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Abstract— Several successful approaches exist for solving the
complex problem of multi-robot planning and coordination.
Due to the lack of adequate benchmarking tools, comparing
these approaches and judging their suitability for use in realistic
scenarios is currently difficult. Therefore, we propose an open-
source benchmark suite that aims to close this gap. Unlike
existing benchmarks, our approach uses full-stack multi-robot
navigation systems in realistic 3D simulated environments from
the intralogistic and household domains. Using the open-source
frameworks ROS 2, Gazebo and RMF allows the user to add
other robot platforms easily.

The framework provides easy-to-use abstractions, typical
metrics and interfaces to several established planning libraries
for multi-robot systems. With all these features, our framework
successfully aids practitioners and researchers in comparing
multi-robot planning and coordination systems to the state of
the art. Our experiments show how the proposed benchmark
simplifies gaining insights on relevant close to real-life robotics
use cases.

I. INTRODUCTION

Planning for and controlling a fleet of autonomous robots
is a challenging task, especially in cluttered and dynamic
environments. Such systems are controlled by a complex
pipeline of components ranging from centralized path find-
ers to local distributed controllers, each having their own
limitations. For instance, optimal Multi-Agent Path Finding
(MAPF) and generalized task assignment are known to
be NP-hard [16] [36], even in static environments. Many
suboptimal but faster algorithms have been proposed, but
they are hard to compare and selecting the best one for a
real-world application is not a trivial task. This is particularly
true for fleets of robotic systems navigating in uncertain and
dynamic environments.

Several benchmarks have been presented recently [8], [23],
[33], [35]. However, they consider only a part of the pipeline
for fleets of robots, with most of them focusing on path plan-
ning. With the goal of enabling practitioners and researchers
to select the algorithms best suited for their robotic fleets, we
propose a multi-robot planning and coordination benchmark.
Our benchmark considers different planning and control
layers, like centralized and decentralized MAPF algorithms
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Fig. 1: Nine robots (some behind walls) moving in the office
environment of the proposed benchmark. The individual laser
scanners rays are shown in blue.

as well as robot-navigation systems composed of global and
local planners, and evaluates them in a physics-based sim-
ulation of service-robot-oriented environments. Its modular
structure and versatile interfaces facilitate its extension with
additional scenarios, algorithms and functionalities.

We make two contributions:

i)  We propose MRP-Bench, an  open-source
benchmark (available at |https://github.com/
boschresearch/mrp_bench) for multi-robot planning
and coordination, consisting of a set of environments,
metrics and interfaces to available state-of-the-art planners
and navigation systems. The approach is easy to use and
extend.

ii) We show the benefit of using the developed benchmark
by running a set of experiments considering state-of-the-art
planning baselines in intralogistic and household robotic
settings. We compare fully decentralized approaches
(based on A*) against different variants of centralized
conflict-based search algorithms (namely, CBS, ECBS
and EECBS). Additionally, we study task assignment
and compare different approaches (some considering task
assignment coupled with path finding). Our experiments
show that optimal CBS often fails to find a solution within
a reasonable amount of time and suboptimal algorithms
are viable alternatives. In fact, thanks to local collision
resolution, even a completely decentralized approach can be
considered.


https://github.com/boschresearch/mrp_bench
https://github.com/boschresearch/mrp_bench

