important in

the contexts of column generation [89] and vehicle routing [4]. The WCSP problem is NP-hard

to solve optimally [32, 44].

A WCSP problem instance is specified by a tuple P = ⟨G, sstart, sgoal,W ⟩, where G is a graph

with two costs, sstart is the start state, sgoal is the goal state, andW ∈ R>0 is the weight limit. A

(WCSP) solution π is a path from sstart to sgoal with c2(π) ≤ W . An optimal solution is a solution

with the minimum c1-value, denoted as c∗1, of all solutions.
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W π*
π̃

Figure 3.13: Example of the Pareto frontier (whose costs are shown by the orange dots) and an
(ε, 0)-approximate Pareto frontier (whose costs are shown by the blue dots) for a WCSP problem
instance. The shaded region shows the costs that are (ε, 0)-dominated by at least one blue dot.
Solutions π∗ and π̃ are an optimal solution and a (1+ε)-suboptimal solution of theWCSP instance,
respectively.

We have proposed WC-A*pex [81], a bounded-suboptimal WCSP algorithm. Given a WCSP

problem instance and a non-negative approximate factor ε, WC-A*pex finds a solution whose c1-

value is no larger than (1 + ε)c∗1. To describe WC-A*pex, we need to generalize the definition of

ε-dominance and allow different approximation factors for c1 and c2. We say that a path π (ε, 0)-

dominates another path π′ iff c1(π) ≤ (1 + ε)c1(π
′) and c2(π) ≤ c2(π

′). An (ε, 0)-approximate

Pareto frontier Πε,0 is a set of paths from sstart to sgoal such that every path from sstart to sgoal

is (ε, 0)-dominated by at least one path in Πε,0. The following property shows that a (1 + ε)-

suboptimal solution for a WCSP problem instance can be found in an (ε, 0)-approximate Pareto

frontier:

Property 3.3. Given a WCSP instance P = ⟨G, sstart, sgoal,W ⟩ and ε ≥ 0, any (ε, 0)-approximate

Pareto frontier (from sstart to sgoal ) Πε,0 contains a (1+ ε)-suboptimal solution for P if a solution of

P exists.
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Proof. Because a solution of P exists, there exists an optimal solution π∗ of P . By the definition

of an (ε, 0)-approximate Pareto frontier, there exists a path π̃ ∈ Πε,0 with c1(π̃) ≤ (1+ε) · c1(π∗)

and c2(π̃) ≤ c2(π
∗) ≤ W . We can see that π̃ is a (1 + ε)-suboptimal solution of P .

See Figure 3.13 for a visualization of an (ε, 0)-approximate Pareto frontier and a (1 + ε)-

suboptimal solution of aWCSP instance. Based on this property, WC-A*pex combinesWC-A* [3],

a state-of-the-art optimal WCSP algorithm, and A*pex. It uses apex-path pairs as its search nodes

and guarantees that all apex-path pairs are (ε, 0)-bounded during its search. An apex-path pair

⟨A, π⟩ is (ε, 0)-bounded iff c1(π) ≤ (1 + ε)A1 and c2(π) ≤ A2. In Theorem 1 of our paper [81],

we show that WC-A*pex finds a (1 + ε)-suboptimal solution given a WCSP problem instance

for which a solution exists. Our experimental [81] results show that WC-A*pex with ε = 0.01

(that is, with a guaranteed suboptimality of at most 1%) achieves a speed-up of up to an order of

magnitude over WC-A*.

3.6.2 The Multi-Objective Multi-Agent Path Finding Problem

The Multi-Agent Path Finding (MAPF) problem [68] is the problem of finding a set of collision-

free paths for a team of agents. It is related to many real-world applications [79, 48]. A (MAPF)

solution is a set of collision-free paths, one for each agent. Computing minimum-cost solutions

of MAPF problem instances is known to be NP-hard [80, 45]. The Multi-Objective Multi-Agent

Path Finding (MO-MAPF) problem [56] generalizes the MAPF problem by considering multiple

costs.

Most existing MO-MAPF algorithms, such as MO-M* [57], MO-CBS [56], and BB-MO-

CBS [55], aim to compute the Pareto frontier. However, computing the Pareto frontier can be
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very time-consuming. We have introduced BB-MO-CBS-pex [77], an approximate MO-MAPF al-

gorithm that computes an ε-approximate Pareto frontier for a given approximation factor ε. BB-

MO-CBS-pex builds upon BB-MO-CBS [55], a state-of-the-art MO-MAPF algorithm, and lever-

ages A*pex to speed up different parts of BB-MO-CBS. In our paper, we also provide two speed-

up techniques for BB-MO-CBS-pex. Additionally, we introduce another approximate MO-MAPF

algorithm, called BB-MO-CBS-k, which builds upon BB-MO-CBS-pex and computes up to k so-

lutions for a given value of k. BB-MO-CBS-k is useful when it is unclear how to determine an

appropriate approximation factor but the desired number of solutions is known.

Our experimental results show that both BB-MO-CBS-pex and BB-MO-CBS-k solve signif-

icantly more instances than BB-MO-CBS for different approximation factors and k-values, re-

spectively. Additionally, we compare BB-MO-CBS-pex with a baseline approximate variant of

BB-MO-CBS and show that BB-MO-CBS-pex achieves speed-ups up to two orders of magnitude

over the baseline.
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Chapter 4

Speeding up Multi-Objective Search via Anytime

Algorithms

In practice, we often have limited time available to solve a multi-objective search problem in-

stance. Computing the Pareto frontier can be impractical in such cases. Chapter 3 has shown that

an approximate multi-objective search algorithm, such as A*pex, can compute an ε-approximate

Pareto frontier much faster than computing the Pareto frontier. However, it is often unclear how

to specify the approximation factor with which the approximate multi-objective search algo-

rithm makes the best use of the available time. If there is time available even after the algorithm

terminates, we might want to continue computing more solutions. In this chapter, we are inter-

ested in computing solutions that collectively approximate the Pareto frontier while making use

of the available time as much as possible. To achieve this, we investigate anytime approximate

multi-objective search algorithms, which compute an initial approximate frontier quickly and

then work on finding better and better approximate frontiers until eventually finding the entire

Pareto frontier.
This chapter is based on [85].
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Figure 4.1: The solutions found by BOA* and A-A*pex for a bi-objective search problem instance
on the FLA road network. Different markers indicate different time ranges when the solutions
were found.

We introduce an anytime approximate multi-objective search algorithm, called A-A*pex,

which builds upon A*pex. In each iteration of its main loop, A-A*pex performs an approximate

multi-objective search with an approximation factor that is smaller than the approximate factors

of the previous iterations. A straightforward approach for achieving this is to restart the search

from scratch for each iteration. However, this approach can be inefficient since the search ef-

fort is duplicated across different approximation factors. Therefore, we propose an approach that

addresses this inefficiency by reusing previous search effort. It does sufficient bookkeeping to

allow each iteration to resume the search from paths that were pruned in the previous iteration.

Additionally, we propose a hybrid variant of A-A*pex which first restarts the search from scratch

for each iteration and then starts to reuse its search effort in later iterations. Although existing

work on anytime single-objective search has already investigated reusing search effort [43] or

restarting from scratch [60], generalizing these techniques to multi-objective search is not triv-

ial. In this chapter, we show how to reuse the search effort of A*pex despite its unique merge

operations.
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Existing multi-objective search algorithms, such as BOA* and LTMOA*, can also be viewed as

“anytime” algorithms: We can stop these algorithms at any time and consider the solutions that

they have computed so far as result. However, because these algorithms compute the solutions

in lexicographically increasing order of their costs, the solutions they compute “cover” only part

of the Pareto frontier and completely miss the rest. Figure 4.1 shows the solutions found by BOA*

and A-A*pex for a bi-objective search problem instance on the FLA road network.1 Different

markers represent different time ranges when the solutions were found. BOA* finds solutions in

a lexicographic order, that is, with increasing c1-values and decreasing c2-values. A-A*pex, our

proposed algorithm, first finds solutions that roughly approximate the Pareto frontier and then

works on finding more solutions while time allows. Given the same limited amount of time, A-

A*pex can compute solutions that collectively approximate the Pareto frontier much better than

those of BOA*. For example, if one is given only 10 seconds, running BOA* results in solutions

that are represented by the blue and the orange markers in Figure 4.1a, which completely miss

solutions with small c2-values. On the other hand, running A-A*pex for 10 seconds results in

solutions that are represented by the blue and the orange markers in Figure 4.1b, whose costs are

much better distributed than those of the solutions found by BOA* within 10 seconds.

In our experimental results, we evaluate different variants of A-A*pex and show that reusing

search effort in later iterations significantly reduces its runtime. We also show that A-A*pex of-

ten computes solutions that collectively approximate the Pareto frontier much better than the

solutions found by state-of-the-art multi-objective search algorithms when the given time is in-

sufficient for finding the entire Pareto frontier.
1http://users.diag.uniroma1.it/challenge9/download.shtml
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This chapter is organized as follows: We begin by describing the related work pertinent to

A-A*pex in Section 4.1. We provide a detailed description of A-A*pex in Section 4.2. We then

prove its correctness and completeness in Section 4.3 before presenting our experimental results

in Section 4.4 and our summary in Section 4.5.

4.1 Background

Researchers have developed various anytime single-objective search algorithms [43, 8, 67, 13].

An anytime search algorithm typically builds upon a suboptimal search algorithm. By calling

the suboptimal search algorithm repeatedly (with smaller and smaller suboptimality factors), the

anytime search algorithm progressively finds better and better solutions while time allows. In

practice, an anytime search algorithm can often quickly compute a solution whose cost is close

to optimal. Therefore, it is useful when the available time is limited or a priori unknown.

There are only a few existing works on anytime multi-objective search algorithms. In our

previous work, we proposed Anytime BOA*-ε (A-BOA*-ε), an anytime bi-objective search algo-

rithm that builds upon BOA*-ε [86]. A-BOA*-ε uses a so-called interval to keep track of its search

progress and reuse its previous search effort. A-BOA*-ε maintains a list I of intervals. Each in-

terval contains a set of paths. A-BOA*-ε initializes I with the interval that contains only the path

[sstart ]. In each iteration, it chooses an interval in I based on estimating which part of the Pareto

frontier is the least approximated and removes this interval from I . It then initializes Open with

the paths in the chosen interval and calls a modified variant of BOA*-ε to compute new solu-

tions. Each new solution π corresponds to a new interval, and this interval contains those paths

that have been pruned because their f -values are ε-dominated by f(π) (according to the relaxed

70



pruning condition of BOA*-ε) although they are not weakly dominated by f(π). A-BOA*-ε then

adds these new intervals in I and continues to the next iteration. A-BOA*-ε terminates and finds

a Pareto frontier when every interval in I contains an empty set of paths. Our experimental

results show that, given a limited amount of time, A-BOA*-ε can find solutions that collectively

approximate the Pareto frontier much better than the solutions found by BOA*. However, as we

have shown in Chapter 3, BOA*-ε, which A-BOA*-ε builds upon, identifies only a small subset of

the paths that can be pruned and is not as efficient as A*pex in practice. It is also unclear how to

generalize A-BOA*-ε to more than two objectives.

4.2 A-A*pex

As A-BOA*-ε builds upon a modified variant of BOA*-ε, A-A*pex builds upon a modified variant

of A*pex. It calls this variant of A*pex with smaller and smaller ε-values to compute new solu-

tions and eventually find the Pareto frontier. From one iteration to the next, A-A*pex can either

reuse its previous search effort or restart its search from scratch. We first describe the variant

of A-A*pex that reuses its previous search effort: We begin with its general search strategy in

Section 4.2.1. We then describe how it reuses its previous search effort in Section 4.2.2 and a

technique to improve the dominance checks for this variant of A-A*pex in Section 4.2.3. Finally,

in Section 4.2.4, we describe the variant of A-A*pex that restarts its search from scratch, which is

a simple algorithm that differs only in a few lines of pseudocode from the variant that reuses its

previous search effort.
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Algorithm 7: A-A*pex
Input : A problem instance ⟨G, sstart , sgoal⟩, a consistent heuristic function h, and an

approximation factor update scheme getNextEps()
Output: A Pareto frontier

1 Pruned← {[sstart]}
2 Sols← ∅
3 while Search not halted do
4 εcurr ← getNextEps()
5 Open← ∅
6 Pruned′ ← Pruned; Pruned← ∅
7 for each π ∈ Pruned′ do
8 AddToOpen(⟨c(π), π⟩)
9 FindApproxPF(εcurr)

10 if Pruned = ∅ then
11 break
12 return Sols
13 Function FindApproxPF(εcurr):
14 Sols′ ← sort solutions in Sols in lexicographically increasing order of their costs
15 Ctr

sol ← ∅
16 for each s ∈ S do
17 Gtr

cl(s)← ∅
18 while Open ̸= ∅ do
19 extract an apex-path pair AP = ⟨A, π⟩ from Open with the lexicographically

smallest f -value
20 while c1(Sols′.top()) ≤ (1 + εcurr)f1(AP) do
21 Update(Ctr

sol,Tr(c(Sols
′.top())))

22 pop Sols′.top() from Sols′

23 if IsDominated(AP) then // IsDominated is defined in Algorithm 8
24 continue
25 Update(Gtr

cl(s(AP)),Tr(g(AP)))
26 if s(AP) = sgoal then
27 remove solutions weakly dominated by π from Sols
28 Update(Ctr

sol,Tr(c(π)))
29 add π to Sols
30 continue
31 for each e ∈ out(s(AP)) do
32 AP ′ ← ⟨A+ c(e), extend(π, e)⟩
33 if IsDominated(AP ′) then
34 continue
35 AddToOpen(AP ′) // AddToOpen is defined in Algorithm 8
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4.2.1 Search Strategy

Algorithm 7 shows the pseudocode of the variant of A-A*pex that reuses its previous search effort.

The input to Algorithm 7 is a problem instance, a consistent heuristic h, and an approximation

factor update scheme encoded by the getNextEps function. A-A*pex maintains a list Pruned of

pruned paths, which is initialized with path [sstart ] (Line 1), and a set Sols of solutions, which

is initialized with the empty set (Line 2). In each iteration of its main loop (Lines 3-11), A-A*pex

first calls getNextEps to decrease the current approximation factor εcurr (Line 4). It then initializes

Open with the paths in Pruned (Lines 5-8): A-A*pex first moves the paths from Pruned to

another set Pruned′ (Line 6) and then calls AddToOpen with each path in Pruned′. Some of

these paths might be put back into Pruned byAddToOpen, which we will explain later. A-A*pex

then calls FindApproxPF to compute an εcurr-approximate frontier (Line 9).

Lines 13-35 show the FindApproxPF function, which is similar to Lines 3-21 of A*pex in

Algorithm 6. The IsDominated and AddToOpen functions of FindApproxPF are modified to

identify paths that might still be extendable to Pareto-optimal solutions and add these paths to

Pruned. We will describe these two modified functions in detail in the next section.

Like A*pex, the FindApproxPF function maintains a set of truncated cost vectors Ctr
sol for

checking if the f -value of a given apex-path pair is εcurr-dominated by the cost of any solution in

Sols. Unlike A*pex, it also needs to consider the solutions computed in the previous iterations of

FindApproxPF inCtr
sol. It first stores these solutions in Sols′ and sorts them in lexicographically

increasing order of their costs (Line 14). After extracting an apex-path pair AP from Open,

FindApproxPF adds to Ctr
sol the costs of those solutions in Sols′ whose c1-values are no larger

than (1+εcurr) times the f1-value ofAP and removes these solutions from Sols′ (Lines 20-22). As
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wewill formally show in our theoretical results (Section 4.3), the f -value ofAP is εcurr-dominated

by the cost of a solution in Sols iff there exists a vector in Ctr
sol that εcurr-dominates Tr(f(AP)).

The FindApproxPF function initializes Gtr
cl on Lines 16-17 and does not reuse the truncated

g-values from previous iterations because, even if the truncated g-value of an apex-path pair

AP is weakly dominated by a vector x inGtr
cl from previous iterations, g(AP) is not necessarily

weakly dominated by the g-value corresponding to x. The εcurr-value of the current iteration is

also different from those of previous iterations. Thus, A-A*pex can expand apex-path pairs whose

g-values are weakly dominated by the g-values of some expanded apex-path pairs containing

the same states from previous iterations. However, this does not affect it computing an εcurr-

approximate frontier in each iteration because it still considers the solutions inSols fromprevious

iterations in its dominance checks.

When FindApproxPF returns from Line 9, Sols is an εcurr-approximate frontier. If Pruned

is empty, FindApproxPF has not identified any paths that might still be extendable to Pareto-

optimal solutions that are not in Sols. Thus, A-A*pex breaks from the main loop (Line 11) and

returns Sols as a Pareto frontier (Line 12).

4.2.2 Reusing Search Effort

A*pex gains its efficiency bymerging paths and not storing all paths explicitly. However, the paths

A*pex discards when pruning or merging apex-path pairs might still be extendable to Pareto-

optimal solutions. One can store such representative paths and resume the search from them later.

For example, consider the case where A*pex (Algorithm 6) prunes an apex-path pairAP because

its f -value is ε-dominated by the cost of some solution πsol in Sols (Line 24). The representative
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Algorithm 8: The IsDominated and AddToOpen functions for A-A*pex
1 Function IsDominated(AP = ⟨A, π⟩):
2 if ∃x ∈ Ctr

sol : x ⪯εcurr Tr(f(AP)) then
+3 π′ ← the solution that corresponds to x
+4 if not c(π′) ⪯ f(π) then
+5 add π to Pruned
6 return true
7 if ∃x ∈ Gtr

cl(s(AP)) : x ⪯ Tr(g(AP)) then
+8 π′ ← the representative path of the apex-path pair corresponding to x
+9 if not c(π′) ⪯ c(π) then
+10 add π to Pruned
11 return true
12 return false
13 Function AddToOpen(AP = ⟨A, π⟩):
14 for each AP ′ = ⟨A′, π′⟩ ∈ Open[s(AP)] do
15 APnew = ⟨Anew, πnew⟩ ← merge(AP ,AP ′)
16 if APnew is εcurr-bounded then
17 remove AP ′ from Open
18 add APnew to Open

+19 πpruned ← π′ if π = πnew or π otherwise
+20 if not c(πnew) ⪯ c(πpruned) then
+21 add πpruned to Pruned
22 return
23 add AP to Open
24 return

path π of AP might still be extendable to a Pareto-optimal solution if f(π) (which weakly dom-

inates the cost of any solution extending π) is not weakly dominated by c(πsol). Similarly, from

the representative paths of the apex-path pairs pruned on Line 26 and the representative paths

that are not chosen as new representative paths when merging apex-path pairs on Line 30, we

can also identify paths that might still be extendable to Pareto-optimal solutions. Our technique

for reusing previous search effort is based on these observations.

