
Benchmarking Multi-Robot Coordination in Realistic, Unstructured
Human-Shared Environments

Lukas Heuer1, Luigi Palmieri2, Anna Mannucci2, Sven Koenig3 and Martin Magnusson1

Abstract— Coordinating a fleet of robots in unstructured,
human-shared environments is challenging. Human behavior
is hard to predict, and its uncertainty impacts the performance
of the robotic fleet. Various multi-robot planning and coordi-
nation algorithms have been proposed, including Multi-Agent
Path Finding (MAPF) methods to precedence-based algorithms.
However, it is still unclear how human presence impacts dif-
ferent coordination strategies in both simulated environments
and the real world. With the goal of studying and further
improving multi-robot planning capabilities in those settings,
we propose a method to develop and benchmark different
multi-robot coordination algorithms in realistic, unstructured
and human-shared environments. To this end, we introduce
a multi-robot benchmark framework that is based on state-
of-the-art open-source navigation and simulation frameworks
and can use different types of robots, environments and
human motion models. We show a possible application of the
benchmark framework with two different environments and
three centralized coordination methods (two MAPF algorithms
and a loosely-coupled coordination method based on precedence
constraints). We evaluate each environment for different human
densities to investigate its impact on each coordination method.
We also present preliminary results that show how informing
each coordination method about human presence can help the
coordination method to find faster paths for the robots.

I. INTRODUCTION

Multi-robot systems have many potential applications.
Currently, the biggest application is warehouse automation,
where the storing or sorting of many different objects is
enabled by large multi-robot systems [1]. However, there
are applications and environments where multi-robot systems
are not yet common. Examples include airports, hospitals,
restaurants or loading docks in logistics [2]–[4]. Such en-
vironments pose two major challenges when employing
multiple robots. First, they do not always have a fixed
and simple structure. Semi-static obstacles and non-regular
corridors or intersections can make it harder employ efficient
coordination algorithms. Second, they are often not devoid
of humans. This demands the fleet decision-making system
to account for the delays of individual robots that can occur
when interacting with humans.

1L. Heuer, and M. Magnusson are with the Center for Ap-
plied Autonomous Sensor Systems (AASS), Örebro University, Sweden
{lukas.heuer, martin.magnusson}@oru.se.

2L. Palmieri and A. Mannucci are with Robert Bosch GmbH,
Corporate Research, Stuttgart, Germany {luigi.palmieri,
anna.mannucci}@de.bosch.com.

3S. Koenig is with the Department of Computer Science, Univer-
sity of Southern California, Los Angeles, United States of America
skoenig@usc.edu.

This work was partly supported by the EU Horizon 2020 research and
innovation program under grant agreement No. 101017274 (DARKO) and
NSF grant 1837779.

Fig. 1: The depot environment, which we use in our framework
to test different multi-robot planning algorithms. We focus our
attention on realistic, human-shared environments.

The literature on autonomous navigation consists of
two main branches: single-robot navigation and multi-robot
coordination/path-planning. Single-robot navigation [5]–[8]
usually accounts for the robot dynamics and can navigate in
cluttered dynamic environments, but may lead to deadlocks
or suboptimal behavior when applied to complex multi-
robot settings (such as fleets of robots with non-trivial
kinematics, limited space for maneuvering, etc.). Multi-robot
coordination/path-planning investigates the explicit coordina-
tion of robots. It requires a certain level of communication
between the robots and optimizes joint metrics, such as the
total makespan or the total distance traveled [1], [9], [10].
However, to keep the problem tractable for hundreds of
robots, those approaches are often developed and evaluated
in strongly simplified settings without considering robot
dynamics, uncertainty or complex environments [11], [12].
Thus, each research direction usually simplifies or disre-
gards the problem that the other one is trying to solve.
Understanding how to effectively couple the two branches
of autonomous navigation is the problem which motivates
this paper.

In particular, coordinating multi-robot systems in unstruc-
tured human-shared environments introduces challenges.
Such environments are difficult to simplify because of the
inherent complexity of human behavior and the way humans
can interact with a robot. The local navigation system of the
robots determines how they interact with the surrounding
environment, including humans and other robots. But to
what extent this influences the coordination of the multi-
robot fleet is unclear as different coordination methods make
different assumptions or simplifications. Thus, the local robot
behaviors can impact each coordination method differently.