II. RELATED WORK

Benchmarking planning algorithms has received a lot of
attention in the last years [5], [8], [11], [17], [23], [30], [33],
[35]. However, few of them focus on multi-robot planning
and coordination [8], [23], [33], [35]. Stern et al. [33]
discuss the Grid-Based MAPF benchmark from MovingAl
[34], [35], which provides 2D occupancy grid-based maps
with various scenarios (consisting of tuples of starts and
goal cells). This benchmark assumes perfect knowledge of
the world, while our approach considers not only planning
but also execution in realistic simulated environments (con-
sidering uncertainty). Asprilo [8] also offers a simulation
environment, enabling the user to check and visualize the
results. This framework is aimed specifically at intralogistic
warehouse scenarios. The world is represented by a 2D
occupancy grid. Specifics of intralogistics are also modelled,
including shelves of items which need to be brought to
picking stations. Therefore, agents can perform additional
actions, such as picking up and setting down a shelf. While
the constraints can be defined using answer set programming,
the robot motion model is rather simple and the focus is
on abstract representations of agents. Different from our
approach, this approach neglects the higher-level control as-
pects (e.g. collision avoidance). Flatland [2], [23] focuses on
the benchmarking of vehicle rescheduling problem and is not
well suited for broader robotics domains. The environments
are 2D grids with some restrictions on the transitions between
cells: for example, there is no type of cell that can be entered
and exited from all directions, as one would expect for most
household or intralogistics robots. Contrary to Flatland, our
approach considers more realistic robotic scenarios in terms
of environment representation and robot models.

Several approaches exist for machine learning based so-
lutions [27], [31] that are also able to train reinforcement
learning agents. Differently from our benchmark, they do
not consider a realistic multi-robot navigation system.

Moreover, our approach, different from all the others, aims
to reduce the gap between simulation and real-world oper-
ation by making use of state-of-the-art robotic frameworks
(namely, ROS 2 Galactic [22] with Gazebo [18], Navigation
2 (Nav2) [21] and the Robotics Middleware Framework
(RMF) [24]). Different from [6], we do not limit ourselves
to simulations but also provide metrics, scenarios and reports
generation tools.

III. BACKGROUND

In our benchmark we consider the following two planning
problems: task assignment and path finding. Importantly,
both problems are tightly coupled and can be solved sep-
arately or combined [13]. While hereinafter we focus on
navigation tasks, the framework can be extended to handle
different type of tasks, e.g. such as pick and delivery [20].

A. Task Assignment

We define our task assignment problem as follows. We are
given a set of n Agents A = {ay, ..., an} and a set of n Goals
G ={g1,...,9n}. In a first step, an n x n matrix M = [m;;]
is created that represents the estimated costs for each agent a;

to reach each goal g;. Different heuristics are possible here,
such as the Euclidean distance, the Manhattan distance or the
path length calculated by A* between an agent and a goal.
Following [29, p. 1f.], we model the problem using a bipartite
graph G = (A4;G, E). The edges in E connect vertices in
A and G. Each edge is given a weight that relates to the
estimated cost between the respective agent and goal. Then,
an optimization problem is solved to obtain the matching of
A and G that minimizes the total weight.

B. Path Finding

Stern et al. [33] attempt to unify the terminology used
in describing MAPF problems and the evaluation metrics.
The authors first define what they call the classical MAPF
problem. In their definition, the environment is described by
an undirected graph. The problem consists of a set of agents,
each of which is located at a start vertex and needs to move
to a goal vertex. Agents can wait at their current vertex
or move from their current vertex to an adjacent one. Both
possibilities constitute an action. Different kinds of conflicts
are defined to specify the constraints imposed on the agent.
The simplest ones are the edge and vertex conflict, where no
two agents may occupy the same space at the same time.

Following the definitions in [33], we represent the world
as a binary occupancy grid W and use the bijection SG
to represent our MAPF problem. This results in an w X h
matrix, where each entry denotes a square cell ¢ of size
d in the physical world. The value of each cell denotes
whether that cell is traversable. The path-finding algorithm
generates a set of schedules (i.e. paths) S = S,,,...,5,,,
with S,, = {< c1,t1 >, < ca,t2 >, ..., < ¢, t >} for each
agent a; € A,i = 1,...,n, that represents the cell that a;
occupies at each discrete time step in the simulation. The
schedule must adhere to the constraint that no two agents
ever occupy the same cell at the same time step. In addition,
all cells ever occupied by agents must have an occupancy
value of 0 in W, and, in the last step of each schedule, each
agent a; has to occupy its goal cell g;. This problem can
be solved by planning algorithms, optimizing for different
metrics. Often, either total cost or the makespan are used.
We use the common definition of individual cost for each
agent as the number of cells traversed. Consequently, the
total cost is the sum of individual costs. The makespan is
defined as the highest individual cost.

