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Abstract— A modern smart factory runs a manufacturing
procedure using a collection of programmable machines. Typi-
cally, materials are ferried between these machines using a team
of mobile robots. To embed a manufacturing procedure in a
smart factory, a factory operator must a) assign its processes
to the smart factory’s machines and b) determine how agents
should carry materials between machines. A good embedding
maximizes the smart factory’s throughput; the rate at which it
outputs products. Existing smart factory management systems
solve the aforementioned problems sequentially, limiting the
throughput that they can achieve. In this paper we introduce
ACES, the Anytime Cyclic Embedding Solver, the first solver
which jointly optimizes the assignment of processes to machines
and the assignment of paths to agents. We evaluate ACES and
show that it can scale to real industrial scenarios.

I. INTRODUCTION
Modern smart factories are designed to enable flexible

manufacturing [1]. A flexible manufacturing system is a
system which can produce a variety of different products
with minimal reconfiguration [2]. Flexibility can improve a
manufacturer’s ability to customize products, reduce the time
that it takes to fulfill new orders, and lower the costs of
producing a new product. Today, a wide range of industries
practice flexible manufacturing, including the automotive,
medical, and textile industries [3].

To permit flexible manufacturing, a smart factory needs
the following two components:
1) Flexible Machines. Flexible machines are general-purpose
machines such as CNC machines which can be programmed
to carry out a range of manufacturing processes [4]. Their
programmability makes it easy to change the process as-
signed to each machine when the product produced by the
smart factory changes. Their programmability also makes it
easy to relieve bottlenecks in a manufacturing procedure by
changing the number of machines assigned to its processes.
2) Flexible Transport System. A flexible transport system
makes it easy to adjust the flow of parts through a smart
factory when the product produced by the smart factory
changes. Typically, flexible transport systems use a team of
agents to ferry parts between machines [5]. In a traditional
smart factory, agents are autonomous mobile robots [5].
In a mag-lev based smart factory, such as BOSCH’s ctrlX
Flow6D [6], agents are magnetically levitating shuttles. With
such a system, adjusting the flow of parts between machines
is as simple as adjusting the circulation of agents through
the factory.
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To embed a manufacturing procedure into a smart factory,
a factory operator needs to:

1) assign the processes in the manufacturing procedure to
the smart factory’s machines.

2) find a transport plan which specifies how the smart fac-
tory’s agents should ferry materials between machines.

We term the problem of embedding a manufacturing pro-
cedure into a smart factory the Smart Factory Embedding
Problem (SFE). A good embedding maximizes a smart
factory’s throughput, the rate at which it outputs products.

To date, the SFE is open. To our knowledge, no existing
smart factory management system [7], [8] jointly optimizes
the assignment of processes to machines and paths to agents.
Solving these problems separately limits the overall through-
put that these systems achieve.

In this paper, we address this lacuna. First, we present the
first formal model of the SFE as a combinatorial optimization
problem. We then solve the SFE by introducing ACES, the
Anytime Cyclic Embedding Solver. ACES models the SFE as
a Mixed-Integer Linear Program (MILP). Naı̈vely modeling
the SFE as a MILP does not generate a practical solution.
Multi-Agent Path Finding (MAPF), the problem of finding
collision-free paths for a team of agents, is an important
component of the SFE. MILP-based solutions to MAPF often
struggle to scale [9], limiting their applicability to industry.
ACES addresses this problem as follows.

ACES generates cyclic transport plans. A cyclic transport
plan starts and ends with its team of agents in the same state.
As a result, it can be looped indefinitely. Fixing the length of
a cyclic transport plan limits the number of decision variables
required to generate it. Decreasing the number of decision
variables in a MILP decreases its difficulty. ACES generates
cyclic transport plans with incrementally longer loop lengths.
The more time that ACES is given, the more loop lengths it
considers and the better the throughput of its best plan.

ACES represents the parts being ferried between machines
as tokens. ACES considers a variant of the SFE where these
tokens are modelled as “agent-tokens”, abstract agents which
move between machines under their own power. Two agent-
tokens which represent the same part are indistinguishable.
Finding a plan for a team of largely indistinguishable agent-
tokens requires fewer decision variables than finding a plan
for a team of regular agents. A transport plan for token agents
can be converted into a transport plan for regular agents in
linear time. We evaluate ACES on 6 industrial scenarios and
show that it can be applied to real instances of the SFE.