Schäfer et al. [13] proposed a benchmark to investigate
multi-robot coordination in realistic simulations. However,
to the best of our knowledge, there is no research on multi-
robot coordination focusing on the challenges introduced by



the presence of humans in unstructured environments.
With this work, we provide an important initial stepping

stone to understanding how human behavior can influence
multi-robot coordination. To this end, we make the following
contributions:

1) A modular benchmarking framework based on state-
of-the-art physics simulator, robot-navigation stack
and multi-robot coordination algorithms tailored to-
wards human-shared spaces. The framework allows
researchers and practitioners to easily implement and
compare different methods for robot navigation and
multi-robot coordination.

2) Experimental results which show how different estab-
lished algorithms for multi-robot coordination perform
in, and are impacted by, unstructured, human-shared
environments.

II. RELATED WORK

Recently, more methods for multi-robot coordination aim
at explicitly dealing with delays in the execution of the robot
paths. Hönig et al. [10] and Varambally et al. [11] identify
a similar research gap as we have introduced in Section I.
Both use the concept of Action Dependency Graphs (ADG)
to make the execution of the solution to a Multi-Agent
Path Finding (MAPF) problem more robust to delays and
slow-downs. However, both papers consider only simple
warehouses, do not include a local navigation stack in the
simulation framework, nor consider human-shared environ-
ments. Cirillo, Pecora and Mannucci et al. published a line
of work [12], [14], [15] which investigates realistic multi-
robot coordination in unstructured environments. Similarly,
Draganjac et al. [3] propose a traffic system for autonomous
forklifts. These methods utilize the robots full navigation
stack and is tested in physics-simulated environments as
well as with real-world experiments, but do not address the
topics of sharing the operational environment with humans.
A method which shows how multi-robot coordination can
be adapted to unstructured environments is proposed by Čáp
et al. [9], [16]. Though, they also do not consider realistic
robot dynamics and their work is not aimed at human-
shared environments. Chen et al. propose a decentralized
coordination method in [17] and Zhu et al. [18] introduce an
approach for multi-robot motion planning while accounting
for human interactions. However, both methods focus only
on the decentralized coordination and path planning, and are
evaluated in completely empty environments. Talebpour et
al. [19] present a method for multi-robot coordination in
human-shared spaces. They combine the local robot naviga-
tion stack with a task-allocation-based coordination method.
Differently from our work, they do not present an open
framework nor consider different methods for multi-robot
coordination.

Sturtevant et al. [20] provide an established benchmark for
MAPF algorithms. In Schäfer et al. [13], we aim to close the
gap between realistic simulation and benchmarking MAPF
algorithms. While the benchmark includes Navigation21 as
a local navigation stack (and hence allows different path

1https://navigation.ros.org

Fig. 2: A sketch of our designed REMROC framework. The arrows
represent information, communicated via ROS 2 messages. This
information can be anything, required for coordination (e.g. state-,
path-, or sensor-information).

planners and controllers), it is rigid with respect to the type
of coordination methods used and does not investigate the
effects of the human presence.

We conclude that there exists no related work that focuses
on how to directly compare different types of multi-robot
coordination methods like MAPF-based solutions [1], [9],
free-space coordination based on precedence constraints [12],
or market-based coordination methods [21]. The work on co-
ordination in human-shared environments is also very limited
and there are no studies about how traditional coordination
methods are effected by them.

III. FRAMEWORK

In this section, we detail REMROC: a framework for
benchmarking realistic multi-robot coordination algorithms
in unstructured, human-shared environments. (Figure 2 illus-
trates the overall design of the framework.) We use ROS 2
Humble [22] as the software basis for the general robotic
system, and Gazebo Ignition [23] as physics simulator for
the environments. For navigating each individual robot, we
use Navigation2 [24], a ROS 2 software library containing
state-of-the-art components for robot navigation. The use
of open-source state-of-the-art software components aims
at promoting the framework as a general open-source en-
vironment for benchmarking multi-robot systems. Also, it
eases the development of algorithms for real-world appli-
cation and transferring them to real robotic platforms. The
framework is available open source at https://github.
com/boschresearch/remroc.

A. Simulation
The general environment including obstacles and robot

descriptions are imported into Gazebo via SDF files. Gazebo
offers the functionality of adding simulated humans to its
environment, also known as actors. Actors are also specified
in the SDF file and require trajectory information (i.e.,
allowing the reproduction of real-world datasets like THÖR
[25]). Importantly, actors in our Gazebo simulations have
a texture but no collision box. In other words, humans are
registered by sensors like lidars and cameras and therefore
influence the navigation stack of the robot realistically, but
are not physically interacted with. We make this choice
because physically interacting humans would require them
to use some form of navigation stack themselves in order
to react to the robots. Otherwise it could easily happen that

https://navigation.ros.org
https://github.com/boschresearch/remroc
https://github.com/boschresearch/remroc


a human influences the simulation very unrealistically, for
example by walking into a robot continuously. Providing the
simulated humans with a navigation stack on their own would
greatly increase the complexity of the simulation to the extent
where it would not be feasible to simulate more then a few
humans.