IV. MRP-BENCH ARCHITECTURE

In this section, we explain the key decisions in designing
the benchmark suite and outline its architecture. We describe
the frameworks on which the benchmark is based, then
present the algorithms for which we provide interfaces, and
lastly present the proposed software architecture.

A. Background Frameworks

In our benchmark, we adopt the most common state-of-
the-art frameworks used by the robotics community for robot
control and navigation, namely:

i) ROS 2, short for Robot Operating System 2, is an
open-source middleware for robotics applications using a
publisher-subscriber architecture [7]. The last version of ROS



1, ROS Noetic, was released in 2020. While ROS 1 will still
be supported for a few years, we base this benchmark on
ROS 2 as the more advanced and future-proof version.

ii) Gazebo is the default 3D robot simulation environment
for ROS [7]. Version 11, which we use, is the last major
release of Gazebo [26].

iii) Nav2 is a framework for mobile robot navigation [1].
It can compute paths and interpolate between waypoints,
build a local costmap, and attempt recovery in case a robot
is stuck. Nav2 is becoming the standard regarding robot
navigation for modern systems; suggesting that the results
obtained from the benchmark might be easy to replicate
in real-world settings. Nav2 implements different heap for
recovery and collision avoidance, both important tools for
reducing conflicts during execution.

iv) RMF (Robotics Middleware Framework) is “a collection
of reusable, scalable libraries and tools building on top of
ROS 2 that enable the interoperability of heterogeneous
fleets of any type of robotic systems” [25]. We use two
components of RMF. The first component is the fleet adapter.
The benchmark interacts with the interfaces provided by the
fleet adapter to obtain the current status of the simulated
robots and to sending control commands. A standardized
interface is the basis for integrating different types of robots
into the simulation. The second component is the demo
environments and Traffic Editor of RMF, which is a GUI-
based tool for creating benchmark scenarios quickly.

All robot models that run within Gazebo, ROS 2 and Nav2
can be used in our benchmark. Our initial experiments use
the TurtleBot3 as it is a small robot with a simple 2D LiDAR
that is available at a reasonably low cost [3] [15].

B. Algorithms

As our work focuses on benchmarking, we selected an ini-
tial set of state-of-the-art algorithms based on the availability
of proper documentation and open-source implementations.
Notably, the ROS 2 interfaces allow for an easy integration of
other solvers and additional algorithms. For our benchmark
and the experiments in Section we adopt the following
tools:

i) OR-Tools [9] is an open software suite for optimization,
maintained by Google [28]. Besides tasks such as routing and
scheduling, it can also be used to solve the task-assignment
problem. For this task, either a Mixed-Integer Programming
or a boolean satisfiability problem (SAT) solver can be used.

ii) From libMultiRobotPlanning [12], we adopt the follow-
ing algorithms: decentralized A* [10], Confict-Based Search
(CBS) [32], Enhanced Confict-Based Search (ECBS) [4],
CBS-TA [13] and EBCS-TA [13]. A* is not a multi-robot
algorithm. However, we turned it into a very simple baseline
by running A* for each agent and combining the resulting
paths into a schedule (which is currently a standard approach
used in industry). The optimal algorithm CBS works on two
levels. On the low level, it performs path planning using A*
for each agent and checks for conflicts. A conflict is defined
as two agents occupying the same vertex at the same time.
If such a conflict occurs, a new constraint that prevents this
particular conflict is added to the lower-level search. Given

Fig. 2: A flow-chart of the proposed benchmarking architecture.