Fig. 1. (left) An example manufacturing procedure. Source process are yellow; sink processes blue. (right) An example smart factory.

II. PROBLEM FORMULATION
A. Manufacturing Procedure
Token. Each raw material, part or assemblage produced or
consumed during a manufacturing procedure is modelled
as a token. We denote the set of tokens associated with a
manufacturing procedure Z := {z1, z2, . . .}.
Process. A process pi is an atomic operation in a manufac-
turing procedure. A process transforms a multiset of input
tokens in(pi) into a multiset of output tokens out(pi). We
denote the number of copies of a token zj ∈ Z that a process
pi consumes and emits inj(pi) and outj(pi) respectively.

Processes which do not consume tokens are source pro-
cesses. They represent operations which retrieve raw materi-
als. Processes which do not emit tokens are sink processes.
They represent operations which export finished products or
remove waste. We denote a manufacturing procedure’s set of
processes P := {p1, p2, . . .}. Exactly one of these processes
must be an output process OUT(P ), a sink process which
exports finished products.
Manufacturing Procedure. A manufacturing procedure
(Z,P ) is a set of processes P which consume and emit
tokens from the set Z.
Example. Fig. 1. (left) depicts a manufacturing procedure that
makes toy cars. It has two source processes: p1 and p4. Its
output process is p6. Process p2 consumes 1 plank token zp
and emits 1 frame token zf . Arrows show the flow of tokens
through the manufacturing procedure.

B. Smart Factory
Machines. A smart factory contains a set of machines M :=
{m1,m2, . . .}. Each machine mi ∈ M can run a subset
P(mi) of the processes in P . Time is discretized. The
number of timesteps that machine mi takes to run a process
pj ∈ P(mi) is denoted RUNTIME(mi, pj) ∈ N.

A machine has an input and an output buffer. When a
machine starts to run a process pj , it consumes the multiset
of tokens in(pj) from its input buffer. If its input buffer does
not contain these tokens, it cannot run process pj . When it
finishes pj , it emits the multiset of tokens out(pj) into its
output buffer. At timestep t, machine mi’s input and output
buffers contain the multisets of tokens I(mi, t) and O(mi, t).
Layout. We model a factory layout as a 4-connected grid
of cells. A cell is traversable if an agent can enter it
and non-traversable if it contains an obstacle such as a
machine chassis. The set of traversable cells is denoted
C := {c1, c2, . . .}.

Any machine which can run a process that consumes
tokens has an input cell Cin(mi). Any machine which can

Machine Type Instances Supported Processes
Bin of Planks m1 p1
CNC Machine m2, m3, m4 p2, p3
Assembler m5 p5
Bin of Axles m6 p4
Output Chute m7 p6

TABLE I
THE MACHINES IN THE EXAMPLE SMART FACTORY.

run a process that emits tokens has an output cell Cout(mi).
We denote the set of all input and output cells Cin and
Cout. Tokens can only be placed in a machine’s input buffer
from its input cell and removed from a machine’s output
buffer from its output cell. A machine’s input and output
cells must be traversable. All input and output cells must be
distinct. A machine without an input cell is a source machine.
Source machines only run source processes. They represent
bins of raw materials. A machine without an output cell is a
sink machine. Sink machines only run sink processes. They
represent output chutes and waste bins.
Example. Fig. 1. (right) depicts a smart factory. Input and
output cells are colored yellow and blue and labeled with the
id of the machine that they correspond to. Regular traversible
cells, which only contain free space, are depicted in white.
Cells that contain machine chassis are non-traversable and
colored gray. Table I describes its machines and lists the
processes that they can run. There are two source machines,
m1 and m6, and one sink machine, m7.

C. Agents
Tokens are carried between machines by a team of agents

A := {a1, . . . an}. At the start of a timestep t, an agent ai
occupies a traversable cell. We denote this cell π(ai, t). Each
timestep, an agent must wait at its current cell or move to a
traversable cell which shares a side with its current cell.

We represent the actions that an agent can take at each
cell with an undirected graph called the movement graph
G := (C,E). Each vertex in this graph is a traversible cell.
There is an edge (ci, cj) ∈ E between two cells ci and cj
iff an agent at cell ci can be at cell cj on the next timestep.
Consequently, each traversible cell ci is connected to itself
by a loop edge and to any traversible cell that it shares a side
with. Two agents may not occupy the same cell or traverse
the same edge in the movement graph on the same timestep.