Algorithm 8 shows the IsDominated and AddToOpen functions for A-A*pex. We use “+” be-

fore the line numbers to indicate the changes in these two functions compared to the IsDominated

and AddToOpen functions in Algorithm 6:
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1. Lines 3-5: Each vector x in Ctr
sol corresponds to some solution in Sols. If the truncated

f -value of an apex-path pair AP is εcurr-dominated by some vector x in Ctr
sol and the rep-

resentative path π of AP satisfies that f(π) is not weakly dominated by the cost of the

solution in Sols that corresponds to x, A-A*pex adds π to Pruned.

2. Lines 8-10: For each vector x inGtr
cl(s) for any state s, A-A*pex maintains the representa-

tive path of the apex-path pair whose truncated g-value equals x and resulted in x being

added to Gtr
cl(s). If the truncated g-value of an apex-path pair AP is weakly dominated

by some vector x inGtr
cl(s(AP)) and the representative path π of AP is not weakly domi-

nated by the representative path of the apex-path pair corresponding to x, A-A*pex adds π

to Pruned.

3. Lines 19-21: When merging two apex-path pairs, one of their representative paths is cho-

sen as the new representative path. Let πnew denote the chosen representative path and

πpruned denote the other path. If πpruned is not weakly dominated by πnew, A-A*pex adds

πpruned to Pruned.

These three changes cover all possible places whereFindApproxPF “disregards” a path. Con-

ceptually, FindApproxPF does not need to consider these paths because any solution πsol that

extends such a path π is known to be εcurr-dominated by some other solution π′
sol. However, if

πsol is not weakly dominated by π′
sol, it is still possible that πsol is in the Pareto frontier. Hence,

FindApproxPF adds π to Pruned.

Example 7. We use the bi-objective search problem instance in Figure 2.1 to demonstrate how A-

A*pex works. Assume that the sequence of εcurr-values output by getNextEps begins with 0.2, and

the value of εcurr is divided by 10 after every iteration.
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When A-A*pex calls FindApproxPF for the first time with εcurr = 0.2, the trace of Open, gen-

erated apex-path pairs, and gmin
2 is the same as the one in Table 3.2. As we have shown in Example 6,

when FindApproxPF returns, there are two solutions in Sols, with costs (7, 10) and (12, 5), respec-

tively. Three merge operations have happened:

1. In Iteration 2, FindApproxPF merges apex-path pairs ⟨s2, (2, 2), (6, 6)⟩ and

⟨s2, (3, 1), (7, 5)⟩. The representative path with cost (3, 1) is chosen as the new repre-

sentative path. The other representative path with cost (2, 2), which is not weakly dominated

by (3, 1), is added to Pruned.

2. In Iteration 3, FindApproxPF merges apex-path pairs ⟨s3, (4, 2), (6, 5)⟩ and

⟨s3, (3, 4), (6, 7)⟩. The representative path with cost (4, 2) is chosen as the new repre-

sentative path. The other representative path with cost (3, 4), which is not weakly dominated

by (4, 2), is added to Pruned.

3. In Iteration 5, FindApproxPF merges apex-path pairs ⟨s4, (6, 4), (11, 5)⟩ and

⟨s4, (5, 9), (10, 10)⟩. The representative path with cost (6, 4) is chosen as the new rep-

resentative path. The other representative path with cost (5, 9), which is not weakly

dominated by (6, 4), is added to Pruned.

Therefore, when FindApproxPF returns, there are three paths in Pruned.

When A-A*pex calls FindApproxPF for the second time with εcurr = 0.02, Open is initialized

with the three apex-path pairs that correspond to the three paths in Pruned. Table 4.1 shows the

trace ofOpen, generated apex-path pairs, and gmin
2 . In the table, we use tuple ⟨s(AP), c(π), f(AP)⟩

to denote an apex-path pair AP = ⟨A, π⟩.
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Iter Open ⟨s(AP), c(π), f(AP)⟩ Generated ⟨s(AP), c(π), f(AP)⟩ Update of gmin
2 (s(x))

1
⟨s2, (2, 2), (6, 6)⟩∗ ⟨s3, (3, 3), (6, 6)⟩ (merged)

gmin
2 (s2) = 2⟨s3, (3, 4), (6, 7)⟩

⟨s4, (5, 9), (11, 10)⟩

2 ⟨s3, (3,3), (6,6)⟩∗ ⟨s5, (4, 4), (6, 6)⟩ gmin
2 (s3) = 3⟨s4, (5, 9), (11, 10)⟩ ⟨s4, (4, 10), (10, 11) (discarded)

3 ⟨s5, (4, 4), (6, 6)⟩∗ ⟨s4, (5, 5), (11, 6)⟩ (merged)
gmin
2 (s5) = 4⟨s4, (5, 9), (11, 10)⟩ ⟨sgoal , (6, 11), (6, 11)

4 ⟨sgoal , (6, 11), (6, 11)⟩∗ gmin
2 (sgoal ) = 11⟨s4, (5,5), (11,6)⟩

5 ⟨s4, (5, 5), (11, 6)⟩∗ ⟨sgoal , (11, 6), (11, 6)⟩ gmin
2 (s4) = 5

6 ⟨sgoal , (11, 6), (11, 6)⟩∗ gmin
2 (sgoal ) = 6

7 empty

Table 4.1: Trace ofOpen, generated apex-path pairs, and gmin
2 whenA-A*pex callsFindApproxPF

with εcurr = 0.02 to solve the example problem instance in Figure 2.1. “∗" marks the apex-path
pair that is extracted in that iteration. Boldface font marks the apex-path pairs that result from
merging two apex-path pairs in the previous iteration.

In Iteration 1, FindApproxPFmerges the generated apex-path pair ⟨s3, (3, 3), (6, 6)⟩with apex-

path pair ⟨s3, (3, 4), (6, 7)⟩. The representative path with cost (3, 3) is chosen as the new represen-

tative path. The other representative path with cost (3, 4), which is weakly dominated by (3, 3), is

not added to Pruned.

In Iteration 2, FindApproxPF discards the generated apex-path pair ⟨s4, (4, 10), (10, 11)⟩ be-

cause its f -value is εcurr-dominated by the cost (7, 10) of a solution in Sols. This solution was found

when A-A*pex called FindApproxPF for the first time. The f -value of the representative path of this

generated apex-path pair is (4, 10) + h(s4) = (10, 11), which is also weakly dominated by (7, 10).

Therefore, this representative path is not added to Pruned.

In Iteration 3, FindApproxPF merges the generated apex-path pair ⟨s4, (5, 5), (11, 6)⟩ with

apex-path pair ⟨s4, (5, 9), (11, 10)⟩. The representative path with cost (5, 5) is chosen as the new

representative path. The other representative path with cost (5, 9), which is weakly dominated by

(5, 5), is not added to Pruned.
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In Iterations 4 and 6, FindApproxPF expands apex-path pairs that contain state sgoal and adds

solutions with costs (6, 11) and (11, 6) to Sols. When FindApproxPF returns for the second time,

there are four solutions in Sols. These four solutions consist of the Pareto frontier shown in Fig-

ure 2.1b. Because Pruned is empty, A-A*pex terminates and returns Sols.

4.2.3 Enhanced Dominance Checks

Although A-A*pex does not reuse the truncated g-values from previous iterations for dominance

checks, it can still prune an apex-path pair AP if g(AP) is weakly dominated by the cost of the

representative path π′ of an apex-path pair that was expanded in previous iterations and contains

the same state as AP . In such a case, the entire set of paths that AP corresponds to is weakly

dominated by π′. One can thus enhance the dominance checks of A-A*pex by maintaining the

set of undominated costs C(s) of the representative paths of all expanded apex-path pairs for

each state s and using these sets for dominance checks. This requires changing the IsDominated

function to check if the g-value of the input apex-path pair AP is weakly dominated by any

vector inC(s(AP)) and adding one line after Line 25 of Algorithm 7 to updateC(s(AP)) before

expanding AP .

Although the enhanced dominance checks enable A-A*pex to prune more nodes, performing

them and updatingC(s) can be time-consuming. It is also unclear how to use the dimensionality

reduction technique in these checks. In our experimental evaluation (Section 4.4), we will study

whether these checks improve the efficiency of A-A*pex.
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4.2.4 Restarting the Search From Scratch

Instead of reusing its previous search effort, A-A*pex can also restart the search from scratch

in each iteration. This requires changes only to Lines 5-8 of Algorithm 7, where A-A*pex now

initializes Open with path [sstart ] instead of the paths in Pruned. This variant of A-A*pex can-

not use the enhanced dominance checks described in Section 4.2.3 because it needs to expand

apex-path pairs with the same representative paths as those expanded in the previous iterations

of FindApproxPF. If we use the enhanced dominance checks in this case, the apex-path pair

extracted in the first iteration, whose g-value is 0 and whose representative path is [sstart ], would

be pruned. Thus, FindApproxPF would fail to compute more solutions.

As εcurr decreases, FindApproxPF often returns more expanded nodes and fewer paths in

Pruned. Hence, restarting from scratch becomes less efficient than using Pruned to initialize

Open. Let #exp and #pruned denote the numbers of expanded nodes and pruned paths, respec-

tively. We propose a variant of A-A*pex, called A-A*pex-hybrid, that first restarts the search from

scratch in each iteration and starts reusing its search effort when the ratio of #exp and #pruned

in the previous iteration is larger than a given threshold. It then keeps reusing its search effort

until it terminates. In the experiments, we empirically set the threshold to five based on our

preliminary results.

In our preliminary study, we also tried a variant of A-A*pex that starts reusing their search

effort when εcurr is smaller than a given threshold. However, this variant had a larger average

runtime than A-A*pex-hybrid, and hence, we chose not to include it in the experiments. It is

future work to study when reusing the search effort is more efficient than restarting the search

from scratch.
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4.3 Correctness and Completeness

This section provides theoretical results for A-A*pex. We study only the variant of A-A*pex that

reuses its previous search effort because all theorems in this section trivially hold also for the

variant of A-A*pex that restarts its search from scratch. Theorem 4.1 shows that A-A*pex com-

putes an εcurr-approximate frontier in each iteration. Theorem 4.2 shows that A-A*pex eventually

computes a Pareto frontier.

Given a solution πsol = [s1(= sstart), s2 . . . sL(= sgoal)], we use π(l)
sol , l = 1, 2 . . . L, to denote

its prefix [s1, s2 . . . sl]. We define a path π to be l-compatible with πsol iff (i) the last state of π is

sl and (ii) c(π) ⪯ c(π
(l)
sol). We define a path π to be compatible with πsol iff there exists an l for

which π is l-compatible with πsol. Thus, path [sstart ] is both 1-compatible and compatible with

any solution.

Lemma 4.1. Consider any solution πsol = [s1, s2 . . . sL]. If FindApproxPF expands (that is,

reaches Line 26 with) an apex-path pair AP whose representative path is l-compatible with πsol

then there exists, when FindApproxPF terminates, (Case 1) a path in Pruned that is compatible

with πsol or (Case 2) a solution in Sols that weakly dominates πsol.

Proof. We prove this lemma by induction on l, starting from l = L and going backward. Consider

the case where FindApproxPF expands an apex-path pair AP whose representative path π is

L-compatible with πsol. π is a path to sL (= sgoal ), and c(π) ⪯ c(π
(L)
sol ) = c(πsol) because π is L-

compatible with πsol. FindApproxPF then adds π to Sols on Line 29. There must exist a solution

in Sols that weakly dominates πsol when FindApproxPF terminates because it only removes a

solution from Sols when adding another solution that weakly dominates it (Lines 27-29). Case 2

holds.
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Assume that the lemma holds for l+ 1 and consider the case where FindApproxPF expands

an apex-path pair AP whose representative path π is l-compatible with πsol. Consider the child

apex-path pairAPch = ⟨Ach, πch⟩ ofAP that FindApproxPF generates for edge ⟨sl, sl+1⟩ when

reaching Line 32. We have

c(πch) = c(π) + c(⟨sl, sl+1⟩)

⪯ c(π
(l)
sol) + c(⟨sl, sl+1⟩)

= c(π
(l+1)
sol ).

(4.1)

Therefore, πch is (l + 1)-compatible with πsol as the last state of πch is sl+1. We distinguish the

following two cases:

1. FindApproxPF prunes APch on Line 24 or 34 because the IsDominated function returns

true. IsDominated returns true only when it reaches Line 6 or 11 of Algorithm 8. If πch

is added to Pruned, Case 1 holds. If not and IsDominated reaches Line 6 without adding

πch to Pruned, then there exists a solution, that is, solution π′ mentioned on Line 3, whose

cost weakly dominates f(πch) and whose truncated cost is inCtr
sol. f(πch)weakly dominates

c(πsol) because c(πch) ⪯ c(π
(l+1)
sol ) and h is consistent. FindApproxPF adds truncated

cost vectors to Ctr
sol only on Lines 21 and 28 for solutions in Sols. Therefore, π′ has been

in Sols. Because FindApproxPF removes a solution from Sols only when adding another

solution that weakly dominates it, theremust exist a solution inSols that weakly dominates

c(πsol) when FindApproxPF terminates. Case 2 holds. If IsDominated reaches Line 11

without adding πch to Pruned, then there exists an expanded apex-path pair (namely, the

one mentioned on Line 8) that contains state sl+1 and whose representative path π′ weakly
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dominates πch. Because of Eq. 4.1, we have c(π′) ⪯ c(πch) ⪯ c(π
(l+1)
sol ). Therefore, π′ is

(l + 1)-compatible with πsol. The lemma holds for l because it holds for l + 1.

2. FindApproxPF callsAddToOpenwithAPch on Line 35. The algorithmmightmergeAPch

with other apex-path pairs before extracting the resulting apex-path pair AP ′′ of these

merges from Open on Line 19. During these merges, a representative path is completely

discarded (i.e., neither chosen as the new representative path nor added to Pruned) only if

it is weakly dominated by the other representative path. Therefore, if no path that weakly

dominates πch is added to Pruned during these merges, the representative path of AP ′′

must weakly dominate πch (and hence be (l+1)-compatible with πsol). IfAP ′′ is pruned on

Line 24, the lemma holds as we have already proved in the previous case. Otherwise, AP ′′

is expanded. The lemma holds for l because it holds for l + 1.

Lemma 4.2. For any solution πsol, when A-A*pex reaches Line 4 of Algorithm 7, there exists (Case 1)

a path in Pruned that is compatible with πsol or (Case 2) a solution in Sols that weakly dominates

πsol.

Proof. We prove this lemma by induction on each time A-A*pex reaches Line 4. When A-A*pex

reaches Line 4 for the first time, path [sstart ] in Pruned is compatible with πsol, and hence the

lemma holds. Assume that A-A*pex reaches Line 4 and the lemma has held so far. If there exists

a solution in Sols that weakly dominates πsol, there must exist a solution in Sols that weakly

dominates πsol when A-A*pex reaches Line 4 again because A-A*pex only removes a solution from

Sols when adding another solution that weakly dominates it (Line 27). Otherwise, there exists a

path π′ in Pruned that is compatible with πsol. A-A*pex then calls AddToOpen with apex-path

pair ⟨c(π′), π′⟩ on Line 8 and might merge it with other apex-path pairs before FindApproxPF
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extracts the resulting apex-path pairAP ′′ fromOpen. Aswe have already proved, if the algorithm

does not add a path that weakly dominates π′ to Pruned during these merges, the representative

path π′′ of AP ′′ must weakly dominate π′ (and hence be compatible with πsol). If AP ′′ is pruned

on Line 24, we distinguish the following cases:

1. Path π′′ is added to Pruned on Line 5 or 10 of Algorithm 8. The lemma holds.

2. IsDominated returns true on Line 6 of Algorithm 8 without adding π′′ to Pruned. Then,

there exists a solution in Sols whose cost weakly dominates f(π′′), which in turn weakly

dominates c(πsol) because π′′ is compatible with πsol and h is consistent. Therefore, when

A-A*pex reaches Line 4 of Algorithm 7 again, there still exists a solution in Solswhose cost

weakly dominates c(πsol). Thus, the lemma holds.

3. IsDominated returns true on Line 11 of Algorithm 8 without adding π′′ to Pruned. Then,

there exists an expanded apex-path pair that contains state s(AP ′′) and whose representa-

tive path weakly dominates π′′ (and hence is compatible with πsol). According to Lemma 4.1,

Case 1 or 2 holds when FindApproxPF terminates and hence also holds when A-A*pex

reaches Line 4 of Algorithm 7 again. Thus, the lemma holds.

Otherwise, AP ′′ is expanded. From Lemma 4.1, Case 1 or 2 holds when FindApproxPF termi-

nates. Because A-A*pex reaches Line 4 of Algorithm 7 again only after FindApproxPF termi-

nates, the lemma holds.

Lemma 4.3. A-A*pex adds only εcurr-bounded apex-path pairs to Open.

Proof. Consider the apex-path pairs for which A-A*pex calls AddToOpen on Line 8. These apex-

path pairs are εcurr-bounded because the f-values of their representative paths are equal to (and
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hence weakly dominate) their f-values. The AddToOpen function (Algorithm 8) either adds an

apex-path pair directly to Open (Line 23) or adds it to Open after merging it with another apex-

path pair on condition that the resulting apex-path pair is εcurr-bounded (Line 18). Therefore,

A-A*pex adds only εcurr-bounded apex-path pairs to Open on Line 8.

A-A*pex then calls FindApproxPF on Line 9. When FindApproxPF reaches Line 19 to ex-

tract an apex-path pair fromOpen for the first time, all apex-path pairs inOpen are εcurr-bounded.

The induction in the proof of Lemma 3.1 applies here. Therefore, A-A*pex adds only εcurr-bounded

apex-path pairs to Open on Line 35.

Lemma 4.4. In each run of FindApproxPF, the sequence of extracted apex-path pairs has mono-

tonically non-decreasing f1-values.

The proof of Lemma 3.2 applies here.

Lemma 4.5. There exists a solution in Solswhose cost εcurr-dominates the f -value of apex-path pair

AP on Line 2 of the IsDominated function (Algorithm 8) if there exists a truncated cost inCtr
sol that

εcurr-dominates the truncated f -value of apex-path pair AP .