a conflict with two agents, the constraint could be added
to either of them. To ensure optimality, both possibilities
are saved. The hierarchy of constraints is stored in a tree
representation. The higher level search resolves the tree of
conflicts until the optimal solution has been determined.
ECBS is an extension to CBS that allows for suboptimality
on both planning levels: the user can provide a suboptimality
factor w, and the cost of the returned solution is guaranteed
to be smaller than or equal to w - optimalCost. This is
achieved by using a bounded-suboptimal variant of A* for
single-agent searches. CBS-TA combines CBS with task
assignment. However, with N robots and goals to match,
the number of possible assignments is N!. Checking N!
assignments quickly becomes impractical. CBS-TA therefore
starts with the best assignment in theory, i.e. the assignment
where the sum of individual shortest paths is minimized.
If conflicts occur, the next-best assignment is also taken
into consideration, besides introducing constraints as in plain
CBS. This means CBS-TA creates a search forest instead of
just a search tree. For EBCS-TA, the changes compared to
plain ECBS are analogous to CBS and CBS-TA, respectively.

iii) EECBS [19]: Motivated by Explicit Estimation Search
(EES), [19] propose Explicit Estimation CBS (EECBS), a
new bounded-suboptimal variant of CBS that uses online
learning to inadmissibly estimate the cost of the solution
under each high-level node and uses EES to choose which
high-level node to expand next.

C. Software Architecture

Figure [2| provides an overview of MRP-Bench. The
framework consists of the following sub-components: a
traffic editor for defining the environment, a configuration
file for settling the problem to solve, the simulator, the
manager node for orchestrating the benchmarking phase, the
local navigation systems and the evaluation sub-system (see
Section [V).

1) Starting Up: The workflow starts at the RMF Traffic
Editor which can be used to generate a Gazebo world file
with the intermediate step of a building.yaml description.
Together with the config.yaml, this provides the necessary
information for the Bench Manager Node to start the
benchmark: e.g. number of robots, random seed, start and
goals. Using the world file, Gazebo launches the simulated
3D environment. From this simulation, a binary costmap is



Fig. 3: The airport scenario is quite large and it offers the possibility
to test the algorithms considering large automated ground vehicles.

obtained using raytracing. The building.yaml also contains
a representation of the navigation graph, which denotes the
lanes that robots may move in. From this navigation graph,
which includes the spatial position of each vertex, another,
simpler occupancy grid is created. This time, only the lanes
of the navigation graph are marked as passable. This occu-
pancy grid serves as an input for the path planning algorithm.
Some algorithms can also directly use the navigation graph.
In this case, no conversion to the occupancy grid is necessary.
Additional RMF tasks can be activated (e.g. lift and doors
management) to increase the complexity of the simulation.

2) Planning and Fleet Management: 1If the planning li-
brary has managed to create a schedule, the Bench Manager
computes and saves performance metrics from the planning,
converts the schedule into separate path requests for each
agent, and continues with sending the path requests to the
fleet server, which delivers them to the individual fleet client.
The path is formed by several waypoints that will be then
given to the local navigation units.

3) Local Navigation: Together with a state publisher and
the fleet client, a full Nav2 stack is spawned for each robot.
We use the standard global and local planning algorithms
provided by the main repository. The benchmark user is
free to choose the most interesting planners (i.e. local and
global) for their scenarios. The Nav2 stack interpolates a
local path between the waypoints of the provided high level
path, controls the robots and in case of conflicts performs
collision avoidance and local recovery. Ground truth position
from the simulator can be used or the user can decide to run
a SLAM algorithm. Currently, the benchmark operates under
the assumption that robots progress from cell to cell with the
same average speed.

4) Data Visualization and Collection: Robot poses are
displayed on a map using the RMF schedule visualizer.
While the agents are following their schedule, their states
(e.g. poses and velocities) are recorded and can be analyzed
later to gather additional metrics. Additionally the users can
record more data in rosbag format.

All custom, self-written nodes are implemented in
Python3. The architecture is heavily based on the ROS 2
launch system.

V. EVALUATION SUB-SYSTEM

In this section we detail the scenarios and the metrics
included in the benchmarking suite. Those can be further
extended by the user.