An agent can carry a single token. We term the token that
an agent ai is carrying on timestep t its cargo and denote it
σ(ai, t). If agent ai is not carrying a token on timestep t, its
cargo is the null token z0. The set of all tokens that an agent
can carry Z∪{z0} is denoted Z0. The state (π(ai, t), σ(ai, t))
of agent ai on timestep t is its location and its cargo.

An agent with a non-null token on a machine’s input
cell may deposit its token into the machine’s input buffer.



An agent without a non-null token on a machine’s output
cell may pick up a token from the machine’s output buffer.
Picking up and depositing a token takes a single timestep.
An agent cannot move during this timestep.

D. Embedding

An embedding describes how a manufacturing procedure
is implemented by a smart factory. An embedding is a 6-tuple
(A,R,I,O,π,σ) with the following components:

Assignment Matrix. The assignment matrix A is an |M | ×
|P | matrix. The field A(mi, pj) ∈ {0, 1} contains a binary
variable which indicates iff machine mi has been assigned
process pj . A machine can be assigned at most one process.

Rate Matrix. The rate matrix R is also a |M | × |P | matrix.
The field R(mi, pj) ∈ [0, 1] indicates the rate, in runs per
timestep, that machine mi runs process pj at. The rate matrix
allows the rate that a machine runs its process at to be
decreased, synchronizing it with the rest of the factory. A
machine mi can only run a process pj at a non-zero rate iff it
is assigned that process. The maximum rate that machine mi

can run a process pj ∈ P(mi) at is RUNTIME(mi, pj)
−1. A

machine runs a process at less than maximum rate by idling
for a short time after each run.

Transport Plan. A transport plan (I,O,π,σ) describes
how tokens move through the factory. It specifies the state
(π(ai, t), σ(ai, t)) of each agent ai ∈ A and the tokens in
the input and output buffers (I(mi, t),O(mi, t)) of each
machine mi ∈ M at each timestep t.

A factory may need to run a manufacturing procedure for
an indefinite amount of time. We thus need to find a cyclic
transport plan [10], a transport plan which can be looped
repeatedly. A cyclic transport plan has a cycle time Tc and
an agent permutation Ω : A → A. It runs from timestep
t = 0 to t = Tc. The tokens in each machine’s input buffer
and output buffer at t = 0 and t = Tc must be the same:

∀mi ∈ M, I(mi, 0) = I(mi, Tc) ∧ O(mi, 0) = O(mi, Tc).

An agent ai ∈ A must be in the same state at timestep
t = 0 as the agent Ω(ai) at timestep t = Tc:

∀ai ∈ A, π(ai, 0) = π(Ω(ai), Tc)∧σ(ai, 0) = σ(Ω(ai), Tc).

A cyclic transport plan can be looped by following the
plan from t = 0 to t = Tc, relabelling the agents in A
according to the permutation Ω, and repeating.

E. The Smart Factory Embedding Problem

The throughput θ(A,R,I,O,π,σ) of an embedding is
the total rate at which its machines run its output process:

θ(A,R,I,O,π,σ) :=
∑

mi∈M

1

R(mi, OUT(P ))
.

In the Smart Factory Embedding (SFE) problem, we
are given a manufacturing procedure (Z,P ) and a smart
factory (M,G,A) and asked to find a maximal throughput
embedding (A,R,I,O,π,σ).

III. RELATED WORK
The Multi-Agent Path Finding (MAPF) problem is the

problem of moving a team of agents from their starting
positions to their goal positions without a collision. MAPF
is an important component of the SFE problem. The MAPF
problem has been solved in a number of different ways,
including prioritized planning [11], search [12], answer set
programming [13], rule-based AI [14] and SAT solving [15].

MAPF has been studied in the context of other optimiza-
tion problems. One problem that involves MAPF which is
related to the SFE problem is the Collective Construction
problem [16]. In the CC problem, a team of agents is
asked to construct a structure out of building blocks. These
building blocks are the same size as the robots, forcing the
robots to scale the structure to position the blocks. The CC
problem is modeled as a combinatorial optimization problem
and solved for a single agent using dynamic programming
in [17]. This algorithm is extended to multiple agents in [18].
Its solutions, however, achieve little parallelism. The re-
inforcement learning approach developed in [19] improves
parallelism. Optimal solutions to the CCP based on constraint
set programming and mixed integer linear programming are
proposed in [20].