Proof. Assume that there exists a truncated cost vectorx inCtr
sol that εcurr-dominates the truncated

f -value of some apex-path pair AP . x was added to Ctr
sol on either Line 21 or 28 of Algorithm 7

for some solution πsol. We have Tr(c(πsol)) = x and hence

Tr(c(πsol)) ⪯εcurr Tr(f(AP)). (4.2)
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Suppose that x was added toCtr
sol on Line 21. The IsDominated function is called by A-A*pex

either on Line 23 for an apex-path pair extracted from Open or on Line 33 for a generated apex-

path pair. Thus, we distinguish the following two cases:

1. AP is an apex-path pair extracted fromOpen on Line 19, and the IsDominated function is

called on Line 23. If x was added before AP was extracted from Open, it was added when

A-A*pex extracted another apex-path pair AP ′ from Open. According to the condition on

Line 20, c1(πsol) ≤ (1 + εcurr)f1(AP ′). From Lemma 4.4, we have f1(AP ′) ≤ f1(AP), and

hence, c1(πsol) ≤ (1 + εcurr)f1(AP). Otherwise, x was added right afterAP was extracted

fromOpen and before A-A*pex called IsDominated forAP . According to the condition on

Line 20, c1(πsol) ≤ (1 + εcurr)f1(AP).

2. AP is an apex-path pair generated on Line 32 for some parent apex-path pair APpar, and

the IsDominated function is called on Line 33. As we have already proved in the previous

case, we have c1(πsol) ≤ (1 + εcurr)f1(APpar) because x was added to Ctr
sol either before or

right after APpar was extracted from Open. Because the heuristic is consistent, we have

f1(APpar) ≤ f1(AP). Therefore, c1(πsol) ≤ (1 + εcurr)f1(APpar) ≤ (1 + εcurr)f1(AP).

In all cases, we have c1(πsol) ≤ (1+εcurr)f1(AP). Combining this inequality and Eq. 4.2, we have

c(πsol) ⪯εcurr f(AP).

Suppose that x was added to Ctr
sol on Line 28. Let AP sol = ⟨Asol, πsol⟩ denote the apex-path

pair with which A*pex reached Line 28 and added x to Ctr
sol. According to Lemma 4.3, AP sol is

εcurr-bounded. Hence, we have c1(πsol) ≤ (1 + εcurr)f1(AP sol). According to Lemma 4.4 and

because AP sol is extracted before AP , f1(AP sol) ≤ f1(AP). Therefore, we have c1(πsol) ≤

(1 + εcurr)f1(AP). Combining this inequality and Eq. 4.2, we have c(πsol) ⪯εcurr f(AP).
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Therefore, there exists a solution in Solswhose cost εcurr-dominates the f -value of apex-path

pair AP .

Lemma 4.6. There exists a truncated g-value inGtr
cl(s(AP)) that weakly dominates the truncated

g-value of apex-path pair AP on Line 7 of the IsDominated function (Algorithm 8) iff there exists

an expanded apex-path pair AP ′ that contains state s(AP) and whose g-value weakly dominates

the g-value of apex-path pair AP .

Lemma 4.6 is similar to Lemma 3.4 for A*pex. The proof of Lemma 3.4 builds on Lemma 3.2.

After replacing Lemma 3.2 with Lemma 4.4, the proof of Lemma 3.4 applies to Lemma 4.6 as well.

Lemma 4.7. Consider any solution πsol = [s1, s2 . . . sL]. At the beginning of each iteration of

FindApproxPF (that is, before it executes Line 19), if the same run of FindApproxPF has expanded

an apex-path pair AP with g(AP) ⪯ c(π
(j)
sol ) and s(AP) = sj for some j, then there exists (1) an

apex-path pair AP ′ in Open with g(AP ′) ⪯ c(π
(k)
sol ) and s(AP

′) = sk for some k > j or (2) a

solution in Sols that εcurr-dominates πsol.

Lemma 4.7 is similar to Lemma 3.6 for A*pex. The proof of Lemma 3.6 builds on Lemmas 3.1,

3.3, 3.4, and 3.5. Lemma 3.5 is about a property of apex-path pairs and hence also applies to

FindApproxPF. After replacing Lemmas 3.1, 3.3, and 3.4 with Lemmas 4.3, 4.5, and 4.6, respec-

tively, the proof of Lemma 3.4 applies to Lemma 4.7 as well.

Lemma 4.8. Consider any solution πsol = [s1, s2 . . . sL]. At the beginning of each iteration of

FindApproxPF (that is, before it executes Line 19), there always exists (1) an apex-path pair AP ′

in Open with g(AP ′) ⪯ c(π
(j)
sol ) and s(AP

′) = sj for some j or (2) a solution in Sols that εcurr-

dominates πsol.
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Proof. A-A*pex reaches Line 4 before it executes FindApproxPF. From Lemma 4.2, for any so-

lution πsol, there exists a solution in Sols that weakly dominates πsol or a path in Pruned that

is compatible with πsol. If πsol is weakly dominated by some solution in Sols when A-A*pex

reaches Line 4, it will always be weakly dominated (and hence also εcurr-dominated) by some

solution in Sols at the beginning of all future iterations of FindApproxPF because A-A*pex re-

moves a solution from Sols only if it is weakly dominated by a new solution. Otherwise, there

exists a path π in Pruned that is compatible with πsol when A-A*pex reaches Line 4. Let j de-

note the index for which π is j-compatible with πsol. When A-A*pex reaches Line 8 with this

path π, it adds an apex-path pair to Open that contains state sj and whose apex is equal to

and hence weakly dominates c(π), which in turn weakly dominates c(π(j)
sol ). This apex-path pair

might be merged several (more) times with other apex-path pairs. The resulting apex-path pair

AP still satisfies that g(AP) ⪯ c(π
(j)
sol ) and s(AP) = sj . Consider the beginning of an iter-

ation of FindApproxPF. If apex-path pair AP has not been extracted from Open, the lemma

holds. If apex-path pair AP has been extracted from Open and was pruned because of the con-

dition on Line 2 of Algorithm 8, from Lemma 4.5, there exists a solution in Sols whose cost

εcurr-dominates the f -value of AP , which in turn weakly dominates the cost of πsol because

f(AP) = g(AP) + h(sj) ⪯ c(π
(j)
sol ) + h(sj) ⪯ c(πsol). Thus, the lemma holds for all future

iterations. If apex-path pair AP has been extracted from Open and was pruned because of the

condition on Line 7 of Algorithm 8, from Lemma 4.6, FindApproxPF has expanded an apex-

path pair that contains state sj and whose apex weakly dominates the apex of AP (and hence

weakly dominates the cost of π(j)
sol ). Then, the lemma holds because of Lemma 4.7. Otherwise,

FindApproxPF has expanded AP . Then, the lemma holds because of Lemma 4.7.
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Lemma 4.9. Consider that FindApproxPF extracts an apex-path pair AP from Open on Line 19

and then calls the IsDominated function for AP on Line 23. When the IsDominated function

reaches Line 2 of Algorithm 8, there exists a solution in Sols whose cost εcurr-dominates the f -value

of AP iff there exists a truncated cost in Ctr
sol that εcurr-dominates the truncated f -value of AP .

Proof. From Lemma 4.5, there exists a solution in Sols whose cost εcurr-dominates the f -value of

apex-path pairAP on Line 2 of the IsDominated function (Algorithm 8) if there exists a truncated

cost in Ctr
sol that εcurr-dominates the truncated f -value of apex-path pair AP .

Assume that there exists a solution πsol in Sols whose cost εcurr-dominates the f -value of

apex-path pair AP . Because the cost of πsol εcurr-dominates the f -value of AP , c1(πsol) ≤ (1 +

εcurr)f1(AP). We can distinguish the following two cases for πsol:

1. πsol is a solution found in a previous run of FindApproxPF. It is then added to Sols′ on

Line 14 in the current run of FindApproxPF. Because c1(πsol) ≤ (1 + εcurr)f1(AP), the

truncated cost of πsol has already been added toCtr
sol on Line 21 before FindApproxPF calls

the IsDominated function for AP .

2. πsol is a solution found in the current run of FindApproxPF. The truncated cost of πsol was

added toCtr
sol on Line 28 when FindApproxPF expanded the apex-path pair corresponding

to πsol.

In both cases, FindApproxPF has added Tr(c(πsol)) to Ctr
sol before it calls the IsDominated

function for AP . When the IsDominated function reaches Line 2 of Algorithm 8, there must

exist some vector x in Ctr
sol that weakly dominates Tr(c(πsol)), which, in turn, εcurr-dominates

the truncated f -value of apex-path pair AP . Therefore, x εcurr-dominates the truncated f -value

of apex-path pair AP .
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Lemma 4.10. FindApproxPF does not expand an apex-path pairAP if there exists a solution πsol

with c(πsol) ≺ f(AP).

Proof. Consider the case where FindApproxPF extracts an apex-path pair AP from Open on

Line 19 and there exists a solution πsol with c(πsol) ≺ f(AP). We prove the lemma by showing

that FindApproxPF will not expand AP . From Lemma 4.8, we distinguish two cases:

1. Right before FindApproxPF extracts AP from Open on Line 19, there existed an apex-

path pair AP ′ in Open with g(AP ′) ⪯ c(π
(j)
sol ) and s(AP

′) = sj for some j. f(AP ′) =

g(AP ′) + h(s(AP ′)) ⪯ c(πsol) because g(AP ′) ⪯ c(π
(j)
sol ) and h is consistent. We have

f(AP ′) ⪯ c(πsol) ≺ f(AP), which contradicts that FindApproxPF extracts the apex-path

pair with the lexicographically smallest f -value. Therefore, this case cannot happen.

2. There exists a solution π′
sol in Sols that εcurr-dominates πsol. Then, c(π′

sol) εcurr-dominates

c(πsol) and hence εcurr-dominates f(AP). Therefore, FindApproxPF prunes AP on

Line 24 because the condition on Line 2 of IsDominated (Algorithm 8) holds, according

to Lemma 4.9.

Theorem 4.1. FindApproxPF terminates in finite time. For any solution πsol, there exists, when

FindApproxPF terminates, a solution in Sols that εcurr-dominates πsol.

Proof. Consider any solution πsol and any expanded apex-path pair AP = ⟨A, π⟩. Because

FindApproxPF generates only εcurr-bounded apex-path pairs (Lemma 4.3), f(π) must εcurr-

dominate f(AP) (that is, ci(π) + hi(s(AP)) ≤ (1 + εcurr)fi(AP) for all i). ci(π) + hi(s(AP)) ≤

(1 + εcurr)ci(πsol) must hold for some i, because, otherwise, (1 + εcurr)ci(πsol) < ci(π) +

hi(s(AP)) ≤ (1 + εcurr)fi(AP) holds for all i and thus c(πsol) ≺ f(AP), which contradicts
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that f(AP) is not dominated by c(πsol) from Lemma 4.10. Because heuristic h is non-negative,

ci(π) ≤ (1 + εcurr)ci(πsol) must hold for some i for the representative path π of any expanded

apex-path pair. Because the graph is finite and has positive edge costs, one can extend a path only

a finite number of times before the resulting path π no longer satisfies ci(π) ≤ (1 + εcurr)ci(πsol)

for all i. Thus, there are only a finite number of representative paths that FindApproxPF can

expand (and generate). Consequently, FindApproxPF terminates in finite time.

Consider the beginning of the last iteration of FindApproxPF before it terminates, where

Open becomes empty. From Lemma 4.8, for any solution πsol, there exists a solution in Sols that

εcurr-dominates πsol. Thus, the theorem holds.

Theorem 4.2. A-A*pex terminates when εcurr becomes sufficiently small, and Sols is then a cost-

unique Pareto frontier.

Proof. As we have shown in the proof of Theorem 4.1, A-A*pex can generate only a finite number

of representative paths. Thus, there exists some ε′ such that, when εcurr becomes smaller than ε′,

two apex-path pairs can be merged only if one of the representative paths weakly dominates the

other, and only this representative path can be chosen as the new representative path. Therefore,

the apex of any apex-path pair generated byA-A*pexmust be equal to the cost of its representative

path. The AddToOpen function cannot reach Line 21 because the new representative path πnew

always weakly dominates the other representative path πpruned on Line 20.

Assume that IsDominated reaches Line 9 with εcurr < ε′. Path π mentioned on Line 9 is the

representative path of apex-path pair AP . Because εcurr < ε′, we have g(AP) = c(π). Because

εcurr < ε′, the truncated cost of path π′ mentioned on Line 9 is equal to the truncated g-value of

apex-path pair AP ′ whose representative path is π′. Thus, the truncated cost of path π′ is also
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equal to cost vector x mentioned on Line 7. From the condition on Line 7, x weakly dominates

Tr(g(AP)). Therefore,

Tr(c(π′)) = x ⪯ Tr(g(AP)) = Tr(c(π)). (4.3)

From Lemma 4.4, FindApproxPF extracts apex-path pairs from Open with monotonically non-

decreasing f1-values. Because AP ′ is extracted from Open before AP , we have f1(AP ′) ≤

f1(AP). Also, because s(AP) = s(AP ′), we have g1(AP ′) ≤ g1(AP). For the same reason as

for g(AP) = c(π), we have g(AP ′) = c(π′). Therefore, we have c1(π′) ≤ c1(π). Combining

this with Eq. 4.3 yields c(π′) ⪯ c(π). Because of the condition on Line 9, IsDominated cannot

reach Line 10.

When εcurr < ε′, because FindApproxPF can generate only a finite number of representative

paths and because the g-value of an apex-path pair is always equal to the cost of its representative

path, the number of different f -values of generated apex-path pairs is finite. Therefore, there

exists some ε′′ ≤ ε′ such that, when εcurr becomes smaller than ε′′, a solution εcurr-dominates the

f -value of an apex-path pair only if it weakly dominates this f -value. When IsDominated reaches

Line 3 with εcurr < ε′′, from Lemma 4.5, c(π′) εcurr-dominates f(AP), where AP = ⟨A, π⟩ is the

input apex-path pair. Because εcurr < ε′′, we have f(AP) = f(π) and c(π′) ⪯ f(AP). Therefore,

c(π′) ⪯ f(π). Because of the condition on Line 4, IsDominated cannot reach Line 5.

Put together, when εcurr becomes sufficiently small (that is, smaller than ε′′), FindApproxPF

cannot reach Line 5, 10, or 21 in Algorithm 8. Therefore, Pruned stays empty. When

FindApproxPF returns, A-A*pex reaches Line 11 in Algorithm 7 and then terminates.
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When Pruned becomes empty, from Lemma 4.2, for any solution πsol, there exists a solution

in Sols that weakly dominates πsol. Because FindApproxPF adds a solution to Sols only if it

is not εcurr-dominated (and hence not weakly dominated) by any solution in Sols and removes

all solutions that are weakly dominated by it from Sols, two different solutions in Sols do not

weakly dominate each other. Thus, Sols is a Pareto frontier.

4.4 Experimental Evaluation

In our experimental evaluation, we first compare different variants of A-A*pex (Section 4.4.2). We

then compare A-A*pex with state-of-the-art multi-objective search algorithms (Section 4.4.3).

We use the NY road network from the 9th DIMACS Implementation Challenge, which has

264K states and 730K edges. The NY road network has two objectives available in the benchmark,

namely travel distance (d) and travel time (t). We use the economic cost (m) [54], the number of

edges (l) [47], and a random integer from 1 to 100 (r) [36] as the third, fourth, and fifth objectives,

respectively. We use the same 100 problem instances used by Sedeño-Noda and Colebrook [65]

and Ahmadi et al. [2].

We implement all algorithms in C++2 and run all experiments on a MacBook with an M1 Pro

chip and 32GB of memory. The runtime limit for solving each problem instance is five minutes.

For A-A*pex, the sequence of ε-values output by getNextEps begins with 0.1 and is divided by η

after every iteration, where η is a predetermined parameter. One can develop more complicated

schemes for decreasing the ε-value, which we leave to future work.
2https://github.com/HanZhang39/MultiObjectiveSearch
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4.4.1 Metrics

To evaluate the quality of solutions that a multi-objective search algorithm computes during

its search, we introduce a metric called the approximation error, which we will formally define

shortly. The approximation error of a set of solutions measures how “well” this set approximates

the Pareto frontier. The smaller the approximation error, the better.

We define the dominance factor of a solution π over another solution π′ as

DF(π, π′) = max

(
max

i=1,2...N

{
ci(π)

ci(π′)
− 1

}
, 0

)
,

which measures how “well” π approximates π′. DF(π, π′) is the smallest ε-value that satisfies

π ⪯ε π
′. For a set of solutions Π, we define the approximation error of Π over a solution π′ as

e(Π, π′) = min
π∈Π

DF(π, π′).

Roughly speaking, we find a path π in Π that approximates π′ the best and compute the corre-

sponding dominance factor. We have e(Π, π′) = 0 iff ∃π ∈ Π, π ⪯ π′. Let Π∗ denote the Pareto

frontier. We define the approximation error of a set of solutions Π as

e(Π) = max
π∈Π∗

e(Π, π). (4.4)

e(Π) is the smallest ε-value for which Π is an ε-approximate frontier.
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In our experiments, there are problem instances where no algorithm finds the entire Pareto

frontier within the runtime limit. When computing the approximation error using Eq. 4.4 in these

cases, we use the undominated set of the solutions found by all algorithms as a substitute for Π∗.

We are interested in finding a set of solutions with a small approximation error. More specifi-

cally, we focus on the anytime behavior of a search algorithm, that is, its ability to quickly reduce

the approximation error over time.

4.4.2 Comparing Different Variants of A-A*pex

We compare different variants of A-A*pex on the first 50 problem instances on the NY road net-

work with three objectives (m-t-d). These variants of A-A*pex are:

1. A-A*pex-reuse always reuses its search effort and is our baseline variant of A-A*pex.

2. A-A*pex-reuse-enh always reuses its search effort and also uses the enhanced dominance

checks.

3. A-A*pex-restart always restarts its search from scratch.

4. A-A*pex-hybrid initially restarts its search from scratch and reuses its search effort in later

iterations. It also uses enhanced dominance checks once it reuses its search effort.

We evaluate each variant of A-A*pex for η ∈ {1.5, 2, 4, 8}. We also evaluate LTMOA*.