A. Scenarios

We provide three different types of environments, that
stress different properties and capabilities of the multi-robot

Fig. 4: Left: The office environment provides different homotopy
classes and cluttered spaces. Right: The warehouse environment
has been designed considering classical situations for robots work-
ing in intralogistic settings.

system, namely: the airport, the office and warehouse, see
Figures [3] and ] All those environments have different
properties (see Table[l). Warehouse and airport are the larger
ones that require more planning efforts (both due to their
sizes and layouts with high traffic main roads). Warehouse
and office are the most cluttered ones. Other environments
can be easily added.

Property Office Warehouse Airport
Terminal
Width 21.53m 22.16 m 282.22m
Height 12.05m 27.07m 64.35m
Nav. graph
Vertices 29 54 210
Edges 32 59 211
Occupancy grid
Total cells 1025 3009 105700
Free cells 333 788 7645
Blocked cells 692 2221 98055

TABLE I: Environments key facts. Grid statistics at 0.4m grid
resolution and two-way roads/edges.

B. Metrics

We adopt two common sets of metrics [33]. The first one
includes planning performance and quality metrics: success
rate, planning time, makespan and cost.

The second set is calculated by analyzing recorded data
of the execution of the scenarios, namely:

i) Execution time: Optimally, the scenario finished when
all agents have arrived at their assigned goals. However, a
timeout for the execution can be provided via the config.

ii) Number of goals reached: The number of agents that
reach their goal within the timeout.

iii) Minimum distance between two agents: At any point
in time, we check the respective distances between all
controlled agents. Accordingly, we can see whether some
agents ran into each other, and if not, how close they got.

iv) Time blocked per agent and total: An agent is consid-
ered blocked if it has not progressed by at least one cell width
within a certain time. For each agent, this metric calculates
the amount of time spent blocked using a sliding window
approach.

VI. EXPERIMENTS AND RESULTS

To demonstrate the usefulness of the benchmark suite for
gaining insights from different algorithms and scenarios, we



performed experiments that compare the algorithms intro-
duced in section [[V-B]in different scenarios. The replicability
experiment was run on a computer with a Intel(R) Core(TM)
i7-7700K CPU @ 4.20GHz, 16GB memory, the rest of the
experiments on a computer with a Intel(R) Xeon(R) W-1270
CPU @ 3.40GHz and 16GB of memory.

A. Replicability

As the first evaluation, we take a look at how consistently
the exact same scenario leads to the same outcome across
different runs. In order to investigate this behavior, we used
three different setups and executed them 100 times each.

To investigate the variability in a conflict-free schedule
execution, we placed one single agent on the warehouse map.
The distance from start to goal was 45 cells, with a cell
size of 0.35m side length. Here, 100% of the runs were
successful, with a standard deviation in execution time of
only 0.4s. This means without conflicts between agents, the
simulation is very consistent.

In the other two scenarios, there are five agents on the
warehouse map and the time available to complete the
scenario is 300s. The calculation time for the schedule
is very consistent for both scenarios, with the coefficient
of variation (standard deviation divided by mean) below
2% for all three setups. While the schedule calculation is
reproducible, the execution is less so.

One of the scenarios tests especially challenging start and
goal configurations, namely those for which the schedules
from all algorithms (A*, CBS, ECBS and EECBS) could not
be executed successfully on the first attempt. We executed
this scenario again for 100 times with a schedule planned by
EECBS. The success rate shown now is 16%. The minimum
execution time observed is 214 s. Consistently, it was always
the same agent that in case of failure did not reach its goal,
seldomly accompanied by further failures.

In the second scenario, we used a setup where 3 out of
4 algorithms were successful in the sense that all agents
reached their goals. Two algorithms, EECBS and ECBS,
were used to plan and execute this scenario each 100 times.
Both algorithms always found the same solution (same cost,
same makespan), and both reached the goal in 95% of the
cases. The mean execution time is only about 1% apart.
This experiment shows that while the simulation contains
some degree of randomness, it does affect different planning
algorithms equally.