It is generally possible to add different types of robots,
with different models, sensors, and motion dynamics, and
even create multi-robot systems composed of multiple types.
The robot we have implemented for our evaluation is us-
ing the open source model of a medium size delivery
robot [26]. We made modifications to equip the model with
a differential-drive motion model, a 3D lidar and an IMU
sensor.

B. Navigation

Each robot is launched in its individual ROS 2 name-space
with a full Navigation2 stack, which consists of multiple
components. For state-estimation and localization we employ
an Extended Kalman Filter (EKF) [27] and an Adaptive
Monte Carlo Localization (AMCL) [28]. We use Model
Predictive Path Integral (MPPI) [29] and Hybrid-A* [30] for
local control and global planning respectively. The robots
also run an instance of the Navigation2 behavior-tree to
expose ROS 2 action servers for general functionality, like
point navigation or path following.

C. Planning and Coordination

The Multi-Robot Planning Algorithm (MRPA) unit (see
Figure 2) uses the received information to coordinate, and
ultimately instructs the individual robots on how to move
forward. It is implemented as a ROS 2 node and connected
to the robots through ROS 2 interfaces (i.e. topics, ser-
vices, actions). Our framework can also realize hybrid or
decentralized coordination methods by launching multiple
coordination nodes which only connect to individual, or a
subset of robots.

Importantly, this overall setup is computational demand-
ing, as each robot simulates sensors and runs an individual
Navigation2 stack. In our evaluation, run experiments with
up to 8 robots and 20 humans maintaining a 60% real-time
factor for the Gazebo simulation. We plan to address this
in future work by running the simulation and navigation
systems distributed on multiple machines.

IV. COORDINATION ALGORITHMS

Thanks to its modularity, REMROC allows for easy inte-
gration of different coordination algorithms. As an initial set,
we have chosen established approaches to coordination [12],
[31], [32], included them into our framework, and bench-
marked them in unstructured, human-shared environments.

Many approaches for multi-agent coordination represent
the coordination task as a MAPF problem and employ
a MAPF solver to obtain a solution [31]. We adopt this
strategy and use Conflict Based Search (CBS) [32] in two
of our evaluated algorithms. For this, we adapt the CBS
implementation from libMultiRobotPlanning [33] to use in a
ROS 2 node.

Algorithms 1, 2 and 3 describe the coordination algo-
rithms we include in our benchmark framework. We made
straightforward additions and modifications to [32] and [12],
to enable their use in REMROC. R,S,G denote the sets of all
robots, their start and goal positions, respectively. P refers
to the set of all robot paths. Lower case letters represent the
elements of the respective set. Limitations of the algorithms
are discussed in Sections VI-A.1, VI-A.2 and VI-A.3.

We refer to Algorithm 1 as One-shot CBS. The start
and goal locations of the robots are used to generate a
MAPF problem on the respective navigation graph, and
solve it using the CBS algorithm. Translating the nodes of
the navigation graph into map coordinates, we convert the
solution of the CBS algorithm into a set of waypoints along
which the robot has to navigate. Importantly, the obtained
paths are only collision free and optimal with respect to
the navigation graph, if the robots move synchronously.
To enforce this, the robots only receive their next target
waypoint when all of them have reached their current target
respectively. We use the /navigate to pose service, provided
by Navigation2, to set the target waypoint.

We refer to Algorithm 2 as Iterative CBS. This algorithm
is practically CBS with replanning at a set interval, similar to
Method 2 in [1]. The perfect synchronization assumption of
the classic CBS algorithm is difficult to meet due to dynamic
constraints of the robots, networking issues and interactions
with humans delaying individual robots. This algorithm tries
to account for these disturbances to the original MAPF solu-
tion by generating and solving the MAPF problem iteratively.
The positions of the robots are updated and a MAPF problem
is generated on the respective navigation graph, using the
robots goal states and their current positions. The MAPF
problem is then solved using the CBS algorithm. We consider
the resulting paths as a sequence of waypoints, which we give
to the robot, to navigate along. This is done by calling the
/navigate through poses action, provided by the Navigation2
stack.