Table 4.2 shows the numbers of solved problem instances (i.e., the numbers of problem in-

stances for which an algorithm finds the entire Pareto frontier within the runtime limit), average

runtimes (in seconds), and average numbers of expanded nodes for all algorithms. All averages

are calculated over those problem instances that all algorithms solve. LTMOA* has the largest
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#solved tavg #exp
LTMOA* 47 0.31 331K
A-A*pex-reuse η = 1.5 35 6.31 2,636K
A-A*pex-reuse-enh, η = 1.5 40 1.18 423K
A-A*pex-restart, η = 1.5 38 3.61 5,539K
A-A*pex-hybrid, η = 1.5 40 0.84 1,208K
A-A*pex-reuse η = 2 36 3.51 1,779K
A-A*pex-reuse-enh, η = 2 40 1.04 396K
A-A*pex-restart, η = 2 39 2.00 3,417K
A-A*pex-hybrid, η = 2 41 0.65 878K
A-A*pex-reuse η = 4 38 1.75 1,121K
A-A*pex-reuse-enh, η = 4 40 0.78 378K
A-A*pex-restart, η = 4 40 1.11 1,866K
A-A*pex-hybrid, η = 4 42 0.59 753K
A-A*pex-reuse η = 8 39 1.19 908K
A-A*pex-reuse-enh, η = 8 40 0.81 367K
A-A*pex-restart, η = 8 42 0.78 1,307K
A-A*pex-hybrid, η = 8 42 0.41 515K

Table 4.2: Numbers of solved problem instances, average runtime, and average numbers of ex-
panded nodes for different algorithms on 50 problem instances on the NY road network with
three objectives.

number of solved problem instances and the smallest average runtime and number of expanded

nodes, which is unsurprising since LTMOA* does not have the overhead of running a sequence

of searches that A-A*pex has. The average runtime of each variant of A-A*pex decreases as η

increases because larger values of η result in fewer iterations of A-A*pex. Adding enhanced

dominance checks decreases the average runtime of A-A*pex-reuse and results in the smallest

numbers of node expansions of all A-A*pex variants. With a small η-value, e.g., 1.5 and 2, A-

A*pex-restart has a larger runtime than A-A*pex-reuse-enh because restarting from scratch with

small ε-values for the later iterations of A-A*pex is time-consuming. For all η-values, A-A*pex-

hybrid outperforms the other three A-A*pex variants in terms of the number of solved problem

instances and average runtime.
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(a) The 35 problem instances solved by all algorithms.
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(b) The other 15 problem instances.

Figure 4.2: Approximation error as a function of the runtime of different algorithms on the NY
road network with three objectives.

Figure 4.2 shows the approximation error as a function of the runtime for LTMOA* and all

A-A*pex variants with η = 1.5 and η = 8. We use only two η-values to keep the figure clean.

We divide the problem instances into two groups, namely the problem instances solved by all

algorithms (Figure 4.2a) and the other problem instances (Figure 4.2b). The approximation error
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of each algorithm is averaged over all problem instances in a group. A-A*pex-reuse and A-A*pex-

reuse-enh have larger approximation errors than A-A*pex-restart and A-A*pex-hybrid in the be-

ginning of the search for both η-values, which shows that restarting the search from scratch is

more efficient in the earlier iterations. In Figure 4.2a, the approximation errors of A-A*pex-reuse,

A-A*pex-reuse-enh, and A-A*pex-hybrid quickly drop in the later iterations, which shows that

reusing search effort is more efficient in the later iterations. Therefore, by mixing these two tech-

niques, A-A*pex-hybrid often finds the Pareto frontier faster than the other variants of A-A*pex.

Figure 4.2b shows that, for all variants of A-A*pex, using a smaller η-value of 1.5 (dashed lines)

leads to more frequent updates than using a η-value of 8 (solid lines) and hence results in a better

anytime behavior for difficult problem instances. For example, in Figure 4.2b, if we stop A-A*pex-

hybrid with η = 1.5 and η = 8 at any point in time, the solution set found by A-A*pex-hybrid

with η = 1.5 is much more likely to have a smaller approximation error. In Figure 4.2b, all vari-

ants of A-A*pex have a smaller approximation error than LTMOA* for the entire five minutes

of runtime for both η-values. Although we expect LTMOA* to find Pareto frontiers faster than

A-A*pex if the runtime limit is sufficiently high, all variants of A-A*pex often compute solution

sets with approximation errors smaller than 0.01 faster than LTMOA*.

4.4.3 Comparing with the State of the Art

We compare the hybrid variant of A-A*pex with η = 4 with the state-of-the-art multi-objective

search algorithms BOA* [37] and A-BOA*-ε [86] on problem instances with two objectives and

LTMOA* on problem instances with more than two objectives.
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Figure 4.3: Anytime behaviors of different algorithms on problem instances with different num-
bers of objectives. Each plot shows the approximation error as a function of the runtime for each
algorithm over all 100 problem instances (solid line) and over only those problem instances solved
by at least one algorithm (dashed line).
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Figure 4.4: AUCs for LTMOA* (or BOA* for two objectives) and A-A*pex on all problem instances.

Figure 4.3 shows the results for different objectives. We use solid lines for all problem in-

stances and dashed lines for those problem instances whose entire Pareto frontiers are computed

within the runtime limit. Figure 4.3a contains only solid lines because the entire Pareto frontier

for every problem instance is computed within the runtime limit. In all cases, A-A*pex reduces

the approximation error faster than the other algorithms in the beginning of the search. Because

LTMOA* and BOA* compute solutions in lexicographically increasing order of their costs, they

can exactly “cover" part of the Pareto frontier while completely missing the rest during most of

their searches, which explains their high approximation errors at the beginning. This behavior

is undesirable since it results in high approximation errors for small runtime limits. When a suf-

ficient runtime is provided, LTMOA* and BOA* find the Pareto frontier faster than A-A*pex and

hence have smaller approximation errors than A-A*pex. However, this happens only after the

approximation error becomes smaller than 0.01, even smaller than 0.001 in many cases.

We also compute theArea Under the Curve (AUC) of the approximation error for each problem

instanceP and algorithmA, formally defined as AUCA(P ) =
∫ tlimit

0
e(t), where tlimit is the runtime

limit of five minutes and e is the approximation error as a function of the runtime. We compare
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A-A*pex with LTMOA* (or BOA* for two objectives) as the baseline. Figure 4.4 shows the results.

The numbers along the dashed lines denote how many times the AUC of A-A*pex is smaller

than that of the baseline. For problem instances that are more difficult to solve (represented by

points in the top-right corners), A-A*pex always has smaller AUCs than the baseline. For problem

instances with three or more objectives, A-A*pex has up to 100× smaller AUCs than LTMOA*.

4.5 Summary

In this chapter, we introduced A-A*pex, an anytime approximatemulti-objective search algorithm

that builds upon A*pex. A-A*pex runs A*pex repeatedly to compute better and better approximate

Pareto frontiers while time allows. In each iteration, A-A*pex can either reuse its previous search

effort or restart its search from scratch. Our experimental results showed that a hybrid variant

of A-A*pex, which restarts its search from scratch at first and then reuses its search effort in

later iterations, often results in the best performance. Our experimental results also validated

the hypothesis that anytime multi-objective search algorithms can find a set of solutions that

collectively approximates the Pareto frontier better than the one found by existingmulti-objective

search algorithms when the given time is insufficient for finding the entire Pareto frontier.
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Chapter 5

Speeding up Multi-Objective Search via Contraction

Hierarchies (CHs)

So far, we have considered multi-objective search algorithms only in the context of solving

a single problem instance. However, for many real-world applications, one has to solve multiple

problem instances on the same environment graph. For example, for a route-planning application,

one might have to find the shortest paths for different start and goal locations on the same road

network. Such a setting is called a multi-query setting, and each problem instance is called a

query. In multi-query single-objective search, it is common practice to speed up the search via

preprocessing techniques: In a single preprocessing phase, a preprocessing algorithm processes a

given graph1 and builds auxiliary data for query-time use. In the query phase, different problem

instances are given to a query algorithm, which often uses the auxiliary data to solve the given

problem instances orders of magnitude faster than solving them directly.

This chapter is based on [83].
1The algorithms proposed in this chapter require that the graph is given in an explicit form (that is, the sets of

states and edges are explicitly given). However, the algorithms proposed in the rest of this dissertation do not have
this restriction.
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Awell-studied preprocessing technique for single-objective search is Contraction Hierarchies

(CHs) [28]. A CH is a hierarchical graph that assigns a level number to each state in the input

graph and adds additional edges (known as shortcuts) to the input graph so that the shortest path

from a given start state to a given goal state can be found by searching through the space of

only up-down paths (paths that traverse states with first increasing and then decreasing level

numbers).

In this chapter, we generalize CHs to multi-objective search. We leverage existing multi-

objective search algorithms, namely, LTMOA* and BOA*, in both the preprocessing and query

phases. The resulting CHs retain the property that the Pareto frontier can be computed by con-

sidering only up-down paths.

Unlike a CH for single-objective search, which needs to maintain only one minimum-cost

edge from a source state to a target state, a CH for multi-objective search might have to maintain

several (parallel) edges (with different cost vectors). Maintaining a large number of parallel edges

can slow down both the preprocessing and query algorithms. Hence, to speed up the preprocess-

ing algorithm, we leverage LTMOA* and BOA* to determine which edges in a given set of parallel

edges need to be added to the CH as shortcuts. We call this approach the batched approach be-

cause it checks the given set of parallel edges in one batch. Compared to our basic approach,

which checks each parallel edge individually, the batched approach reduces the preprocessing

time substantially. To speed up the query algorithm, we propose a (general) partial-expansion

technique, which reduces the query time by reducing the number of unnecessarily generated

search nodes. Our experimental results demonstrate the scalability of our CH-based approach to

large road networks and orders-of-magnitude speed-ups in the query phase when all techniques

are combined.
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This chapter is organized as follows: We begin with describing the background materials for

our work in Section 5.1. Then, we describe CHs for multi-objective search in Section 5.2 and prove

their correctness in Section 5.3. We end the chapter with our experimental results in Section 5.4

and a summary in Section 5.5.

5.1 Background

We first describe CHs for single-objective search (Section 5.1.1). We then review existing work

that uses CHs in graphs with two costs but for tasks different from computing the Pareto frontier

(Section 5.1.2) and existing work on other preprocessing techniques (Section 5.1.3).

5.1.1 CHs for Single-Objective Search

In this section, we describe CHs for single-objective search. Since we consider only single-

objective search in this section, we use a scalar c(e) to denote the cost of edge e.

Given a single-objective search graph G = ⟨S,E⟩, a CH is computed by performing con-

tractions on the states in S one by one according to a given state ordering. Contracting a state

s removes it and its incident edges (that is, both its in- and out-edges) from the graph while

preserving the minimum path cost between any pair of states in the remaining graph. To do so,

before removing s and its incident edges, the preprocessing algorithm iterates through every pair

of in-edge e and out-edge e′ of s. It runs a so-called witness search to determine if there is a path,

also called a witness, from src(e) to tar(e′) in the current graph that does not traverse state s

and whose cost is smaller than or equal to c(e) + c(e′). The witness search can be implemented

with any shortest-path algorithm, such as Dijkstra’s algorithm. If the algorithm does not find a
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witness, a new edge ⟨src(e), tar(e′), c(e) + c(e′)⟩ that bridges edges e and e′, called a shortcut,

is added to the graph to preserve the minimum path cost from src(e) to tar(e′). Generating a

CH does not require contracting all states. Let L denote the number of states to contract, deter-

mined by a user. After the first L states have been contracted, a CH GCH = ⟨S,ECH⟩ is created.

The state set S is the one of the input graph G, and the edge set ECH consists of the edges in E

(including the ones that were removed during contraction) and all shortcuts. In case there are

parallel edges, only the minimum-cost one is kept. The i-th contracted state s is assigned a level

number of lvl(s) = i, and all uncontracted states (also called the core of the CH) are assigned

level numbers of L+ 1.

An edge from state u to state v is an upward edge (resp. a downward edge) iff lvl(u) ≤ lvl(v)

(resp. lvl(u) > lvl(v)). A path is an upward path (resp. a downward path) iff it consists of only

upward edges (resp. downward edges). A path π = [e1, e2 . . . eℓ] is an up-down path iff there

exists a j such that all edges ei with i ≤ j are upward edges and all edges ei with i > j are

downward edges. The following theorem is rephrased from Lemma 1 in Geisberger et al. [28].

Theorem 5.1. For any pair of states u and v, there exists an up-down path from u to v inGCH with

the minimum-path cost from u to v in the input graph G.

Given a query, a minimum-cost up-down solution on GCH can be computed efficiently using

a modified bidirectional Dijkstra’s algorithm [28] or a modified A* algorithm [34]. Then, the up-

down solution can be unpacked into a minimum-cost solution onG by recursively replacing each

shortcut with the two edges that it bridges.

Different CHs can be obtained from the same input graph using different state orderings for

contraction. The state ordering plays an important role for both the preprocessing and query
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times of the resulting CH and is usually determined with heuristics that take into account the

number of shortcuts to add if a state is contracted and the number of incident edges of that

state [28].

Example 8. Figure 5.1 shows an example of CH for single-objective search. The input graph is the

graph in Figure 2.1 but with only the first cost of each edge. States are contracted in the order of

[s2, s5, s1, s4, sstart , sgoal , s3], and L is 7:

• State s2 is contracted. We do not need to add a shortcut for path [sstart , s2, s3] with cost 4

because of path [sstart , s1, s3] with cost 3. Similarly, we do not need to add a shortcut for path

[s1, s2, s3] with cost 2 because of path [s1, s3] with cost 2. Therefore, no shortcut is created.

• State s5 is contracted, and a shortcut from s3 to sgoal with cost 3 is added to the graph because

there is no other path from s3 to sgoal with a cost smaller than or equal to the cost 3 of path

[s3, s5, sgoal ].

• State s1 is contracted, and a shortcut from sstart to s3 with cost 3 is added to the graph because

there is no other path from sstart to s3 with a cost smaller than or equal to the cost 3 of path

[sstart , s1, s3].

• States s4, sstart , sgoal , and s3 are contracted in order. No shortcuts are created.

Figure 5.1h shows the resulting CH. The minimum-cost path between any two states can be found

by searching only up-down paths. For example, the only up-down path from sstart to sgoal is path

[sstart , s3, sgoal ] with cost 6. After unpacking this path (that is, replacing the shortcuts from sstart

to s3 and from s3 to sgoal with paths [sstart , s1, s3] and [s3, s5, sgoal ], respectively), we obtain the

minimum-cost path [sstart , s1, s3, s5, sgoal ] from sstart to sgoal in the input graph. Different state
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Figure 5.1: An example CH for single-objective search. (a) shows the input graph, which is the
graph in Figure 2.1 but with only the first cost of each edge. (b-g) show the steps for contracting
the states in the order of [s2, s5, s1, s4, sstart , sgoal , s3]. (h) shows the resulting CH. Dashed edges
are the shortcuts added during contraction.
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orderings for contraction can result in different CHs. For example, if we contract state s1 first, we

need to add a shortcut from sstart to s2 with cost 2, which is not in the CH in Figure 5.1h.

5.1.2 CHs in Graphs with Multiple Costs

To the best of our knowledge, there are only a few existing works that use CHs on graphs with

multiple costs. However, even they have not investigated the task of computing the entire Pareto

frontier [69, 27, 25, 7]. Most of them focus only on two costs. Specifically, Storandt [69] pro-

posed a CH-based approach for solving the Weight Constrained Shortest-Path (WCSP) problem.

Its preprocessing algorithm computes shortcuts heuristically—which avoids the burden of com-

puting the exact shortcuts—but can add unnecessary shortcuts. Both Geisberger, Kobitzsch, and

Sanders [27] and Funke and Storandt [25] use different weighted combinations of the costs to

map a multi-objective search problem to several single-objective search problems. However, the

resulting CHs cannot be used to find all paths on the Pareto frontier, particularly those that do

not minimize any weighted combination of the costs. Baum et al. [7] apply CHs to a constrained

shortest-path problem that considers charging, recuperation, and the battery capacity of electric

vehicles. The vehicle has a fixed battery capacity and can charge at stations. The problem objec-

tive is to minimize the total travel time (including the time for charging) while ensuring that the

battery never gets empty.
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5.1.3 Other Preprocessing Techniques

Preprocessing techniques have been used extensively in single-objective search. Examples other

than CHs include true distance heuristics [70], embedding in Euclidean spaces [14], and sub-goal

graphs [76]. Only a few of them have been generalized to multi-objective search.

One of the existing works on computing Pareto frontiers with preprocessing techniques is

multi-criteria SHARC [17]. However, it has been demonstrated only on small road networks with

less than 80,000 states and is not immediately scalable to larger graphs. This is partly because

its preprocessing algorithm needs to compute the Pareto frontier from one state to every other

state, which requires a large amount of memory for large road networks.

Our previous work [82] generalizes Differential Heuristics (DHs) [30, 70], a class of true dis-

tance heuristics for single-objective search, to bi-objective search. We call the resulting technique

Bi-Objective Differential Heuristics (BO-DHs). During the preprocessing phase, a set of landmark

states L are selected. Then, for each landmark state ℓ ∈ L, the preprocessing algorithm computes

the Pareto frontier from ℓ to every other state and stores these Pareto frontiers in a lookup table.

During the query phase, a multi-value heuristic is computed using a generalized triangle inequal-

ity rule. A multi-value heuristic [29] uses a set of vectors to estimate the Pareto frontier from any

given state to the goal state, which can be potentially more informed than using a single vector as

the heuristic for each state. Our experimental results show that BO-DHs can reduce the number

of node expansions and the runtime of NAMOA* by up to an order of magnitude. However, BO-

DHs remain impractical for speeding up state-of-the-art bi-objective search algorithms because

it is unclear how to integrate multi-value heuristics with the dimensionality reduction technique.
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Because the preprocessing algorithm for BO-DHs also needs to compute the Pareto frontier from

one state to every other state, BO-DHs are also not immediately scalable to larger graphs.

5.2 CHs for Multi-Objective Search

In this section, we introduce CHs for multi-objective search. We first describe the preprocessing

algorithm in Section 5.2.1 and then the query algorithm in Section 5.2.2.

5.2.1 Preprocessing Algorithm

Like a CH in single-objective search, a CH in multi-objective search is built by contracting one

state at a time in the input graph G until contracting L states. Contracting a state s removes it

and its incident edges from G while preserving at least one Pareto frontier between any pair of

states in the remaining graph. Each combination of an input edge and an output edge of s is a

shortcut candidate. The preprocessing algorithm needs to determine whether to add a shortcut

for each candidate. We propose two approaches for doing so: the basic approach and the batched

approach. The basic approach runs a witness search for each shortcut candidate individually,

and the batched approach groups the candidates for parallel shortcuts (that is, shortcuts from the

same source state to the same target state) into a batch and uses a single witness search to test all

of them at once to reduce the preprocessing time. In contrast to the witness search of Storandt

[69], these two approaches use exact witness search algorithms and add fewer shortcuts to the

CH.
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Algorithm 9: The Basic Preprocessing Algorithm
Input : A graph G = ⟨S,E⟩ and a number L of states to contract
Output: A CH

1 SCH ← S;ECH ← {}
2 while |SCH| − |S| < L do
3 s← choose the next state to contract
4 for e ∈ in(s) do
5 for e′ ∈ out(s) do
6 u← src(e); v ← tar(e′)
7 if WitnessSearch(G, u, v, c(e) + c(e′)) = false then
8 AddShortcut(⟨u, v, c(e) + c(e′)⟩)
9 add all edges incident on s to ECH

10 remove s from S and all edges incident on s from E

11 add all remaining edges in E to ECH
12 return GCH = ⟨SCH, ECH⟩;
13 Function WitnessSearch(G, u, v,p):
14 π ← a path from u to v whose cost dominates p, or none if no such path exists
15 return true if π = none , otherwise false

16 Function AddShortcut(esc):
17 remove edges parallel to esc whose costs are weakly dominated by c(esc) from E
18 add esc to E

5.2.1.1 Basic Approach

Algorithm 9 shows our basic approach to building a CH.When contracting a state s, for every pair

of in-edge e and out-edge e′ of s, it usesWitnessSearch to determine if there exists a path (witness)

from src(e) to tar(e′) whose cost dominates c(e) + c(e′) (Lines 4-8). We omit the pseudocode of

WitnessSearch since it is based on LTMOA* (or BOA* for the bi-objective case) with src(e) and

tar(e′) as the start and goal states, respectively. We make the following modifications:

• Termination: Once a witness is found, WitnessSearch terminates and returns true . Oth-

erwise, when Open becomes empty,WitnessSearch terminates and returns false .