As to why the same scenario sometimes fails and some-
times completes successfully, the answer lies in conflict
resolution. The conflicts occurring here, as determined by
observation, are conflicts where two agents attempt to travel
along the same path in opposite directions. The Nav2 naviga-
tion system attempts to perform a recovery, which sometimes
is successful, but often fails. These results tell us that drawing
conclusions from a single repetition of the scenario is not a
good idea. Spurious errors can occur and should be evened
out by repeating the same experiments or by setting up more
scenarios.

B. Comparison of Algorithms Across Multiple Scenarios

We modify four parameters: the random seed determining
the start positions of robots and goal locations, the map used
(office and warehouseﬂ , the number of robots (5 and 9)
and the algorithm performing the planning. With 54 different
random seeds, this leads to a total of 864 experiments, split
evenly across the possible parameter choices. For algorithms
supporting suboptimality, we use a factor of 1.2.

Looking at the rate of success in planning a schedule
within a timeout of 60 s, we obtain the results listed in Table
We group these results by the map being used, as there are
significant differences in the planning success rate depending
on the map.

Algorithm Office Warehouse
A* 100% 100%

CBS 99% 83%

ECBS 100% 97%
EECBS 100% 100%

TABLE II: Algorithms’ success rate of finding a schedule within
60s, on a basis of 108 experiments for each combination of map
and algorithm.

CBS gives us an indication of the difficulty of maps:
with still 99% success for office, this goes down to 83%
for the warehouse. The time limit of 60s was selected as a
high, but still reasonable number for real-life applications. In
fact, lower times may be desired and some algorithms like
EECBS can easily provide these, while others like CBS take
significantly longer.

In the next step, we compare how well the plans generated
by the different algorithms actually perform during execution
in the simulation (see Table [[TI). The normalized success rate
describes all scenarios where all algorithms could calculate
a schedule. For the overall success rate, cases where no
schedule was found count as unsuccessful, as without a
schedule, the task cannot be performed at all. Table [[II| shows
the differences between algorithms. On the office map, the
success rate is high for all algorithms and the differences
are relatively small. On the more difficult warehouse map,
differences become more evident. The highest success rates
are obtained by ECBS. CBS, on the other hand, scores
decently in the normalized column, but obtains the lowest
success rate in the overall examination. This is due to the
fact that CBS is the computationally heaviest of the four
algorithms. In 17 of 108 scenarios, CBS does not find a
schedule within the timeout of 60s. For ECBS, this only
occurs twice and for A* and EECBS, it is never the case.
While the decentralized A* has a slightly lower success rate
on the normalized warehouse column, it is not far below the
other algorithms.

C. Task Assignment

In the previous experiments, the task assignment was
performed using OR-Tools and the Euclidean distance as
a heuristic. This takes about 5ms and leads to the same

'Due to lack of space we do not report results obtained in the airport
scenario, which follow similar trends seen in the warehouse one.



Success Rate
Algorithm Normalized Overall
Office | Warehouse | Office | Warehouse
A* 95% 81% 95% 77%
CBS 93% 84% 92% 70%
ECBS 95% 89% 95% 85%
EECBS 95% 84% 95% 78%

TABLE III: Algorithms’ success rate of completing a scenario
within the timeouts of 60 second (planning) and 5 min (execution).
Data based on 108 experiments, except for warehouse, normalized,
which is based on 91 experiments.