We refer to Algorithm 3 as Continuous PBC (Priority
Based Coordination. This algorithm is inspired by the one
proposed in [12] and [34]. The algorithm first queries the
global planner from each robot to plan a path. The original
paths are saved and used as bases for the following iterative
part of the algorithm. First we receive the current state of
each robot. Second we calculate a critical point, that is, the
first point on the remaining path closer then a given critical
distance to the path of another robot. We then truncate the
original path to the subpath between the current robot state
and the critical point on which the robot does not have prece-
dence. Finally, we call the /follow path action, provided by
Navigation2 to make the robot follow its respective subpath.
This algorithm requires a heuristic to assign precedence to a
robot at a critical point. We consider the robot with less path
distance to the critical point to have priority. If the robot’s
current position is too close to another path, its distance to
a critical point is 0 and it therefore always has priority.

V. EVALUATION

The REMROC framework, described in Section III, is used
to evaluate different multi-robot coordination algorithms in



Algorithm 1 One-shot CBS
Require: R,S,G ▷ robots, robot start positions, robot goal

positions
1: P← CBS(S,G)
2: while ROBOTSNOTATGOAL(R) do
3: for r ∈ R do
4: NAVIGATETOWAYPOINT(r,pr[0])
5: end for
6: if ROBOTSATWAYPOINT(R) then
7: for r ∈ R do
8: REMOVEELEMENT(pr[0])
9: end for

10: end if
11: end while

Algorithm 2 Iterative CBS
Require: R,S,G ▷ robots, robot start positions, robot goal

positions
1: while ROBOTSNOTATGOAL(R) do
2: X ← UPDATEROBOTPOSITIONS(R)
3: P← CBS(X ,G)
4: if ALLPATHSVALID(R) then
5: for r ∈ R do
6: NAVIGATEALONGWAYPOINTS(r,pr)
7: end for
8: else
9: STOPROBOTS(R)

10: end if
11: end while

Algorithm 3 Continuous PBS
Require: R,S,G ▷ robots, robot start position, robot goal

positions
1: for r ∈ R do
2: pr← GLOBALPLANNER(sr,gr)
3: end for
4: while ROBOTSNOTATGOAL(R) do
5: X ← UPDATEROBOTPOSITIONS(R)
6: for r ∈ R do
7: cr← FINDCRITICALPOINT(pr,P\pr)
8: p̃r← FINDRELEVANTSUBPATH(xr,cr,pr)
9: FOLLOWPATH(r, p̃r)

10: end for
11: end while

unstructured, human-shared environments. We evaluate three
algorithms in two different environments, detailed in Section
IV and Section V-A respectively.

The framework provides the possibility to record many
different information like the odometry of the robots, ex-
ecution frequencies of the individual components or direct
sensor data, and to define metrics of interest. Our goal is to
derive general insights on how the presence of the humans
affects the performance of the different algorithms. Thus, we
collect the individual time-to-goal of the robots and present
the results in Section VI. We obtain legible trajectories for
the humans by using the Hybrid A* planner from Navi-
gation2. To avoid biases caused by a specific selection of
human paths, we generate n samples with randomized human
trajectories for each experiment.

For the two CBS-based algorithms, we use the navigation
graphs in Figure 4 and 5 to represent the environments.

Fig. 3: The basic environment used to test different multi-robot
planning algorithms with up to 10 humans.

A. Simulation Environments

We evaluate the coordination algorithms in two different
environments, each with 8 robots navigating to their given
goal position. Start and goal positions are fixed for each
environment as shown in Figures 4 and 6 and chosen so
as to result in a well-formed infrastructure as described in
[9], [34]. The first simulation environment, called basic, is
an empty room of 10 × 10 m2. Start and goal positions
for the robots and the navigation graph are shown in Figure
4 and chosen so as to provoke a congested area in the
center of the room. Due to the lack of static obstacles, the
main disturbance on the robots coordination is caused by the
presence of humans.

The second environment, called depot, is based on the
Turtlebot 4 Gazebo simulator [35] and measures 30 × 15 m2.
Figures 5 and 6 show the navigation graph and occupancy
map including the start and goal positions of robots. Blue
areas in Figure 6 mark shelves; these have enough ground
clearance for robots to pass beneath but not for humans.
This is an interesting feature because it results in an area
with a higher average human density (marked in red). This
environment contains obstacles and features making it more
realistic than the basic one. The size of the environment
eases the coordination problem, but the increased complexity
challenges the local navigation stack of the robots.