• Pruning: WitnessSearch prunes any node n if fi(n) > ci(e) + ci(e
′) holds for any i since

any solution found via such a node n cannot be a witness.
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• Heuristic computation: Computing the perfect-distance heuristic is too time-consuming

to do every timeWitnessSearch is invoked. Thus, whenwe runDijkstra’s algorithm (which

starts from tar(e′)) to compute the heuristic, we terminate Dijkstra’s algorithm once src(e)

is expanded. Subsequently, the heuristic value for any state s is set to the minimum path

cost from tar(e′) to s on the reverse graph if s has been expanded or the minimum path

cost from tar(e′) to src(e) on the reverse graph otherwise. The resulting heuristic function

is consistent.

A shortcut esc := ⟨src(e), tar(e′), c(e) + c(e′)⟩ is added to the graph if WitnessSearch does not

find a witness (Line 8). Additionally, we remove all those edges parallel to esc whose costs are

weakly dominated by c(esc) (Line 17) since such edges are not needed to preserve any Pareto

frontier.

After contracting L states, Algorithm 9 returns a CH GCH = ⟨SCH, ECH⟩ whose states SCH

consist of all states of the input graph and whose edges ECH consist of all edges incident on the

contracted states before they are removed from the input graph (Line 9) and all remaining edges

(Line 11).

Example 9. Figure 5.2 shows an example CH for the bi-objective graph in Figure 2.1. Different from

our previous examples, we need to consider parallel edges in this example. Therefore, we refer to a path

by its sequence of edges to avoid ambiguity. Each edge e is denoted by a tuple ⟨src(e), tar(e), c(e)⟩.

As in Example 8, states are contracted in the order of [s2, s5, s1, s4, sstart , sgoal , s3], and L is 7:

• State s2 is contracted. A shortcut from s1 to s3 with cost (2, 2) is added to the graph because

there is no other path from s1 to s3 that dominates path [⟨s1, s2, (1, 1)⟩, ⟨s2, s3, (1, 1)⟩]. The

edge from s1 to s3 with cost (2, 3) is removed because its cost is dominated by (2, 2). A shortcut
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Figure 5.2: An example CH for multi-objective search. (a) shows the input graph, which
is the graph in Figure 2.1. (b-g) show the steps for contracting the states in the order of
[s2, s5, s1, s4, sstart , sgoal , s3]. (h) shows the resulting CH. Dashed edges are the shortcuts added
during the contraction.
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from sstart to s3 with cost (4, 2) is added to the graph because there is no other path from sstart

to s3 that dominates path [⟨sstart , s2, (3, 1)⟩, ⟨s2, s3, (1, 1)⟩].

• State s5 is contracted. A shortcut from s3 to s4 with cost (2, 2) is added to the graph because

there is no other path from s3 to s4 that dominates path [⟨s3, s5, (1, 1)⟩, ⟨s5, s4, (1, 1)⟩]. A

shortcut from s3 to sgoal with cost (3, 8) is added to the graph because there is no other path

from s3 to sgoal that dominates path [⟨s3, s5, (1, 1)⟩, ⟨s5, sgoal , (2, 7)⟩].

• State s1 is contracted. A shortcut from sstart to s3 with cost (3, 3) is added to the graph because

there is no other path from sstart to s3 that dominates path [⟨sstart , s1, (1, 1)⟩, ⟨s1, s3, (2, 2)⟩].

• State s4 is contracted. A shortcut from s3 to sgoal with cost (8, 3) is added to the graph because

there is no other path from s3 to sgoal that dominates path [⟨s3, s4, (2, 2)⟩, ⟨s3, sgoal , (6, 1)⟩].

• States sstart , sgoal and s3 are contracted in order. No shortcuts are created.

This example shows that a CH for multi-objective search can contain parallel edges even if the

input graph does not contain one. For instance, the resulting CH contains two parallel edges from

sstart to s3, none of whose costs weakly dominate the others.

5.2.1.2 Batched Approach

As demonstrated in Example 9, a contraction can add parallel edges to the remaining graph.

When a state is contracted, the search effort in WitnessSearch can be duplicated for different

combinations of its parallel in-edges and its parallel out-edges. Our batched approach, outlined in

Algorithm 10, reduces such duplicated search effort. Specifically, for every pair of in-neighbor u

and out-neighbor v of s, the algorithm finds all two-hop paths Π from u to v that traverse s,
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Algorithm 10: The Batched Preprocessing Algorithm
Input : A graph G = ⟨S,E⟩ and a number L of states to contract
Output: A CH

1 SCH ← S;ECH ← {}
2 while |SCH| − |S| < L do
3 s← choose the next state to contract
4 for u ∈ in_nbr(s) do
5 for v ∈ out_nbr(s) do
6 Π← all two-hop paths from u to v that traverse s
7 Πsc = WitnessSearchBatch(G, u, v, s,Π)
8 for π ∈ Πsc do
9 AddShortcut(⟨u, v, c(π)⟩)

10 add all edges incident on s to ECH
11 remove s from S and all edges incident on s from E

12 add all remaining edges in E to ECH
13 return GCH = ⟨SCH, ECH⟩;

that is, all paths consisting of an in-edge e′ of s with src(e) = u and an out-edge e′′ of s with

tar(e′) = v. It then uses a single run of WitnessSearchBatch to determine which paths in Π

should result in shortcuts (Line 7). FunctionWitnessSearchBatch returns a subsetΠsc ofΠ such

that (1) no path in Πsc is weakly dominated by any path from u to v that does not traverse s, (2)

no path in Πsc is dominated by any other path in Π, and (3) no two paths in Πsc have the same

cost.

Function WitnessSearchBatch, like WitnessSearch, is based on LTMOA*, or BOA* for the

bi-objective case. Algorithm 11 shows the pseudocode for WitnessSearchBatch that is based on

LTMOA*. We omit the pseudocode for WitnessSearchBatch that is based on BOA* because it is

similar to Algorithm 11, with only differences in the dominance checks. We highlight the major

changes of Algorithm 11 over LTMOA* by using “*” before line numbers in its pseudocode. The

changes include (1) initializing variables (Lines 4-10), (2) deciding if a path inΠ should result in a
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Algorithm 11: Witness Search for the Batched Preprocessing Algorithm
1 Function WitnessSearchBatch(G = ⟨S,E⟩, u, v, s,Π):
2 n← new node with s(n) = u and g(n) = 0
3 Open← {n}
*4 remove paths dominated by other paths in Π and, if several paths have the same

cost, keep only one of them
*5 Ncandidate ← ∅
*6 for each π ∈ Π do
*7 n← new node with s(n) = v and g(n) = c(π)
*8 add n to Open and Ncandidate
*9 Πsc ← ∅

*10 cUB ← component-wise maximum of the costs of all paths in Π
11 for each s ∈ S do
12 Gtr

cl(s)← ∅
13 while Open ̸= ∅ do
14 extract a node n from Open with the lexicographically smallest f -value, breaking

ties in favor of nodes that are not in Ncandidate
15 if IsDominated(n) then
16 continue
17 Update(Gtr

cl(s(n)),Tr(g(n)))
18 if s(n) = v then
*19 if n ∈ Ncandidate then
*20 add the corresponding path of n to Πsc
21 continue
22 for each e ∈ out(s(n)) do
*23 if tar(e) = s then
*24 continue
25 n′ ← new node with s(n′) = tar(e) and g(n′) = g(n) + c(e)
26 if IsDominated(n′) then
27 continue
28 add n′ to Open
29 return Πsc

30 Function IsDominated(n):
31 if ∃x ∈ Gtr

cl(v) : x ⪯ Tr(f(n)) then
32 return true
33 if ∃x ∈ Gtr

cl(s(n)) : x ⪯ Tr(g(n)) then
34 return true
*35 if ∃i ∈ {1, 2 . . . N} : fi(n) > cUBi then
*36 return true
37 return false
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shortcut (Lines 19-20), and (3) pruning nodes (Lines 23-24 and 35-36). We now elaborate on each

change.

During the initialization, WitnessSearchBatch removes all paths dominated by other paths

in Π from Π and, if several paths have the same cost, keeps only one of them. After removing

these paths, Π contains the shortcut candidates that need to be checked. For each path π ∈

Π, WitnessSearchBatch creates a node n that contains state v and whose g-value is c(π) and

adds n to Open (Lines 7-8). These nodes are also stored in a set of nodes Ncandidate (Line 8).

WitnessSearchBatch then initializes variable Πsc to ∅ (Line 9). Additionally, it computes the

component-wise maximum cUB of the costs of all paths in Π (Line 10), which is later used in

IsDominated for pruning nodes.

WitnessSearchBatch then runs an LTMOA*-like search from the source state u. Like LT-

MOA*, WitnessSearchBatch extracts a node with the lexicographically smallest f -value from

Open. Unlike LTMOA*, it breaks ties in favor of nodes that are not in Ncandidate. Therefore, if

there exists a path π′ from u to v that does not traverse state s and has the same cost as some

path π ∈ Π, WitnessSearchBatch finds π′ before expanding the node created for π on Line 7.

The next difference from LTMOA* occurs when a node n that contains the target state v is ex-

panded. WitnessSearchBatch checks if n is in Ncandidate. If so, n is a node created on Line 7 for

some path π ∈ Π. If there is a path from u to v that does not traverse s and weakly dominates

π,WitnessSearchBatch should have found this path before expanding n and would prune n be-

cause of the condition on Line 31 of IsDominated. Therefore, by contradiction, π is not weakly

dominated by any path from u to v that does not traverse s and hence should be added to Πsc.

FunctionWitnessSearchBatch also has a different pruning strategy than LTMOA*. It prunes

any nodes that contain state s (Lines 23-24) because it does not consider paths that traverse state
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s. WitnessSearchBatch also prunes a node n if fi(n) > cUBi for any i (Lines 35-36) because, in

this case, no path from u to v found via n weakly dominates any path in Π. Finally, when Open

becomes empty, the algorithm terminates and returns Πsc (Line 29).

5.2.2 Query Algorithm

In this section, we describe how we combine CHs with multi-objective search algorithms in the

query phase. Additionally, we describe a simple yet effective partial-expansion technique that

reduces the query time by reducing the number of nodes inserted into Open.

5.2.2.1 Constructing Search Graphs

The query phase relies on the up-down property of CHs. That is, for any path π from state u to

state v in the input graph G, there exists an up-down path from state u to state v in the CH GCH

that weakly dominates π (Theorem 5.2). Therefore, a Pareto frontier can be found by searching

through the space of only up-down paths in GCH.

While it is customary to use bi-directional Dijkstra’s algorithm over CHs in the query phase

of single-objective search with one direction considering only upward paths and the other di-

rection considering only downward paths, the analog for multi-objective search requires careful

examination. Bi-directional bi-objective Dijkstra’s algorithm [65] is an algorithm that generalizes

bi-directional Dijkstra’s algorithm to bi-objective search. However, Hernández et al. [37] show

that it is less efficient than BOA*. BOBA* [2] is another bi-objective search algorithm that utilizes

two simultaneous bi-objective searches, one from the source and one from the target. However,

the search in each direction is independent of the other one and hence cannot focus on only

upward or downward paths, respectively.
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Figure 5.3: The search graph created for the query from sstart to sgoal and the CH in Figure 5.2h.

Our approach is to first build a search graph G̃ for given sstart and sgoal . G̃ is a subgraph ofGCH

and consists of all up-down paths from sstart to sgoal . Then, we can run anymulti-objective search

algorithm (we use BOA* for problem instances with two objectives and LTMOA* for problem

instances with more than two objectives) on G̃ to find a Pareto frontier. We denote G̃ by ⟨S̃ =

S↑ ∪ S↓, Ẽ⟩, where S↑ consists of all states that can be reached from sstart via an upward path

and S↓ consists of all states that can reach sgoal via a downward path. S↑ and S↓ are computed

by running a depth-first search on GCH and its inverse graph, respectively. Ẽ consists of (1) all

upward edges with source states in S↑ and (2) all downward edges with target states in S↓.

Example 10. Figure 5.3 shows the search graph G̃ constructed for the query from sstart to sgoal and

the CH in Figure 5.2h. State set S↑ consists of sstart and s3, and state set S↓ consists of s3 and sgoal .

The edge set of the search graph contains only the upward edges from sstart to s3 and the downward

edges from s3 to sgoal .

In search graph G̃, there are four paths from sstart to sgoal , namely, path [⟨sstart , s3, (3, 3)⟩,

⟨s3, sgoal , (3, 8)⟩] with a cost of (6, 11), path [⟨sstart , s3, (4, 2)⟩, ⟨s3, sgoal , (3, 8)⟩] with a cost of
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(7, 10), path [⟨sstart , s3, (3, 3)⟩, ⟨s3, sgoal , (8, 3)⟩] with a cost of (11, 6), and path [⟨sstart , s3, (4, 2)⟩,

⟨s3, sgoal , (8, 3)⟩] with a cost of (12, 5). These four paths exactly correspond to the four Pareto-

optimal paths shown in Figure 2.1b. One can use BOA* to find these four paths in G̃ and then obtain

the Pareto frontier for the original problem instance by unpacking these paths.

5.2.2.2 Partial Expansions

In a CH for multi-objective search, there can be many (up to several hundred in our experiments)

parallel edges from a state s to another state s′ due to contractions. When expanding a node that

contains state s, existingmulti-objective search algorithms generate child nodes for all edges from

s to s′, which may be unnecessary if some of these child nodes are pruned later. Therefore, we

propose “lazy” variants of LTMOA* and BOA* that utilize partial expansions to reduce the number

of generated child nodes in many cases by generating them one by one, as needed. The idea of

partial expansions comes from single-objective search [22], where a search algorithm keeps track

of the child node to generate next for each expanded node. We adapt this idea to keep track of the

child node to generate next for each pair of an expanded node n and one of the out-neighbors of

s(n). This enables the algorithm to identify quickly whether all child nodes for an out-neighbor

state can be pruned without checking all corresponding out-edges.

Algorithm 12 shows LTMOA* with partial expansions. We omit the pseudocode for BOA*

with partial expansions because it is similar to Algorithm 12 with the only differences being in

the dominance checks. Algorithm 12 requires that, for any two states s and s′, all edges from s

to s′ that are dominated by other edges from s to s′ are removed, and, if several edges have the

same cost, only one of them is kept. The remaining edges are sorted in order of lexicographically

increasing costs. These changes (removing and sorting edges) are done in the preprocessing
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Algorithm 12: LTMOA* with Partial Expansions
Input : A problem instance ⟨G, sstart , sgoal⟩ and a consistent heuristic function h
Output: A Pareto frontier

1 n← new node with s(n) = sstart , g(n) = 0, and p(n) = None
2 Open← {n}
3 Sols← ∅
4 for each s ∈ S do
5 Gtr

cl(s)← ∅
6 while Open ̸= ∅ do
7 extract a node n from Open with the lexicographically smallest f -value
*8 if p(n) ̸= None then
*9 GenerateNext(parent(n), s(n), idx (n) + 1)
10 if IsDominated(n) then
11 continue
12 Update(Gtr

cl(s(n)),Tr(g(n)))
13 if s(n) = sgoal then
14 add the corresponding solution of n to Sols
15 continue
16 for s′ ∈ out_nbr(s(n)) do
*17 GenerateNext(n, s′, 1)

18 return Sols

*19 Function GenerateNext(n, s, i):
*20 gmin = g(n) + cmin(s(n), s)
*21 if ∃x ∈ Gtr

cl(sgoal) : x ⪯ Tr(gmin + h(s)) or ∃x ∈ Gtr
cl(s) : x ⪯ Tr(gmin) then

*22 return
*23 for j = i, i+ 1 . . .ms(n),s do
*24 n′ ← new node with s(n′) = s, g(n′) = g(n) + c(ejs(n),s), idx (n′) = j, and

p(n′) = n
*25 if IsDominated(n′) then
*26 continue
*27 add n′ to Open
*28 return
*29 return

phase. We usems,s′ to denote the number of edges from s to s′ and [e1s,s′ , e2s,s′ . . . e
ms,s′

s,s′ ] to denote

the sequence of these edges sorted in lexicographical order. We say that i is the index of edge

eis,s′ . Additionally, we use cmin(s, s′) to denote the component-wise minimum of the costs of all

edges from s to s′ and p(n) to store the parent node of a node n.
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We highlight the major changes of Algorithm 12 over LTMOA* by using “*” before the line

numbers. When expanding a node n, the algorithm usesGenerateNext for each out-neighbor s of

s(n) (Line 17). On Lines 21-22,GenerateNext first checks (1) if the component-wise minimum f -

value of these child nodes is weakly dominated by the f -value of any expanded node that contains

state sgoal and (2) if the component-wise minimum g-value of these child nodes is weakly domi-

nated by the g-value of any expanded node that contains state s. Let gmin = g(n)+cmin(s(n), s) be

the component-wise minimum g-value of these child nodes. Because LTMOA* uses dimensional-

ity reduction, checking (1) and (2) can be done by checking ∃x ∈ Gtr
cl(sgoal) : x ⪯ Tr(gmin+h(s))

and ∃x ∈ Gtr
cl(s) : x ⪯ Tr(gmin), respectively . If (1) or (2) holds, one can conclude that all child

nodes of n that contain state s will be pruned. Therefore, GenerateNext returns without adding

any node toOpen (Line 22). Otherwise,GenerateNext iterates over all edges [e1s,s′ , e2s,s′ . . . e
ms,s′

s,s′ ]

until it finds the first edge that results in an undominated child node n′. Function GenerateNext

then adds n′ to Open and returns (Lines 23-28). For each node n, the algorithm uses idx (n) to

record the index of the edge that was used to generate it.

When a node n is extracted from Open and n is not the root node, the algorithm calls

GenerateNext to generate the next undominated child node of p(n) that contains state s(n),

if one exists (Line 9). When iterating over the edges from s(p(n)) to s(n), GenerateNext starts

with the edge with index idx (n) + 1 because all edges with smaller indices have already been

iterated over in the previous calls of GenerateNext for p(n) and s(n). The rest of Algorithm 12

is the same as LTMOA*.