500
400
300
200

100

Time spent calculating a schedule in seconds

0 L —_ 1L —_

CBS Astar ECBS_1.2 EECBS_1.2 CBS-TA ECBS-TA_1.2

Fig. 5: Calculation time on 34 scenarios for each algorithm on the
warehouse map. /.2 denotes the suboptimality factor used.

setup for all algorithms. In this experiment we also show how
CBS-TA and ECBS-TA perform. In Figure[5] the distribution
of the total planning time on the warehouse map is shown
for different algorithms. For EBCS-TA with suboptimality
1.2, the mean calculation time is 136.82s with a standard
deviation of 0.45s. This was calculated for 17 scenarios with
5 and 9 agents respectively, where the increased calculation
time of 600s is available. As the low standard deviation
indicates, the difference between 5 and 9 agents is negligible.
For CBS-TA, the numbers are quite similar. EECBS and the
decentralized A* find a solution almost instantly. For CBS
and ECBS, the mean calculation time is quite low, but a few
outliers exist where no solution was found even within 600 s.
On the office map, the calculation time is much lower on
average, but CBS-TA and ECBS-TA show a similar behavior
with very consistent calculation times (around 10s).

Algorithm Mean Makespan Mean Cost
A* 65.3 227.1
CBS 65.6 233.5
ECBS_1.2 65.6 234.1
EECBS_1.2 66.3 234.2
CBS-TA 59.3 213.5
ECBS-TA_1.2  66.2 227.3

TABLE IV: Algorithms’ mean cost and makespan for the warehouse
map with 9 agents. Only the 39 scenarios where all algorithms
found a solution within 600s are considered.

Table [[V| shows the differences in costs and makespan re-
sulting from the different assignment strategies as described
above. The upper four algorithms use the same assignment of
agents to goals, whereas in the lower two, it can be different.
For the first group, decentralized A* has the lowest total cost,

which is expected as no conflict avoidance takes place. CBS,
as an optimal algorithm, has a slightly smaller total cost than
the other two which allow a suboptimality of factor 1.2.

On the other hand, for CBS-TA, the mean cost and
makespan are both significantly lower than for CBS, which
means a different, better assignment was found in more
cases. The difference is less pronounced for ECBS and
ECBS-TA respectively. The fact that mean cost is lower, but
the mean makespan is actually higher for ECBS-TA shows
us that the cost was the optimized value here.

D. Summary

In summary, our experiments suggest that using subopti-
mal algorithms is a viable solution. ECBS turned out to be
faster than CBS and also delivered a higher success rate.
EECBS is even faster and never failed to find a solution
in our scenarios, at a small cost in the success rate. Using
algorithms with included task assignment is promising, as
a smaller total cost can be achieved. For some scenarios,
their calculation time might be too long. In this case, some
algorithms may offer parameters that can be used to limit
the search space of possible assignments.

Dependent on the environment and the robots used, the
local recovery feature offered by Nav2 may be sufficient in
some cases to even use decentralized approaches such as
A*. While the success rate is higher for variants of CBS,
A* results are not that much worse that a decentralized
approach should be ruled out. This applies especially if the
environment is less static than in the scenarios we set up. If
robots have to rely even more on local observations due to
a rapidly changing environment, an approach using central
planning is further disadvantaged.

E. Limitations

A main limitation of our benchmark concerns its scal-
ability. In particular, the computationally expensive Nav2
and Gazebo pose limitations. Going well above ten agents
on a normal computer is not possible for execution. To
improve this, the researcher would need to scale out instead,
distributing the agents over multiple machines connected in
a network or in the cloud [14], similar to real-life mobile
robots that usually possess individual onboard hardware.

VII. CONCLUSION AND OUTLOOK

In this paper, we introduce a novel benchmark for multi-
agent task assignment and path planning in complex and
cluttered environments. Our benchmark uses state-of-the-art
robotic frameworks to study multi-agent robot navigation
systems in realistic 3D simulated environments. To this
end, we provide typical scenarios and metrics from the
intralogistic and household domains. Our evaluation shows
how the benchmark can be used to gain novel extensive
insights from the interfaced multi robot planning algorithms.
Overall, MRP-Bench allows practitioners and researchers to
compare their novel multi-robot planning algorithms against
the state of the art with little effort. As future work, we
aim to extend the approach to dynamic environments, e.g.
by including simulated humans and predicting their motion.
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