B. Experiments

In our experiments we investigate how the different algo-
rithms, described in Section IV, perform when coordinating
several robots in human-shared environments. For this we
look at the environments presented in Section V-A in three
settings, each having a different number of humans present.
We conduct experiments in the basic environment, with
0, 5 and 10 humans, and a sample size of n = 20. The
experiment in the depot environment is done with 0, 10
and 20 humans, and a sample size of n = 10. In a last
experiment, we only consider the 10 samples of the depot
environment with 20 humans, and modify the navigation
graph by truncating nodes which are in the region with high
human density. We compare the normal environment setup
to one where the crowded (e.g. busy) area, marked red in
Figure 6, is blocked. This means that the area is treated as
occupied for the coordination methods and the navigation
stacks, resulting in paths which do not pass through this
area. The local planner always performs collision avoidance
considering both humans and static obstacles.



Fig. 4: (Left:) The navigation graph used by MAPF based coordi-
nation algorithms for the basic environment. (Right:)Start and goal
locations for the robots, marked with yellow and green respectively.

Fig. 5: The inflated occupancy map of the depot environment. The
navigation graph used by MAPF based coordination algorithms is
shown in blue. Red nodes are used in the normal evaluation, but
are removed in the last experiment.

Fig. 6: Occupancy map for the depot environment. The shelves,
marked in blue, prevent humans from passing. The red busy
area accumulates a lot of human traffic and is blocked for robot
navigation in our last experiment. Start and goal locations for the
robots are marked with yellow and green respectively.

VI. RESULTS

Results for the basic environment are reported in Table I
and Figure 7. Table I shows mean and standard deviation of
the time-to-goal over the 20 samples and all robots during
the respective experiments. Figure 7 reports results for each
robot over the 20 samples. Importantly, the results from each
sample are sorted, so the 8 markers show the time-to-goal for
the robots from fastest to slowest. Table II and Figure 8 show
results of the depot environment. Table II shows mean and
standard deviation of the time-to-goal over the 10 samples
and all robots during the respective experiments. Figure 8
displays the results for the individual robots. For the third
experiment, we inform the algorithms about the area with an

No. humans One-shot CBS Iterative CBS Continuous PBC
0 31.7±3.64 29.9±6.73 23.7±5.17
5 39.4±5.00 33.8±7.53 27.1±6.91
10 47.7±6.58 35.2±8.46 29.4±8.31

TABLE I: Average time-to-goal in seconds for the basic environ-
ment.

No. humans One-shot CBS Iterative CBS Continuous PBC
0 110.9±10.61 65.1±7.99 60.2±10.32
10 120.0±10.81 68.1±8.36 63.0±11.3
20 127.9±13.74 70.4±9.10 65.0±11.6

20 (BB∗) 118.6±10.90 69.5±8.82 64.4±11.7

TABLE II: Average time-to-goal in seconds for the depot environ-
ment. ∗BB: Busy blocked

higher average in human density (by changing the navigation
graph) and show the results in Figure 9.

A. Discussion

The results show that the presence of humans during fleet
coordination, and considering them only in local collision
avoidance, has a negative impact on the time-to-goal of the
robots. Figure 7 and 8 as well as Table I and II show
this clearly for both environments. The results also show
the advantage of algorithms which continuously update their
solutions. Table I and II show that, the iterative methods,
Iterative CBS and Continuous PBC, are not impacted as
much by the presence of humans, with the increase in time-
to-goal not being as large as for One-shot CBS. Figure 8
shows that there is an increase in spread from the fastest
to the slowest robot, and that the robots are generally
delayed by adding more humans. The larger size of the depot
environment is also important when evaluating the results.
The longer distances could make delays less noticeable and
give the iterative coordination methods more opportunities
to recover from delays. Figure 8 shows that the fastest robot
are not slowed down when increasing the number of humans.
This is most likely because the coordination algorithm is able
to leverage the delay of some robots into more direct and
therefore faster paths for others.

Avoiding crowded areas in MRPA: Table II and Figure 9
show that the performance of coordination methods can be
improved slightly by making the robots avoid the area with
highest human density. For One-shot CBS, this speeds up
the robots, while for the iterative coordination methods the
improvements are marginal. However, intuitively it should
be more difficult for the robots to coordinate, as the nav-
igation graph and the environment are restricted. It seems
plausible that the added challenge of coordinating in a more
restricted environment, is compensated by a reduction in
human interaction. Continuous PBC is generally less effected
by human presence. This is most likely due to the fact that
the method can plan continuous and straight paths to the
goal states without being bound by the connected grid. From
qualitative evaluation of our experiment, we observe that this
coordination method is more likely to plan diagonally below
the shelves, which results in less interactions with humans.