Example 11. Consider the search graph in Figure 5.3. Assume that we use the perfect-distance

heuristic. The heuristics for states sstart , s3, and sgoal are (6, 5), (3, 3), and (0, 0), respectively. The
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Iter Open ⟨s(n),g(n), f(n)⟩ Generated ⟨s(n),g(n), f(n)⟩ Update of gmin
2 (s(n))

1 ⟨sstart , (0, 0), (6, 5)⟩∗ ⟨s3, (3, 3), (6, 6)⟩ gmin
2 (sstart) = 0

2 ⟨s3, (3, 3), (6, 6)⟩∗ ⟨sgoal , (6, 11), (6, 11)⟩ gmin
2 (s3) = 3⟨s3, (4, 2), (7, 5)⟩

3 ⟨sgoal , (6, 11), (6, 11)⟩∗ ⟨sgoal , (11, 6), (11, 6)⟩ gmin
2 (sgoal ) = 11⟨s3, (4, 2), (7, 5)⟩

4 ⟨s3, (4, 2), (7, 5)⟩∗ ⟨sgoal , (7, 10), (7, 10)⟩ gmin
2 (s3) = 2⟨sgoal , (11, 6), (11, 6)⟩

5 ⟨sgoal , (7, 10), (7, 10)⟩∗ ⟨sgoal , (12, 5), (12, 5)⟩ gmin
2 (sgoal ) = 10⟨sgoal , (11, 6), (11, 6)⟩

6 ⟨sgoal , (11, 6), (11, 6)⟩∗ gmin
2 (sgoal ) = 6⟨sgoal , (12, 5), (12, 5)⟩

7 ⟨sgoal , (12, 5), (12, 5)⟩∗ gmin
2 (sgoal ) = 5

8 empty

Table 5.1: Trace of Open, generated nodes, and gmin
2 in each iteration of Example 11. “∗" marks

the node that is extracted in that iteration.

edges from sstart to s3 are sorted in the order of [⟨sstart , s3, (3, 3)⟩, ⟨sstart , s3, (4, 2)⟩], and the edges

from s3 to sgoal are sorted in the order of [⟨s3, sgoal , (3, 8)⟩, ⟨s3, sgoal , (8, 3)⟩]. Table 5.1 shows a trace

of Open, generated nodes, and changes to gmin
2 in each iteration of BOA* with partial expansions:

1. In Iteration 1, the algorithm expands node ⟨sstart , (0, 0), (6, 5)⟩. Although sstart has two out-

edges, the algorithm generates only child node ⟨s3, (3, 3), (6, 6)⟩ for edge ⟨sstart , s3, (3, 3)⟩.

2. In Iteration 2, the algorithm expands node ⟨s3, (3, 3), (6, 6)⟩. The algorithm first gen-

erates the second child node ⟨s3, (4, 2), (7, 5)⟩ of node ⟨sstart , (0, 0), (6, 5)⟩ using edge

⟨sstart , s3, (4, 2)⟩. It then generates child node ⟨sgoal , (6, 11), (6, 11)⟩ of node ⟨s3, (3, 3), (6, 6)⟩

for edge ⟨s3, sgoal(3, 8), ⟩.

3. In Iteration 3, the algorithm expands node ⟨sgoal , (6, 11), (6, 11)⟩ and adds a solution with cost

(6, 11) to Sols. The algorithm then generates the second child node ⟨sgoal , (11, 6), (11, 6)⟩ of

⟨s3, (3, 3), (6, 6)⟩ for edge ⟨s3, sgoal , (8, 3)⟩.
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4. In Iteration 4, the algorithm expands node ⟨s3, (4, 2), (7, 5)⟩ and generates its child node

⟨sgoal , (7, 10), (7, 10)⟩ for edge ⟨s3, sgoal , (3, 8)⟩.

5. In Iteration 5, the algorithm expands node ⟨sgoal , (7, 10), (7, 10)⟩ and adds a solution with cost

(7, 10) to Sols. The algorithm then generates the second child node ⟨sgoal , (12, 5), (12, 5)⟩ of

⟨sstart , (4, 2), (7, 5)⟩ for edge ⟨s3, sgoal , (8, 3)⟩.

6. In Iterations 6-7, the algorithm expands the remaining nodes in Open and finds two solutions

with costs (11, 6) and (12, 5), respectively.

The algorithm terminates whenOpen becomes empty in Iteration 8 and returnsSols as the Pareto

frontier from sstart to sgoal . Despite using partial expansions, the search algorithm still expands nodes

in order of lexicographically increasing f -values.

5.3 Correctness

In this section, we prove the up-down property ofmulti-objective CHs. We study only the batched

preprocessing algorithm, but the lemmas and theorem in this section also hold for the basic pre-

processing algorithm after modifying the proof of Lemma 5.1.

We use si and G(i) = ⟨S(i), E(i)⟩ to denote the i-th contracted state and the remaining graph

after the first i− 1 states have been contracted, respectively. Specifically, G(1) is the same as the

input graph G, and G(L+1) is the core of the CH.

Lemma 5.1. For any i and j with 1 ≤ i ≤ j ≤ L+ 1, two states u and v that are in both S(i) and

S(j), and a path π from u to v in G(i), there exists a path from u to v in G(j) that weakly dominates

π.
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Proof. Considering any given i, we prove this lemma by induction on j. The lemma trivially holds

when j = i. Assume that the lemma holds for j ≤ l−1, and consider a path π from u to v inG(l)

with both states u and v also in S(l). Because the lemma holds for j = l − 1, there exists a path

π(l−1) from u to v in G(l−1) that weakly dominates π. If π(l−1) does not traverse state s(l−1), that

is, the (l − 1)-th contracted state, it is not affected by the (l − 1)-th contraction and still in G(l).

Thus, the lemma holds for j = l. Otherwise, π(l−1) traverses state s(l−1). Because u and v are in

S(l), s(l−1) cannot be u or v. Therefore, π(l−1) traverses state s(l−1) with edges e and e′ such that

tar(e) = src(e′) = s(l−1). When Algorithm 10 contracts state s(l−1) and reaches Line 7 with Π

containing the two-hop path πsc that bridges e and e′, we distinguish the following cases:

1. There exists a path π′ from src(e) to tar(e′) inG(l−1) that does not traverse s(l−1) andwhose

cost weakly dominates c(e)+c(e′). Because π′ does not traverse s(l−1), it is still inG(l). We

can construct a path from u to v inG(l) that weakly dominates π(l−1) by substituting edges

e and e′ in π(l−1) with π′. The resulting path weakly dominates π, and hence the lemma

holds.

2. There does not exist a path π′ from src(e) to tar(e′) in G(l−1) that does not traverse s(l−1)

and whose cost weakly dominates c(e) + c(e′). Because πsc is in Π and weakly dominates

itself, there must exist some paths inΠwhose costs weakly dominate c(πsc) = c(e)+c(e′).

From these paths, we can always find a path π′′ that is not dominated by any other path in

Π. π′′ is not weakly dominated by any path from u to v that does not traverse s as well.

Consider the set of paths Πsc returned byWitnessSearchBatch. Πsc is a maximal subset of

Π such that (1) no path in Πsc is weakly dominated by any path from u to v that does not

traverse s, (2) no path inΠsc is dominated by any other path inΠ, and (3) no two paths inΠsc
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have the same cost. There must exist some path inΠsc that has the same cost as π′′ because,

otherwise, Πsc is not a maximal subset. Therefore, a shortcut edge from src(e) to tar(e′)

whose cost weakly dominates c(e)+c(e′) is added toE(l) (Line 9). We can construct a path

from u to v inG(l) whose cost weakly dominates c(π(l−1)) by substituting edges e and e′ in

π(l−1) with this shortcut edge. This path weakly dominates π, and hence the lemma holds.

Therefore, the lemma holds for all j.

Lemma 5.2. For any i with 1 ≤ i ≤ L+ 1, states u and v that are both in S(i), and a path π from

u to v that is in G(i), there exists an up-down path from u to v in GCH that weakly dominates π.

Proof. We first assume that π is a simple path and will later show that the lemma still holds

without this assumption.

We prove this lemma by induction on i from L + 1 to 1. When i = L + 1, G(i) is the core

of the CH. Every path π in G(i) traverses states with the same level number and hence is also an

up-down path in GCH. Because π weakly dominates itself, the lemma holds for i = L+ 1.

Assume that the lemma holds for i ≥ l + 1, l ≤ L, and consider any path π from u to v that

is in S(l). We distinguish three cases:

1. Neither state u or v is s(l). Both u and v remain in S(l+1) after the l-th contraction. From

Lemma 5.1, there exists a path π′ from u to v in G(l+1) that weakly dominates π. Because

the lemma holds for i = l + 1, π′ is weakly dominated by some up-down path from u to v

in GCH. Therefore, π is also weakly dominated by this up-down path.

2. State u is s(l). Let e1 denote the first edge of π and π[1:] denote the path obtained from π by

removing the first edge. π[1:] is a path from tar(e1) to v. Because π is a simple path, only its
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first state is s(l). Path π[1:] is not affected by the l-th contraction and hence is also inG(l+1).

Since the lemma holds for i ≥ l + 1, there exists an up-down path π′ from tar(e1) to v in

GCH that weakly dominates π[1:]. Edge e1 is added to ECH when s(l) is contracted, and it is

an upward edge because its source u = s(l) is contracted before its target. We can obtain

an up-down path πud in GCH from u to v by joining e1 and π′, which weakly dominates π

because

c(πud) = c(e1) + c(π′)

⪯ c(e1) + c(π[1:])

= c(π).

3. State v is s(l). Let e−1 denote the last edge of π, and π[:−1] denote the path obtained from

π by removing the last edge. π[:−1] is a path from u to src(e−1). Because π is a simple

path, only its last state is s(l). Path π[:−1] is not affected by the l-th contraction and hence

is also in G(l+1). Since the lemma holds for i ≥ l + 1, there exists an up-down path π′

from u to src(e−1) in GCH that weakly dominates π[:−1]. Edge e−1 is added to ECH when

s(l) is contracted, and it is a downward edge since its target v = s(l) is contracted before
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its source. We can obtain an up-down path πud in GCH from u to v by joining π′ and e−1,

which weakly dominates π because

c(πud) = c(π′) + c(e−1)

⪯ c(π[:−1]) + c(e−1)

= c(π).

Therefore, the lemma holds for i = l and hence holds for all i, 1 ≤ i ≤ L+ 1.

Now we consider the case that π is not a simple path. There must exist a simple path π′ in

G(i) that weakly dominates π. Because the lemma holds for simple paths, there exists an up-down

path from u to v in GCH that weakly dominates π′ and hence also weakly dominates π.

Theorem 5.2. For any path π from u to v in G, there exists an up-down path from u to v that

weakly dominates π in GCH.

Proof. Theorem 5.2 is a special case of Lemma 5.2 when i = 1.

5.4 Experimental Evaluation

In this section, we evaluate our CH-based approach on road networks from the 9th DIMACS

Implementation Challenge: Shortest Path.2 We implemented all algorithms in C++ on a common

code base3 and ran all experiments on a MacBook Pro with an M1 Pro CPU and 32GB of memory.
2http://users.diag.uniroma1.it/challenge9/download.shtml.
3https://github.com/HanZhang39/Bi-Objective-Contraction-Hierarchy.
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To order states for contraction (Line 3 in Algorithms 9 and 10), we assign a priority ψ(s) to

each state s and contract the lowest-priority state at each iteration. ψ(s) is defined as a linear

combination of ordering heuristics that are used by existing work [28, 34]. Specifically, we use

κ(s) to denote the ratio of the number of shortcuts to add when contracting s and the number

of edges incident on s. Furthermore, we use η(s) to denote the height of a state s to be one plus

the height of the highest state with an upward edge to s or a value of one if no such state exists.

Intuitively, choosing states with small heights to contract next leads to a more even contraction

across the graph. In our implementation, we set ψ(s) := 10 · κ(s) + η(s). We also implemented

the lazy-update scheme [28], which recalculates the priority of a state when it is popped from the

priority queue and reinserts it into the priority queue if its priority has become higher than the

second-lowest priority.

5.4.1 Problem Instances with Two Objectives

In this section, we evaluate our CH-based approach on problem instances with two objectives.

We use the two objectives that are available in the DIMACS benchmark, namely travel time (t)

and travel distance (d). For each road network, we use the 100 queries used by Ahmadi et al. [2].

The time limit for solving each query is 30 minutes.

5.4.1.1 Comparing Different Preprocessing Algorithms

We start by evaluating the impact of different contraction ratios (that is, percentages of states to

contract, which is captured by L in Algorithms 9 and 10) and different preprocessing approaches.

We also evaluate the resulting CHs in the query phase. Here, we use the NE road network (1.5M
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Preprocessing Query
Algorithm tprep |ECH| #exp t+CHBOA* t

+CH+p
BOA*

NE
contracting 99% of states

support-point 6min 8.0M 265K 3.93(100) 2.56
basic 8min 8.0M 262K 3.92(100) 2.48
batched 7min 8.0M 262K 3.82(100) 2.41

contracting 99.5% of states
support-point 8min 8.1M 145K 3.78(100) 1.81
basic 13min 8.1M 142K 3.20(100) 1.62
batched 10min 8.1M 141K 3.14(100) 1.52

contracting 99.95% of states
support-point 37min 9.2M 40K 6.10(100) 0.71
basic 3hr53min 8.8M 35K 3.62(100) 0.51
batched 21min 8.8M 36K 3.80(100) 0.51

contracting 100% of states
support-point 2hr53min 11.8M 38K 19.92(100) 0.89
basic timeout
batched 1hr46min 10.3M 32K 11.67(100) 0.64

LKS
contracting 99% of states

support-point 14min 14.2M 1,155K 25.96(100) 14.87
basic 19min 14.2M 1,158K 24.41(100) 13.90
batched 16min 14.2M 1,156K 25.32(100) 15.27

contracting 99.5% of states
support-point 23min 14.6M 604K 19.35(100) 8.80
basic 41min 14.6M 607K 20.32(100) 9.54
batched 24min 14.6M 613K 17.86(100) 8.42

contracting 99.95% of states
support-point 3hr34min 18.7M 167K 78.11 (87) 5.56
basic timeout
batched 1hr08min 16.5M 163K 39.27 (96) 4.35

contracting 100% of states
support-point timeout
basic timeout
batched 10hr08min 21.1M 161K 137.86 (84) 5.41

Table 5.2: Experimental results for different contraction approaches and contraction ratios on the
NE and LKS road networks. We report the preprocessing times tprep, the numbers of edges |ECH| in
each CH, the average numbers of expanded nodes #exp, the average query times (in seconds) t+CHBOA*
for BOA*with CH (but without partial expansions), with the number of solved instances in paren-
theses, and the average query time (in seconds) t+CH+pBOA* for BOA* with CH and partial expansions
(here, all algorithms solved all instances). For each road network, the average runtimes are cal-
culated over all instances that are solved by both BOA* and BOA* with partial expansions for all
CHs.
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states and 3.9M edges) and the LKS road network (2.8M states and 6.9M edges), twomedium-sized

maps from the DIMACS dataset, and set a time limit of 12 hours for the preprocessing phase.

We evaluate the contraction ratios 99%, 99.5%, 99.95%, and 100% and three preprocessing

approaches, namely the basic approach, the batched approach, and the preprocessing approach

proposed by Storandt [69], referred to as the support-point approach. For each in-neighbor s′

and out-neighbor s′′ of state s, the witness search of the support-point approach runs a series of

single-objective searches from s′ to s′′. Each single-objective search is parameterized by a λ-value,

λ ∈ [0, 1], and finds a path π′ that minimizes λc1(π′)+(1−λ)c2(π′). For every 2-hop path π from

s′ via s to s′′, if the witness search finds a path whose cost dominates c(π), then π does not result

in a shortcut. Otherwise, a shortcut is added. Adding the shortcut may be unnecessary but does

not affect the correctness of the query phase. We use a sequence of three λ-values [λ1, λ2, λ3] as

described in Storandt [69], with λ1 = 0, λ2 = 1, and λ3 = (c2 − c′2)/(c2 − c′2 + c1 − c′1), where c

and c′ denote the path cost found with λ1 and λ2, respectively.

Our results, summarized in Table 5.2, show that the CHs produced by the basic and batched

approaches have similar numbers of edges for the same contraction ratio. However, the basic

approach needs much more preprocessing time because its number of witness searches increases

dramatically with the contraction ratio. CHs produced by the support-point approach have the

largest number of edges because of the unnecessary shortcuts it adds. The unnecessary shortcuts

also cause the support-point approach to have a larger preprocessing time than the batched ap-

proach for larger (≥ 99.95%) contraction ratios. The results also show that contracting the last

0.05% of the states requires a large preprocessing time and results in a large number of additional

edges.
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With increasing contraction ratios, the number of expanded nodes in the query phase de-

creases. In contrast, the average query time of BOA* with CHs increases because a large number

of edges in the CH slows down the search algorithm. With the addition of partial expansions, the

number of expanded nodes does not change, but the query times are reduced by up to a factor

of 20. For the same contraction ratios, BOA* with CHs produced by the support-point approach

has a larger average query time than BOA* with CHs produced by the batched approach due to

the unnecessary edges that the support-point approach adds.

5.4.1.2 Comparing Different Query Algorithms

We evaluate the scalability of our CH-based approach and the speed-ups it enables on road net-

works of different sizes. Here, we use seven road networks, whose numbers of states range from

1 million to 14 million, together with the batched approach and a contraction ratio of 99.95%.

For every road network, the number of edges in the CH is smaller than 2.5× the number of edges

in the input graph. For all seven road networks, the preprocessing times are less than 6 hours.

We evaluate three algorithms for the query phase, namely BOA*, BOA* with CHs (+CH), and

BOA* with CHs and partial expansions (+CH+p). The results are summarized in Table 5.3. All

average and maximum values are calculated over the instances solved by all three algorithms.