To our knowledge, the problem of jointly optimizing the
assignment of processes to a smart factory’s machines and
paths to its agents is not well studied. We believe that
we are the first to model this problem as a combinatorial
optimization problem. A number of systems for coordinating
mobile robots in a manufacturing plant have been proposed.
For example, in [7], the authors coordinate mobile robots
in a manufacturing plant using a traffic system. In [8],
a distributed petri-net assigns tasks to mobile robots and
coordinates traffic in a flexible manufacturing system. Nei-
ther of these systems, however, optimizes the assignment of
processes to machines.

IV. APPROACH
We solve the SFE problem in two stages. First, we solve

a simplified variant of SFE, the Fixed cycle Length, Agent-
Token SFE (FLAT SFE) problem. We use this solution to
construct ACES, a solution to the full SFE problem.

A. The Fixed Cycle Length, Agent-Token SFE Problem

There are 3 differences between FLAT and full SFE.
Difference 1. Fixed Cycle Length. In the full SFE problem, a
transport plan can have any cycle length. In the FLAT SFE
problem, a transport plan’s cycle length is specified in the
problem.
Difference 2. Agent-Tokens. In the FLAT SFE problem,
tokens are modeled as agents which move under their own
power. Tokens move analogously to agents in the full SFE
problem. Each timestep, a token must move to an adjacent
cell, remain at its current cell, or enter a machine’s input
buffer. Two tokens may not occupy the same cell or traverse
the same edge in the movement graph on the same timestep.

A token may only enter a machine’s input buffer from
its input cell. When a token enters a buffer, it is replaced



by a null token. Null tokens may not enter a buffer. Each
timestep, if a machine’s output cell contains a null token,
the machine may replace the null token with a token from
its output buffer. A token may not move on the timestep in
which it is placed on the factory floor.
Difference 3. Embedding. A FLAT SFE embedding has a
transport plan for tokens instead of agents. It is an 8-tuple
(A,R,I,O,at,mv,pl, rm) with 4 new components:
Position Tensor. The position tensor at is a |C|× (Tc+1)×
|Z0| tensor which describes the positions of the tokens on the
factory floor. Let [0..x] be the set of integers {0, 1, . . . , x}.
The field at(ci, t, zj) ∈ [0..n] specifies the number of copies
of token zj at cell ci on timestep t. If there is more than one
token at cell ci on timestep t, a collision has occured.
Movement Tensor. Knowing the position of each token on
each timestep does not tell you how the tokens move. Since
copies of the same token are indistinguishable, there may be
multiple ways to produce the configuration of tokens seen
at timestep t + 1 from the configuration seen at timestep t.
The movement tensor mv, a |E| × (Tc + 1) × |Z0| tensor,
eliminates this ambiguity. Recall that each vertex in the
movement graph has a self-loop. The field mv(ci, cj , t, zk) ∈
{0, 1} indicates iff a copy of token zk:

• moves from ci to cj on timestep t when ci ̸= cj
• waits at ci on timestep t when ci = cj

Placement and Removal Tensors. The fields pl(ci, t, zj) ∈
{0, 1} and rm(ci, t, zj) ∈ {0, 1} indicate that a copy of token
zj was removed and placed on cell ci at timestep t.

B. Why is introducing the FLAT SFE problem helpful?

The SFE problem can be formulated as an Mixed Integer
Linear Program (MILP). Unfortunately, this approach scales
poorly. MAPF is an key part of the SFE problem. Using a
MILP to solve MAPF instances with dozens of agents takes
a long time. As a result, solving SFE instances with many
agents using a MILP is impractically slow. The FLAT SFE
problem is easier to solve as a MILP than the SFE problem
because it involves fewer variables. A MILP formulation
of the SFE problem needs a binary variable indicating if
cell ci contains agent aj on timestep t for every (cell,
timestep, agent) combination. A SFE instance may have
dozens of agents. Its optimal embedding may contain dozens
of timesteps. As a result, there may be thousands of these
variables. The FLAT SFE problem needs fewer of these
variables since there are usually fewer tokens than agents
and it has a limited number of timesteps.