The different algorithms have individual drawbacks and
limitations which we discuss in the following.

1) One-shot CBS: In the depot environment, this approach
is notably slower then the other ones. We theorize that this is



Fig. 7: Mean and standard deviation of time-to-goal in seconds for all robots in the basic experiment.

Fig. 8: Mean and standard deviation of time-to-goal in seconds for
all robots in the depot environment.

Fig. 9: Mean and standard deviation of time-to-goal in seconds
for all robots in the depot environment with 20 humans. We also
evaluate a modified version of the environment, in which we block
the busy area of the map for the navigation and multi-robot path
planning methods.

because it can not follow straight paths as efficiently as the
other approaches, which is relevant in the larger environment.
The dense navigation graph causes a stop and go behavior.
This is due to the robot never fully accelerating, as it is
always presented with a close goal. These drawbacks may
be mitigated with more complex CBS-bases algorithm as
proposed by Varambally et al. [11]. In addition, this method
is not able to account for delays of individual robots and
adapt the MAPF solution accordingly. However, it is still
very robust. Long computation time or poor navigation per-
formance will never cause deadlocks or undesirable behavior.
This is because Alg. 1, lines 6–8, enforces synchronous
execution of the MAPF solution. Thus, it only slows all
robots down, and increase their respective time-to-goal.

2) Iterative CBS: While this algorithm works well in our
experiments it has a notable limitation. The solving time
per iteration should be low enough such that the robot will
not pass more then one graph node during it. Otherwise the
algorithm will not obtain valid paths and stop the robots until
it has solved the MAPF iteration. While this was no problem

in our experiments, using more robots or more difficult
environment would increase the computational complexity
and the time needed to obtain a solution to the MAPF
problem. The exact influence of this phenomenon depends
directly on the MAPF solver used. A sub-optimal solver like
ECBS [36] or M* [37] could enable this algorithm for larger
maps, robot fleets or more constrained navigation graphs.

3) Continuous PBC: This algorithm is able to plan in con-
tinuous space without a navigation graph, which improves its
performance over the CBS based algorithms. However, it also
generates the global paths with a single-agent motion plan-
ner and therefore generates sub-optimal multi-agent motion
plans. The algorithm is also not minimizing total time-to-
goal, because of the heuristic used to compute precedence.
This makes it possible to improve the overall performance
of the entire system by delaying a robot. The small impact
in overall time-to-goal that humans have on this algorithm
in the depot environment could be explained by this.

B. Future Research
In the future, we plan to build on our contributions by

extending the framework and experimental evaluation. We
aim to include more representative and diverse environments
and robot models, and implement additional state-of-the-art
coordination algorithms. We also want to investigate the use
of local navigation methods which utilize human motion pre-
diction and provide more extensive experimental evaluation.
This will be focused on how local navigation methods can
be combined with more complex coordination algorithms and
be used in unstructured, human-shared environments.

VII. CONCLUSIONS

In this paper we make important initial steps towards ap-
plying methods for multi-robot coordination in unstructured
human-shared environments and identify the challenges in
making state-of-the-art methods human-aware. To address
these challenges we propose a software framework, based on
state-of-the-art robotics research tools, to develop, evaluate
and benchmark different types of multi-robot coordination
methods in unstructured, human-shared environments. We
use our framework to implement basic, well established
multi-robot coordination algorithms and provide a line of
experiments to test how they perform in those environments.
Our results show that we can quantify the influence of human
presence on the implemented algorithms and how basic
ways of making the methods human-aware can influence the
coordination performance.



REFERENCES

[1] J. Li, A. Tinka, S. Kiesel, J. W. Durham, T. S. Kumar, and S. Koenig,
“Lifelong multi-agent path finding in large-scale warehouses,” in
Proc. of Conf. on Artificial Intell. (AAAI), vol. 35, no. 13, 2021, pp.
11 272–11 281.

[2] S. Jeon, J. Lee, and J. Kim, “Multi-robot task allocation for real-time
hospital logistics,” in Proc. of the IEEE Conf. on Systems, Man, &
Cybernetics (SMC). IEEE, 2017, pp. 2465–2470.

[3] I. Draganjac, T. Petrovic, D. Miklic, Z. Kovavic, and J. Orsulic,
“Highly-scalable traffic management of autonomous industrial trans-
portation systems,” Robot. & Computer-Integr. Manuf., vol. 63, p.
101915, 2020.