The numbers of generated nodes are the numbers of nodes inserted into Open. We see dramatic

reductions in the numbers of expanded nodes when comparing BOA*+CH or BOA*+CH+p to

BOA*. While BOA*+CH and BOA*+CH+p expand the same number of nodes, BOA*+CH+p gen-

erates fewer nodes and hence has smaller average and maximal query times and larger numbers

of solved instances. This demonstrates that many nodes inserted into Open by BOA*+CH are

later pruned when extracted from Open.
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Algorithm #solved tavg tmax #exp #gen
FLA (1.1M states and 2.7M edges)
tprep: 6min |ECH|: 5.5M

BOA* 100 22.43 662.59 6,106K 7,507K
BOA*+CH 100 0.36 10.44 14K 151K
BOA*+CH+p 100 0.08 1.39 14K 45K

NE (1.5M states and 3.9M edges)
tprep: 21min |ECH|: 8.8M

BOA* 100 56.05 1,729.45 12,578K 16,281K
BOA*+CH 100 3.80 109.33 36K 939K
BOA*+CH+p 100 0.51 12.68 36K 211K

CAL (1.9M states and 4.7M edges)
tprep: 13min |ECH|: 9.4M

BOA* 99 61.19 1,617.97 14,923K 18,679K
BOA*+CH 100 1.62 43.12 28K 479K
BOA*+CH+p 100 0.29 5.70 28K 139K

LKS (2.8M states and 6.9M edges)
tprep: 1hr08min |ECH|: 16.5M

BOA* 78 208.57 1,631.61 46,928K 59,342K
BOA*+CH 96 23.94 192.44 117K 5,109K
BOA*+CH+p 100 2.83 24.51 117K 918K

E (3.6M states and 8.8M edges)
tprep: 42min |ECH|: 18.9M

BOA* 79 269.10 1,770.45 55,099K 69,055K
BOA*+CH 98 18.52 164.92 101K 3,306K
BOA*+CH+p 100 1.86 21.08 101K 659K

W (6.3M states and 15.2M edges)
tprep: 48min |ECH|: 29.6M

BOA* 81 228.58 1,784.56 60,605K 73,867K
BOA*+CH 100 4.24 27.98 100K 1,276K
BOA*+CH+p 100 0.80 4.28 100K 370K

CTR (14.1M states and 34.3M edges)
tprep: 5hr48min |ECH|: 77.5M

BOA* 37 403.84 1,634.94 87,751K 106,364K
BOA*+CH 83 28.31 223.18 165K 6,294K
BOA*+CH+p 100 3.01 19.91 165K 1,076K

Table 5.3: Experimental results for the query phases of different algorithms on different road
networks. For each road network, we report the preprocessing times tprep and the numbers of
edges |ECH| in the CH. For each algorithm, we report the numbers of instances solved (#solved)
within 30 minutes, the average (tavg) and maximal (tmax) query times in seconds, and the average
numbers of expanded (#exp) and generated (#gen) nodes.

133



10 2 100 102

BOA *
10 2

10 1

100

101

102

103

BO
A

*
+

CH
+

p

13x
92x

1268x

(a)

10 2 100 102

BOA * + CH
10 2

10 1

100

101

102

103

BO
A

*
+

CH
+

p

0.89x
4x

34x

(b)

Figure 5.4: Runtimes of different query algorithms on bi-objective road-network problem in-
stances across all seven road networks.

Figures 5.4a and 5.4b show the runtimes (in seconds) of BOA*+CH+p compared to BOA* and

BOA*+CH on individual instances, respectively. The x-axes in Figures 5.4a and 5.4b correspond to

the runtimes of BOA* and BOA*+CH, respectively, while the y-axes correspond to the runtimes of

BOA*+CH+p. In each figure, the diagonal dashed lines and the numbers labeling them correspond

to the minimum, median, and maximum speed-ups of BOA*+CH+p calculated over all instances

solved by both algorithms that are compared. The query times of BOA*+CH+p are always smaller

than those of BOA*, with a minimum speed-up of 13 times and a maximum speed-up of 1,268

times.

Our experimental results also show that solving a bi-objective search problem instance di-

rectly can be more time-consuming than building a CH and solving it. This is so because the

runtime of solving a bi-objective search problem instance can be exponential in |S| (because the

size of the Pareto frontier can be exponential in |S| [19, 10]). This is in contrast to single-objective

search, since a single-objective search instance can be solved inO(|S|+ |E|) time, while building

a CH requires checking at least each contracted state and its incident edges. Therefore, building
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a CH and solving a single-objective search instance cannot be more efficient than solving the in-

stance directly. Overall, our results show that CHs enable bi-objective search algorithms to solve

problem instances on road networks with far less computation time and memory.

5.4.2 Problem Instances with More than Two Objectives

We compare LTMOA*, LTMOA* with CHs (+CH), and LTMOA* with CHs and partial expansion

(+CH+p) on problem instances with more than two objectives. We use the NY road network with

three, four, and five objectives. In addition to travel time (t) and travel distance (d), we use the

economic cost (m) [54], the number of edges (l) [47], and a random integer from 1 to 100 (r) [36]

as the third, fourth, and fifth objectives, respectively. We use the 100 problem instances used by

Sedeño-Noda and Colebrook [65] and Ahmadi et al. [2]. The preprocessing algorithm terminates

when it reaches the contraction ratio of 99.95% or a time limit of 12 hours. The time limit for

solving each query is 5 minutes.

The results are summarized in Table 5.4. For all three numbers of objectives, the preprocess-

ing algorithm reaches the time limit of 12 hours. We report the contraction ratios of the resulting

CHs. As the number of objectives increases, the contraction ratio decreases. Table 5.4 also shows

the results for different query algorithms. All average and maximum values are calculated over

the instances solved by all three algorithms. The numbers of generated nodes are the numbers of

nodes inserted into Open. Similar to the results for the bi-objective case, LTMOA*+CH and LT-

MOA*+CH+p solve more instances than LTMOA* and have smaller average numbers of expanded

nodes. Compared to LTMOA*+CH, LTMOA*+CH+p generates fewer nodes and hence has smaller
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Algorithm #solved tavg tmax #exp #gen
NY (m-t-d)

contraction ratio: 99.91% |ECH|: 2.1M
LTMOA* 73 34.91 241.29 17,481K 18,749K
LTMOA*+CH 81 23.37 229.70 290K 6,819K
LTMOA*+CH+p 96 2.84 23.88 290K 1,093K

NY (l-m-t-d)
contraction ratio: 99.58% |ECH|: 2.5M
LTMOA* 36 25.53 254.91 3,996K 4,707K
LTMOA*+CH 38 8.48 110.05 157K 1,533K
LTMOA*+CH+p 40 4.54 50.20 157K 391K

NY (l-m-t-d-r)
contraction ratio: 98.95% |ECH|: 8.5M
LTMOA* 23 16.11 219.68 1,389K 1,590K
LTMOA*+CH 24 8.44 94.42 74K 2,194K
LTMOA*+CH+p 26 2.57 36.53 74K 180K

Table 5.4: Experimental results for different query algorithms on the NY road network with dif-
ferent numbers of objectives. For each number of objectives, we report the contraction ratio after
preprocessing and the number of edges |ECH| in the CH. For each algorithm, we report the num-
bers of instances solved (#solved) within 5 minutes, the average (tavg) and maximal (tmax) query
times in seconds, and the average numbers of expanded (#exp) and generated (#gen) nodes.

average query times. The speed-ups of LTMOA*+CH+p over LTMOA* in average runtimes for

problem instances with three, four, and five objectives are 12.3×, 5.6×, and 6.3×, respectively.

Figure 5.5 shows the runtime comparisons between LTMOA*+CH+p and LTMOA* for differ-

ent numbers of objectives. The x-axes and the y-axes correspond to the runtimes of LTMOA*

and LTMOA*+CH+p, respectively. The diagonal dashed lines and the numbers labeling them

correspond to the minimum, median, and maximum speed-ups of LTMOA*+CH+p over LTMOA*

calculated over all instances solved by both algorithms. The query times of LTMOA*+CH+p are

smaller than those of LTMOA* for most problem instances, with a maximum speed-up of more

than an order of magnitude.

In general, the improvement of CHs is more substantial on problem instances with fewer

numbers of objectives. Existing work on single-objective CHs [1] has shown that CHs perform
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Figure 5.5: Runtimes of LTMOA*+CH+p and LTMOA* on road-network problem instances with
different numbers of objectives.

better for graphs where many minimum-cost paths traverse a smaller set of “more important”

states. This might explain why the speed-up of LTMOA*+CH+p decreases as the number of

objectives increases because, intuitively, the set of “more important” states becomes larger as the

number of objectives increases.

5.5 Summary

In this chapter, we generalized CHs to multi-objective search and introduced our CH-based ap-

proach for efficiently computing Pareto-frontiers. We proposed speed-up techniques for both the

preprocessing and query phases of CHs that are specifically designed for multi-objective search.

Our experimental results demonstrated the scalability of our approaches to large road networks

with two objectives and orders-of-magnitude speed-ups in the query phase with all techniques

combined. Our experimental results demonstrated the speed-ups of our approaches on problem

instances with more than two objectives. These results validate the hypothesis that one can speed

up multi-objective search algorithms via preprocessing techniques.
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Chapter 6

Speeding up Multi-Objective Search via Data Structures for

Efficient Dominance Checks

Existing multi-objective search algorithms, such as NAMOA*, EMOA*, and LTMOA*, perform

dominance checks during the search to determine if a node can be pruned. For example, before

expanding a node n, EMOA* and LTMOA* check ifTr(g(n)) is weakly dominated by some vector

in Gtr
cl(s(n)), where Gtr

cl(s) is the set of undominated truncated g-values of all expanded nodes

that contain state s, and, if so, prunen. After expandingn, they also need to perform undominated

set updates on Gtr
cl(s(n)) to remove those vectors from Gtr

cl(s(n)) that are weakly dominated

by Tr(g(n)) and add Tr(g(n)) instead. Dominance checks and undominated set updates are

performed frequently and intrinsically require iterating over sets of vectors. Therefore, they need

to be performed efficiently. The differences in the runtimes of NAMOA*, EMOA*, and LTMOA*

stems from how they implement dominance checks and interleave dominance checks with the

search.
This chapter is based on [84].
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In this chapter, we adapt well-known bucket-based data structures to our specific context

of storing undominated vectors and performing dominance checks. We call them bucket arrays

because vectors are slotted into different predefined buckets based on their values. The search

algorithm can often determine if a bucket contains a vector that dominates a given vector without

iterating over all vectors in the bucket.

Although LTMOA* propounds the use of arrays in practice, it can conceivably be used with

other data structures that store undominated vectors for performing dominance checks. Not all

of these data structures have been investigated so far. In this chapter, we evaluate LTMOA* not

only with arrays but also with ND trees [39], a data structure that has been shown to generally

outperform other data structures for maintaining sets of undominated vectors with respect to

runtime.

This chapter is organized as follows: We begin with the background materials for our work

in Section 6.1. Next, we provide a detailed description of bucket arrays in Section 6.2. We then

provide the experimental results in Section 6.3 and our summary in Section 6.4.

6.1 Background

We first describe in Section 6.1.1 the data structures used by existing multi-objective search al-

gorithms for dominance checks. Existing work has proposed several other data structures that

could be used in multi-objective search but have so far been studied only in other contexts. We

describe these data structures in Section 6.1.2.

139



6.1.1 Data Structures in Existing Multi-Objective Search Algorithms

Ren et al. [59] propose EMOA*, which uses AVL trees to store Gtr
cl(s) for each state s. Each

vector in Gtr
cl(s) is stored in a tree node. All vectors stored in the left subtree of a tree node are

lexicographically smaller than the vector stored in the tree node, and all vectors stored in the

right subtree of the tree node are lexicographically larger than the vector stored in the tree node.

When performing a dominance check, that is, checking if a given vector v is weakly dominated

by some vector in a set of vectors X, the algorithm starts at the root node of the AVL tree that

storesX and traverses the AVL tree recursively. When reaching a node that stores a vector v′ that

is lexicographically no smaller than v, the algorithm does not traverse its right subtree because

the vectors stored in the right subtree are lexicographically larger than v′ and hence cannot

weakly dominate v. Similarly, when performing an undominated set update, that is, removing

from a set of vectors X the vectors that are dominated by a given vector v and adding v to X,

the algorithm starts at the root node of the AVL tree that stores X and traverses the AVL tree

recursively to remove vectors that are dominated by v. When reaching a node that contains a

vector v′ that is lexicographically no larger than v, the algorithm does not traverse its left subtree

because the vectors stored in the left subtree are lexicographically smaller than v′ and hence

cannot be dominated by v. After removing all nodes storing dominated vectors, the algorithm

adds a tree node containing v to the AVL tree and performs a rebalance operation to minimize

the depth of the AVL tree. Intuitively, AVL trees should result in fewer vector comparisons for

dominance checks and undominated set updates, but the time complexities of both operations

remainO(|Gtr
cl(s)|). However, Ren et al. [59] show that the time complexity of dominance checks
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with AVL trees can be improved toO(log(|Gtr
cl(s)|))when EMOA* is used to solve multi-objective

search problem instances with three objectives.

Hernández et al. [36] propose using simple data structures, like arrays and linked lists, to

store Gtr
cl(s) for LTMOA*. When performing dominance checks or undominated set updates,

the search algorithm simply iterates over the entire array or linked list. Hernández et al. [36]

show experimentally that using arrays to store Gtr
cl(s) results in 2.5×, 7.9×, and 13.5× speed-

ups over EMOA* in problem instances with three, four, and five objectives, respectively. They

also show that, although AVL trees allow EMOA* to perform fewer vector comparisons, AVL

trees have a larger runtime overhead than arrays because of the tree traversal and rebalance

operations. Finally, they show that LTMOA* with linked lists slightly outperforms EMOA* but is

outperformed by LTMOA* with arrays in terms of average runtime.

6.1.2 Data Structures in Other Related Work

Existing work has proposed several data structures for efficient dominance checks and undom-

inated set updates in contexts that are different from multi-objective search, such as for multi-

objective evolutionary algorithms [18]. Such data structures are known as Pareto archives and

have yet to be evaluated for multi-objective search algorithms. They include quadtrees [49], M-

fronts [18], and ND trees [39]. Among them, ND trees have been shown to be generally more

efficient than the other data structures [39].

An ND tree is parameterized with a branching factor b and amaximum numberL of vectors in

each leaf node. Each non-leaf node of an ND tree has up to b child nodes but does not contain any

vectors. Yet, each node n of an ND tree corresponds to a set of vectors V (n). If n is a leaf node,
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V (n) is defined as the set of vectors that n contains. Otherwise, V (n) is defined as the union of

the sets V (n′) of all child nodes n′ of n. Let z∗(n) and z∗(n) be the component-wise minimum

and component-wise maximum of the vectors in V (n), respectively. The ND tree maintains two

vectors z̃∗(n) (with z̃∗(n) ⪯ z∗(n)) and z̃∗(n) (with z̃∗(n) ⪰ z∗(n)) to approximate z∗(n) and

z∗(n), respectively.

When performing dominance checks for a given vector v over an ND tree, the algorithm

starts at the root node and traverses the ND tree recursively. The algorithm often does not need

to traverse the entire ND tree. For example, when reaching a node nwhose z̃∗(n) does not weakly

dominate v, it does not need to check the subtree rooted at n because no vector in V (n) weakly

dominates v. when reaching a node n whose z̃∗(n) weakly dominates v, the algorithm returns

true immediately without checking the subtree rooted at n because all vectors in V (n) weakly

dominate z̃∗(n) and hence weakly dominate v.

When performing undominated set updates for a given vector v over an ND tree, the algo-

rithm first removes all vectors that are dominated by v from the ND tree. It starts at the root node

and traverses the ND tree recursively. Similar to the algorithm for dominance checks, it often does

not need to traverse the entire ND tree. For example, when reaching a node n whose z̃∗(n) is

dominated by v, it can immediately remove the entire subtree rooted at n (without checking any

of its nodes) because v dominates all vectors in V (n). After removing all dominated vectors, the

algorithm inserts v into the ND tree. It starts at the root node, greedily selects a child node n

(that minimizes the Euclidean distance between v and the middle point of z̃∗(n) and z̃∗(n)), and

repeats this process until it reaches a leaf node n′. It then adds v to V (n′). If |V (n′)| becomes

larger than L, the algorithm partitions V (n′) into b subsets and creates a child node of n′ for each

subset (that contains the subset).
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Algorithm 13: Dominance Checks for Bucket Arrays
Input : A bucket array B = [B1, B2 . . . Bn] and a vector v
Output: Whether there exists a vector in B that weakly dominates v

1 for each B ∈ B do
2 if I(B) does not weakly dominate I(v) then
3 continue
4 else if Ii(B) < Ii(v) for all i = 1, 2 . . . N − 1 then
5 return true
6 else if ∃v′ ∈ B v′ ⪯ v then
7 return true
8 return false

6.2 Bucket Arrays

In this section, we describe the bucket array, a data structure for storing Gtr
cl(s), and how the

IsDominated and Update functions work with it. LetN denote the number of objectives. Hence,

the length of each vector in Gtr
cl(s) is N − 1. A bucket array is an array of buckets, where each

bucket contains an array of vectors (of length N − 1). Each component of a vector in this bucket

is within a predefined range. Let δ denote the step of value, which is a parameter of the bucket

array. The index of a vector v is defined to be I(v) = [⌊v1/δ⌋, ⌊v2/δ⌋ . . . ⌊vN−1/δ⌋]. A bucket B

contains vectors with the same index, denoted as I(B). Thus, every vector v in bucketB satisfies

Ii(B) · δ ≤ vi < (Ii(B) + 1) · δ, i = 1, 2 . . . N − 1. (6.1)

All buckets in a bucket array have different indices and are not empty. Like a node in an ND

tree, we can easily estimate the component-wise minimum and component-wise maximum of

all vectors in a bucket. As we will show shortly, this helps us to develop efficient algorithms

for dominance checks and undominated set updates. Moreover, by storing buckets in an array

instead of a tree, we avoid the runtime overhead of tree operations.
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6.2.1 Dominance Checks

Algorithm 13 shows the pseudocode for dominance checks of a given vector v over a bucket array

B = [B1, B2 . . . Bn]. Each bucketB ∈ Bmaintains information that indicates the range of vectors

that it contains. This information can be used to speed up the dominance checks. Algorithm 13

iterates over each bucket B in the bucket array. We distinguish the following cases:

(Case 1) I(B) does not weakly dominate I(v) (Line 2). We have Ii(B) > Ii(v) for some i. Because

Ii(B) and Ii(v) are both integers, we have Ii(B) ≥ Ii(v) + 1. Consider any vector u ∈ B.

From Eq. 6.1, we have vi < (Ii(v) + 1) · δ ≤ Ii(B) · δ ≤ ui. Therefore, u does not weakly

dominate v. The algorithm does not need to check any vector in B (Line 3) because no

vector in B can weakly dominate v.

(Case 2) I(B) satisfies Ii(B) < Ii(v) for all i = 1, 2 . . . N−1 (Line 4). We have Ii(B)+1 ≤ Ii(v)for

all i because Ii(B) and Ii(v) are both integers. Consider any vector u ∈ B. From Eq. 6.1,

we have ui < (Ii(B) + 1) · δ ≤ Ii(v) · δ ≤ vi for all i. Therefore, u weakly dominates v.

The algorithm returns true immediately (Line 5) because there exists a vector that weakly

dominates v.