[4] T. Morita, N. Kashiwagi, A. Yorozu, H. Suzuki, and T. Yamaguchi,
“Evaluation of a multi-robot cafe based on service quality dimensions,”
The Review of Socionetwork Strategies, vol. 14, pp. 55–76, 2020.

[5] R. Han, S. Chen, and Q. Hao, “Cooperative multi-robot naviga-
tion in dynamic environment with deep reinforcement learning,” in
Int. Conf. Robot. & Autom. (ICRA). IEEE, 2020, pp. 448–454.

[6] J. R. Bruce and M. M. Veloso, “Safe multirobot navigation within
dynamics constraints,” Proc. of IEEE, vol. 94, no. 7, pp. 1398–1411,
2006.

[7] B. Gopalakrishnan, A. K. Singh, M. Kaushik, K. M. Krishna, and
D. Manocha, “Prvo: Probabilistic reciprocal velocity obstacle for multi
robot navigation under uncertainty,” in Int. Conf. Intell. Robot. Sys.
(IROS). IEEE, 2017, pp. 1089–1096.

[8] M. Boldrer, A. Antonucci, P. Bevilacqua, L. Palopoli, and
D. Fontanelli, “Multi-agent navigation in human-shared environments:
A safe and socially-aware approach,” Robot. & Auton. Syst., vol. 149,
p. 103979, 2022.

[9] M. Čáp, P. Novák, A. Kleiner, and M. Selecký, “Prioritized planning
algorithms for trajectory coordination of multiple mobile robots,” IEEE
Trans. on Automation Science & Engineering, vol. 12, no. 3, pp. 835–
849, 2015.

[10] W. Hönig, S. Kiesel, A. Tinka, J. W. Durham, and N. Ayanian,
“Persistent & robust execution of MAPF schedules in warehouses,”
IEEE Robot. & Autom. Letters, vol. 4, no. 2, pp. 1125–1131, 2019.

[11] S. Varambally, J. Li, and S. Koenig, “Which MAPF model works best
for automated warehousing?” in Proc. of Int. Symp. on Comb. Search,
vol. 15, no. 1, 2022, pp. 190–198.

[12] F. Pecora, H. Andreasson, M. Mansouri, and V. Petkov, “A loosely-
coupled approach for multi-robot coordination, motion planning and
control,” in Proc. of Int. Conf. Autom. Plan. & Sched. (ICAPS), vol. 28,
2018, pp. 485–493.

[13] S. Schaefer, L. Palmieri, L. Heuer, R. Dillmann, S. Koenig, and
A. Kleiner, “A benchmark for multi-robot planning in realistic, com-
plex and cluttered environments,” in Int. Conf. Robot. & Autom.
(ICRA), 2023, pp. 9231–9237.

[14] M. Cirillo, F. Pecora, H. Andreasson, T. Uras, and S. Koenig, “Inte-
grated motion planning and coordination for industrial vehicles,” in
Proc. of Int. Conf. Autom. Plan. & Sched. (ICAPS), vol. 24, 2014, pp.
463–471.

[15] A. Mannucci, L. Pallottino, and F. Pecora, “Provably safe multi-robot
coordination with unreliable communication,” IEEE Robot. & Autom.
Letters, vol. 4, no. 4, pp. 3232–3239, 2019.

[16] M. Čáp, J. Gregoire, and E. Frazzoli, “Provably safe and deadlock-
free execution of multi-robot plans under delaying disturbances,” in
Int. Conf. Intell. Robot. Sys. (IROS), 2016, pp. 5113–5118.

[17] Y. Chen, U. Rosolia, and A. D. Ames, “Decentralized task and path
planning for multi-robot systems,” IEEE Robot. & Autom. Letters,
vol. 6, no. 3, pp. 4337–4344, 2021.

[18] H. Zhu, F. M. Claramunt, B. Brito, and J. Alonso-Mora, “Learning
interaction-aware trajectory predictions for decentralized multi-robot
motion planning in dynamic environments,” IEEE Robot. & Autom.
Letters, vol. 6, no. 2, pp. 2256–2263, 2021.

[19] Z. Talebpour and A. Martinoli, “Multi-robot coordination in dynamic
environments shared with humans,” in Int. Conf. Robot. & Autom.
(ICRA). IEEE, 2018, pp. 4593–4600.

[20] N. R. Sturtevant, “Benchmarks for grid-based pathfinding,” IEEE
Trans. Comp. Intell. & AI in Games, vol. 4, no. 2, pp. 144–148, 2012.

[21] M. B. Dias, R. Zlot, N. Kalra, and A. Stentz, “Market-based multirobot
coordination: A survey and analysis,” Proc. of IEEE, vol. 94, no. 7,
pp. 1257–1270, 2006.

[22] S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and W. Woodall,
“Robot operating system 2: Design, architecture, and uses in
the wild,” Science Robotics, vol. 7, no. 66, p. eabm6074,
2022. [Online]. Available: https://www.science.org/doi/abs/10.1126/
scirobotics.abm6074

[23] N. Koenig and A. Howard, “Design and use paradigms for gazebo,
an open-source multi-robot simulator,” in Int. Conf. Intell. Robot. Sys.
(IROS), vol. 3, 2004, pp. 2149–2154 vol.3.

[24] S. Macenski, F. Martin, R. White, and J. Ginés Clavero, “The
Marathon 2: A navigation system,” in Int. Conf. Intell. Robot. Sys.
(IROS), 2020.

[25] A. Rudenko, T. P. Kucner, C. S. Swaminathan, R. T. Chadalavada,
K. O. Arras, and A. J. Lilienthal, “THÖR: Human-robot navigation
data collection and accurate motion trajectories dataset,” IEEE Robot.
& Autom. Letters, vol. 5, no. 2, pp. 676–682, 2020.

[26] “Open-RMF demo,” https://github.com/open-rmf/rmf demos,
accessed: 2023-05-27.

[27] R. E. Kalman, “A new approach to linear filtering and prediction
problems,” J. of Basic Engin., vol. 82, no. 1, pp. 35–45, 03 1960.

[28] D. Fox, W. Burgard, F. Dellaert, and S. Thrun, “Monte Carlo localiza-
tion: Efficient position estimation for mobile robots,” Aaai/iaai, vol.
1999, no. 343-349, pp. 2–2, 1999.

[29] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou,
“Aggressive driving with model predictive path integral control,” in
Int. Conf. Robot. & Autom. (ICRA), 2016, pp. 1433–1440.

[30] D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel, “Practical search
techniques in path planning for autonomous driving,” Ann Arbor, vol.
1001, no. 48105, pp. 18–80, 2008.

[31] R. Stern, N. Sturtevant, A. Felner, S. Koenig, H. Ma, T. Walker, J. Li,
D. Atzmon, L. Cohen, T. Kumar et al., “Multi-agent pathfinding:
Definitions, variants, and benchmarks,” in Proc. of Int. Symp. on Comb.
Search, vol. 10, no. 1, 2019, pp. 151–158.

[32] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, “Conflict-based
search for optimal multi-agent pathfinding,” Art. Intell., vol. 219, pp.
40–66, 2015.

[33] W. Hönig, S. Kiesel, A. Tinka, J. Durham, and N. Ayanian, “Conflict-
based search with optimal task assignment,” in Proceedings of the
International Joint Conference on Autonomous Agents and Multiagent
Systems, 2018.

[34] A. Mannucci, L. Pallottino, and F. Pecora, “On provably safe and live
multirobot coordination with online goal posting,” IEEE Trans. Robot.
Autom. (TRO), vol. 37, no. 6, pp. 1973–1991, 2021.

[35] “Turtlebot4 packages,” https://turtlebot.github.io/
turtlebot4-user-manual/software/turtlebot4 common.html, accessed:
2023-05-09.

[36] M. Barer, G. Sharon, R. Stern, and A. Felner, “Suboptimal variants
of the conflict-based search algorithm for the multi-agent pathfinding
problem,” in Proc. of Int. Symp. on Comb. Search, vol. 5, no. 1, 2014,
pp. 19–27.

[37] G. Wagner and H. Choset, “M*: A complete multirobot path planning
algorithm with performance bounds,” in Int. Conf. Intell. Robot. Sys.
(IROS). IEEE, 2011, pp. 3260–3267.

https://www.science.org/doi/abs/10.1126/scirobotics.abm6074
https://www.science.org/doi/abs/10.1126/scirobotics.abm6074
https://github.com/open-rmf/rmf_demos
https://turtlebot.github.io/turtlebot4-user-manual/software/turtlebot4_common.html
https://turtlebot.github.io/turtlebot4-user-manual/software/turtlebot4_common.html

	Introduction
	Related Work
	Framework
	Simulation
	Navigation
	Planning and Coordination

	Coordination Algorithms
	Evaluation
	Simulation Environments
	Experiments

	Results
	Discussion
	One-shot CBS
	Iterative CBS
	Continuous PBC

	Future Research

	Conclusions
	References