(Case 3) Otherwise, the algorithm iterates over the vectors in B and returns true if it finds a vector

that weakly dominates v (Lines 6-7).

Algorithm 13 needs to check the vectors inside a bucket only in the last case. Therefore, using

bucket arrays can reduce the number of vector comparisons that need to be performed.

Example 12. Consider the set of truncated g-values Gtr
cl(s) = {v1 = [10, 260],v2 =

[15, 220],v3 = [75, 160],v4 = [85, 140],v5 = [110, 80]} in LTMOA*. Assuming δ = 100, the
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bucket array for storing Gtr
cl(s) has three buckets, namely, bucket B1 containing {v1,v2} with

I(B1) = [0, 2], bucket B2 containing {v3,v4} with I(B2) = [0, 1], and bucket B3 containing {v5}

with I(B3) = [1, 0].

Assume that LTMOA* extracts a node from Open that contains state s and whose truncated

g-value is v6 = [180, 70]. We have I(v6) = [1, 0]. When performing the dominance checks, Algo-

rithm 13 first checks buckets B1 and B2. Because Case 1 holds for both B1 and B2, Algorithm 13

does not need to check any vectors in B1 and B2. Algorithm 13 then checks B3. Because Case 3

trivially holds for B3, Algorithm 13 checks if v5 in B3 weakly dominates v6. Since this is not the

case, Algorithm 13 eventually reaches Line 8 and returns false .

In this example, Algorithm 13 needs four vector comparisons (including three vector comparisons

between the indexes of buckets and I(v)) for the dominance check. IfGtr
cl(s) were stored in an array,

we would need five vector comparisons. Although using the bucket array in this example saves only

one vector comparison, bucket arrays can substantially reduce the number of vector comparisons in

practice, as we will show in the experimental evaluation.

6.2.2 Undominated Set Updates

Algorithm 14 shows the pseudocode for undominated set updates with bucket arrays. Given a

bucket array B and a vector v, Algorithm 14 adds v to B and removes all vectors from B that are

dominated by v. It first iterates over all buckets in B to check if there exists a bucket B whose

index is I(v). If so, the algorithm adds v to B (Line 2). Otherwise, it creates a new bucket with

index I(v), adds v to this bucket, and adds this bucket to B (Lines 4-6).
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Algorithm 14: Undominated Set Updates for Bucket Arrays
Input : A bucket array B = [B1, B2 . . . Bn] and a vector v
Output: Updated B

1 if ∃B ∈ B I(B) = I(v) then
2 add v to B
3 else
4 B ← a new bucket with I(B) = I(v)
5 add v to B
6 add B to B
7 for each B ∈ B do
8 if I(v) does not weakly dominate I(B) then
9 continue

10 else if Ii(v) < Ii(B) for all i = 1, 2 . . . N − 1 then
11 remove B from B
12 else
13 remove vectors that are dominated by v from B
14 if B is empty then
15 remove B from B
16 return B

The algorithm then iterates over each bucketB in B to remove all vectors that are dominated

by v. We distinguish the following cases:

(Case 1) I(v) does not weakly dominate I(B) (Line 8). We have Ii(B) < Ii(v) for some i. Because

Ii(B) and Ii(v) are both integers, we have Ii(B) + 1 ≤ Ii(v). Consider any vector u ∈ B.

From Eq. 6.1, we have ui < (Ii(B) + 1) · δ ≤ Ii(v) · δ ≤ vi. Therefore, u is not weakly

dominated by v. The algorithm does not need to check any vector in B (Line 9) because

none of these vectors can be dominated by v.

(Case 2) Ii(v) < Ii(B) for all i = 1, 2 . . . N − 1 (Line 10). We have Ii(v) + 1 ≤ Ii(B) for all i

because Ii(B) and Ii(v) are both integers. Consider any vector u ∈ B. From Eq. 6.1, we

have vi < (Ii(v)+1) · δ ≤ Ii(B) · δ ≤ ui for all i. Therefore, v dominates u. The algorithm

removes B from the bucket array without needing to check any vector in B because all of
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its vectors are dominated by v (Line 11). Removing B from the bucket array can be done

in constant time by first switching B with the last bucket in the bucket array and then

removing B from the back of the bucket array.

(Case 3) Otherwise, the algorithm iterates over the vectors in B and removes the ones that are

dominated by v (Line 13). If B becomes empty, the algorithm removes B from the bucket

array (Lines 14-15).

Like Algorithm 13, Algorithm 14 needs to check the vectors inside a bucket only in the last case.

Example 13. Continue Example 12 and assume that LTMOA* expands the node that contains state

s and whose truncated g-value is v6 = [180, 70]. Algorithm 14 then adds v6 to the bucket array

(that storesGtr
cl(s)) and removes all vectors from the bucket array that are dominated by v6.

Algorithm 14 first iterates over the bucket array and finds that bucket B3, which contains vector

v5 = [110, 80], has the same index as v6. Therefore, it adds v6 to B3. Algorithm 14 then removes

all vectors from the bucket array that are dominated by v6: Because Case 1 holds for both B1 and

B2, Algorithm 14 does not need to check any vectors in B1 and B2. It then checks B3. Because Case

3 holds for B3, Algorithm 14 checks if v5 is dominated by v6 and, since this is not the case, does not

remove it from the bucket array.

6.3 Experimental Evaluation

In this section, we evaluate LTMOA* with different data structures for storing vectors on problem

instances with three to five objectives. We evaluate LTMOA* with arrays (+array), ND trees

(+NDTree), and bucket arrays (+bucket). We implemented all variants of LTMOA* in C++.1 We
1https://github.com/HanZhang39/MultiObjectiveSearch
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δ #solved tavg tmax avg #comp max #comp
1,000 23 12.04 213.68 1,508M 24,825M
10,000 27 2.72 43.02 440M 7,063M
20,000 27 1.68 24.96 318M 5,061M
50,000 26 1.24 17.36 370M 5,924M

100,000 26 1.29 18.58 568M 9,145M
200,000 26 1.64 23.91 862M 12,691M

Table 6.1: Numbers of solved problem instances (#solved), average and maximum runtimes (tavg
and tmax, both in seconds), and average and maximum numbers of vector comparisons (avg and
max #comp) for LTMOA*+bucket with different δ-values on problem instances with four objec-
tives (l-m-t-d).

obtained the original ND tree implementation from Jaszkiewicz and Lust [39] and integrated it

into our code base. The runtime limit for solving each problem instance was five minutes.

We use the NY road network (264,346 states and 733,846 edges) from the 9th DIMACS Im-

plementation Challenge: Shortest Path.2 The NY road network has two objectives, namely travel

distance (d) and travel time (t), available in the benchmark. Additionally, we use the economic

cost (m) [54], the number of edges (l) [47], and a random integer between 1 and 100 (r) [36] as

the third, fourth, and fifth objectives, respectively. We use the 100 pairs of start and goal states

used by Sedeño-Noda and Colebrook [65] and Ahmadi et al. [2] for our problem instances.

6.3.1 Comparing Bucket Arrays with Different Parameters

We first compare LTMOA*+bucket with different δ-values on the first 30 problem instances of the

NY road network with four objectives (l-m-t-d). We evaluate six δ-values: 1,000, 10,000, 20,000,

50,000, 100,000, and 200,000. A smaller δ-value results in fewer vectors in each bucket and hence

more buckets in a bucket array. With a too small δ-value,each bucket in a bucket array can

contain only one vector. With a too large δ-value, a bucket array can contain only one bucket
2http://www.diag.uniroma1.it/challenge9/download.shtml
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that contains all the vectors. In either case, using bucket arrays will not reduce the number of

vector comparisons for dominance checks. Therefore, choosing a suitable δ-value is important.

Table 6.1 shows the numbers of solved problem instances, average and maximum runtimes,

and average and maximum numbers of vector comparisons for LTMOA*+bucket with different δ-

values. All averages andmaximums are calculated over instances that are solved by all algorithms.

Our results show that the average and maximum runtimes of LTMOA*+bucket decrease as the

δ-value increases from 1,000 to 50,000 and then increase as the δ-value increases from 50,000 to

200,000. We observe similar trends in the number of solved instances and vector comparisons

with the differences that the best performances are achieved with δ-values other than 50,000. For

the rest of this chapter, we use δ = 20,000 for LTMOA*+bucket because it results in the highest

number of solved problem instances and the smallest number of vector comparisons.

6.3.2 Comparing Different Data Structures

In this section, we compare LTMOA*+array, LTMOA*+NDTree, and LTMOA*+bucket on problem

instances with different numbers of objectives. For LTMOA*+NDTree, we ran experiments with

all combinations of b ∈ {5, 10, 20} and L ∈ {20, 40, 80} on the 30 problem instances used in the

previous section. We then chose the parameter combination with the smallest runtime, namely

b = 5 and L = 20. As we have explained in the previous section, we use δ = 20,000 for

LTMOA*+bucket.

Table 6.2 shows the results for the different variants of LTMOA*. Although ND trees result

in fewer vector comparisons than arrays in many cases, they do not improve the runtime of LT-

MOA* due to the runtime overhead. Compared to both LTMOA*+array and LTMOA*+NDTree,
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Algorithm #solved tavg tmax avg #comp max #comp
3 objectives (m-t-d)

LTMOA*+array 77 7.27 59.50 1,855M 12,942M
LTMOA*+NDTree 61 43.75 258.80 2,431M 11,333M
LTMOA*+bucket 77 6.81 59.50 758M 5,907M

4 objectives (l-m-t-d)
LTMOA*+array 38 20.54 123.71 21,267M 133,766M
LTMOA*+NDTree 36 44.07 298.38 4,231M 17,770M
LTMOA*+bucket 39 8.09 51.62 2,074M 12,543M

5 objectives (l-m-t-d-r)
LTMOA*+array 23 12.07 133.70 18,766M 235,553M
LTMOA*+NDTree 22 16.12 206.54 8,198M 21,658M
LTMOA*+bucket 27 2.82 32.05 1,469M 17,265M

Table 6.2: Numbers of solved problem instances (#solved), average and maximum runtimes (tavg
and tmax, both in seconds), and average and maximum numbers of vector comparisons (avg and
max #comp) for LTMOA* with different data structures on problem instances with different num-
bers of objectives.
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Figure 6.1: Runtimes (in seconds) of LTMOA*+array versus LTMOA*+bucket on individual prob-
lem instances. The dashed diagonal lines correspond to different speed-ups.

LTMOA*+bucket performs fewer vector comparisons. LTMOA*+bucket also has the smallest av-

erage runtimes on problem instances with three, four, and five objectives. The speed-ups of LT-

MOA*+bucket over LTMOA*+array in average runtimes for problem instances with three, four,

and five objectives are 1.06×, 2.54×, and 4.28×, respectively, which shows that bucket arrays

become more beneficial to the runtime performance as the number of objectives increases.
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Figure 6.1 shows the runtimes of LTMOA*+array and LTMOA*+bucket on individual problem

instances. We use different markers for different numbers of objectives. The x- and the y-axis cor-

respond to the runtimes of LTMOA*+array and LTMOA*+bucket, respectively. The two diagonal

dashed lines and the numbers along them denote the 1× speed-up (that is, LTMOA*+array and

LTMOA*+bucket have the same runtime) and the maximum speed-up of LTMOA*+bucket. LT-

MOA*+bucket runs faster than LTMOA* on most problem instances with four or five objectives.

The speed-up over LTMOA*+array is up to 6 times.

6.4 Summary

In this chapter, we proposed bucket arrays, a data structure for storing undominated vectors and

performing dominance checks in multi-objective search algorithms. In a bucket array, vectors are

slotted into predefined buckets based on their values. We can often perform dominance checks

and undominated set updates, which are two important operations of multi-objective search al-

gorithms, over a bucket array without iterating over the vectors in each bucket. Therefore, bucket

arrays can reduce the number of vector comparisons that multi-objective search algorithms need

to perform. For example, we empirically showed that enhancing LTMOA* with bucket arrays

yields a speed-up of 4.3× on average for a set of problem instances with five objectives. Our

experimental results validate the hypothesis that multi-objective search algorithms can be sped

up by using data structures for efficient dominance checks.
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Chapter 7

Conclusions

Multi-objective search is important for many applications. Existing work has generalized best-

first (single-objective) search algorithms, such as A*, to multi-objective search. However, the size

of the Pareto frontier can be exponential in the size of the graph being searched, which often

makes existing multi-objective search algorithms very time-consuming. Multi-objective search

algorithms also need to perform dominance checks frequently, which further slows down the

search. Therefore, existing multi-objective search algorithms do not scale well to large graphs or

many objectives.

In this dissertation, we investigated techniques that have been used to speed up single-

objective search algorithms and showed that one can develop speed-up techniques for multi-

objective search algorithms based on the ideas behind them. More specifically:

1. In Chapter 3, we investigated speeding up multi-objective search by trading off solution

quality with efficiency. We introduced A*pex, an approximate multi-objective search algo-

rithm that finds an ε-approximate Pareto frontier for a given approximation factor ε. A*pex

builds upon PP-A* but (1) makes PP-A* more efficient for bi-objective search and (2) gener-

alizes it from two objectives to any number of objectives. We proved the correctness and
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completeness of A*pex. Our experimental results showed the efficiency advantage of A*pex

over state-of-the-art multi-objective search algorithms.

2. In Chapter 4, we investigated speeding up multi-objective search by using anytime search.

We introduced A-A*pex, an anytime approximate multi-objective search algorithm that

builds upon A*pex. A-A*pex runs A*pex iteratively to compute better and better approxi-

mate Pareto frontiers as long as time allows. In each iteration, A-A*pex can either reuse its

previous search effort or restart its search from scratch. Our experimental results showed

that A-A*pex computes approximate frontierswith smaller approximation errors than state-

of-the-art multi-objective search algorithms for short runtimes.

3. In Chapter 5, we investigated speeding up multi-objective search by using preprocessing

techniques. We introduced a Contraction-Hierarchy(CH)-based approach for efficiently

computing Pareto frontiers for multi-objective search. Additionally, we proposed speed-up

techniques for both the preprocessing and query phases that are specifically designed for

multi-objective search. Our experimental results showed the scalability of our approaches

to large road networks and orders-of-magnitude speed-ups in the query phase when all

speed-up techniques are combined.

4. In Chapter 6, we investigated speeding up multi-objective search by using efficient data

structures for dominance checks. We adapted bucket-based data structures to our specific

context of storing undominated vectors and performing dominance checks, resulting in a

new data structure, called bucket array. In a bucket array, vectors are slotted into different

predefined buckets based on their values. We can often perform dominance checks and

undominated set updates, which are two important operations in multi-objective search
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algorithms, without iterating over the vectors in each bucket of a bucket array. Therefore,

bucket arrays reduce the number of vector comparisons that multi-objective search algo-

rithms need to perform. Our experimental results showed that enhancing LTMOA* with

bucket arrays can yield a speed-up of 4.3× on average for problem instances with five

objectives.

Therefore, we validated the hypothesis that multi-objective search algorithms can be sped up

by applying insights gained from single-objective search algorithms after proper generalization.

More importantly, these insights are not trivially applied to multi-objective search. The tech-

niques we develop based on these insights are often quite different from the techniques in single-

objective search based on the same insights: A*pex and A-A*pex use apex-path pairs and merging

operations, which are not in any single-objective search algorithm. The partial expansion tech-

nique for our CH-based query algorithm exploits parallel edges in the CHs for multi-objective

search, which are not in the CHs for single-objective search. Finally, we use bucket arrays to

speed up dominance checks, an operation that single-objective search algorithms do not per-

form.

An interesting direction for future work is to combine the algorithms or techniques proposed

in this dissertation. Our preliminary study shows that some of such combinations require careful

design: (1) When combining A*pex (or A-A*pex) with CHs, it is unclear how to combine A*pex

with the partial expansion technique (Section 5.2.2.2). This requires a careful design of the node

generation process to perform both the merge operations of apex-path pairs and the partial ex-

pansions. It is also unclear if one can speed up the preprocessing phase for CHs if one is interested

in only computing ε-approximate Pareto frontiers for some given ε-value in the query phase. (2)
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We have tried A*pex with bucket arrays, but the preliminary results show that the speed-up of

bucket arrays is much less substantial than in LTMOA*. This is because, in A*pex, iterating over

apex-path pairs in Open for merging (Lines 29-34 of Algorithm 6) can be more time-consuming

than dominance checks. Currently, bucket arrays do not consider this part. It is interesting to

investigate if bucket arrays (or other data structures) can be used to speed up this part of A*pex

as well.

Additionally, we list some techniques that have been used to speed up single-objective search

algorithms and can be explored for multi-objective search:

1. Parallel search: Researchers have proposed several parallel (single-objective) search al-

gorithms, including Parallel Retracting A* (PRA*) [21], Hash Distributed A* (HDA*) [40],

and Parallel A* for Slow Expansions (PA*SE) [52]. Some existing work has investigated the

parallelization of multi-objective search algorithms. However, this direction still needs to

be explored further. Ahmadi et al. [2] proposed a bi-directional bi-objective search algo-

rithm BOBA*, which is based on BOA*. BOBA* runs two bi-objective searches in parallel,

one from the start state and one from the goal state. Consequently, this approach of paral-

lelization can make use of only two cores. Our recent work [75] also proposed a technique

to parallelize dominance checks at the instruction level. We use Single Instruction/Multiple

Data (SIMD) instructions to perform vector comparisons in parallel and speed up LTMOA*

by up to 7 times. However, this approach does not make use of multiple cores.

2. Incremental search: Single-objective search algorithms that reuse information from prior

searches of similar problem instances to speed up the search include incremental search al-

gorithms, such as D* Lite [42], Adaptive A* [41], and Generalized Adaptive A* [71]. Existing
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work [58] has generalized D* Lite to multi-objective search. However, their experimental

results only compared their proposed algorithms to NAMOA* (which does not use dimen-

sionality reduction), and the empirical improvement in runtime is not substantial. A direc-

tion for future work is to generalize other incremental search algorithms to multi-objective

search, such as Adaptive A*, which uses a very different approach from D* Lite.

3. Suboptimal search: Existing bounded-suboptimal (single-objective) search algorithms,

including WA* [53], focal search [50], and EES [72], do not expand nodes in a best-first

order but still guarantee to find bounded-suboptimal solutions. The node expansion orders

of these algorithms can guide the search and are often key to finding solutions faster. As

we have shown, the techniques used by A*pex to speed up multi-objective search are very

different from those of bounded-suboptimal search algorithms. A*pex still expands nodes

in a best-first order. Intuitively, expanding nodes in a best-first order is not required for

finding an approximate Pareto frontier. Thus, different node expansion orders might be

able to guide multi-objective search algorithms, such as A*pex, to find solutions faster,

which requires a careful design of a good node expansion order, for example, one that is

compatible with techniques like dimensionality reduction.
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