C. Solving the FLAT SFE problem

We solve the FLAT SFE by formulating it as an MILP.
The MILP determines the contents of the tensors A, R, at,
mv, pl and rm. We then select the contents of each buffer
at timestep t = 0, fixing their contents on all other timesteps
and thus the contents of the matrices I and O.
Objective. We maximize the throughput θ of our embedding:

max
∑

mi∈M

R(mi, OUT(P ))

Constraints. Our formulation has three types of constraints:
machine configuration constraints, buffer entry and exit con-
straints, and token movement constraints.
Machine Configuration Constraints. These constraints spec-
ify how each machine can be configured.
Constraint 1. A machine is assigned at most 1 process.

∀ mi ∈ M,
∑
pj∈P

A(mi, pj) ≤ 1.

Constraint 2. A machine must able to run its process.

∀ mi ∈ M, ∀ pj ∈ P \ P(mi), A(mi, pj) = 0.

Constraint 3. Machine mi can only run a process pj ∈
P(mi) once every RUNTIME(mi, pj) timesteps.

∀mi ∈ M, ∀pj ∈ P(mi),R(mi, pj) ≤ RUNTIME(mi, pj)
−1

Constraint 4. Machine mi can only run process pj at a non-
zero rate if machine mi is assigned process pj .

∀ mi ∈ M, ∀ pj ∈ P , R(mi, pj)−A(mi, pj) ≤ 0.

Token Movement Constraints. These constraints specify how
tokens move through the factory.
Constraint 5. Over the course of a transport plan, the number
of copies of each non-null token zj ∈ Z that machine mi

consumes and that enter its input buffer must be the same.

∀ mi ∈ M, ∀ zj ∈ Z,∑
t∈[0..Tc]

rm(Cin(mi), t, zj) =
∑
pk∈P

R(mi, pk) · inj(pk) · Tc.

Constraint 6. Over the course of a transport plan, the number
of copies of each non-null token zj ∈ Z that machine mi

emits and that exit its output buffer must be the same.

∀ mi ∈ M, ∀ zj ∈ Z,∑
t=[0..Tc]

pl(Cout(mi), t, zj) =
∑
pk∈P

R(mi, pk) · outj(pk) · Tc.

Constraint 7. Each timestep t, a token zj ∈ Z0 must wait at
its cell, move to an adjacent cell, or be removed from the
factory floor. Recall that each vertex in the movement graph
has a self-loop, and that the field mv(ci, ci, t, zj) indicates
if token zj waits at cell ci on timestep t. Let Cio be the
set of all input and output cells in the smart factory, that is,
Cio := Cin ∪ Cout.

∀ ci, t, zj ∈ C × [0..Tc]× Z0, at(ci, t, zj) =∑
(ci,ck)∈E

mv(ci, ck, t, zj) +

{
rm(ci, t, zj) ci ∈ Cio

0 otherwise
.

Constraint 8. The number of copies of token zj ∈ Z0 at cell
ci on timestep t+1%Tc is equal to the number of copies of
zj that wait at, move to, or are placed on ci on timestep t.

∀ ci, t, zj ∈ C × [0..Tc]× Z0, at(ci, t+ 1%Tc, zj) =∑
(ck,ci)∈E

mv(ck, ci, t, zj) +

{
pl(ci, t, zj) ci ∈ Cio

0 otherwise
.



Algorithm 1 ACES(Z,P ,M,G,A, timer)
1: emb∗ ← NULL // Best embedding constructed
2: θ∗ ← 0 // Throughput of best embedding
3: Tc ← 1 // Current cycle time
4: while timer has not run out of time do
5: emb, θ ← FLATSFE(Z,P ,M,G,A, Tc, timer)
6: if θ ̸= NULL ∧ θ > θ∗ then
7: emb∗, θ∗ ← emb, θ
8: Tc ← Tc + 1
9: return TOSFEEMB(emb∗)

Constraint 9. A cell may not contain two tokens at once.

∀ ci, t ∈ C × [0..Tc],
∑

zk∈Z0

at(ci, t, zj) ≤ 1.

Together, constraints 7, 8 and 9 imply that at most one token
can be placed on or removed from a cell on any timestep.

Constraint 10. If a non-null token zj ∈ Z is removed from
an input cell, it must be replaced by a null token z0.

∀ ci, t ∈ Cin × [0..Tc],
∑
zj∈Z

rm(ci, t, zj) = pl(ci, t, z0).

Constraint 11. If a non-null token zj ∈ Z is placed on an
output cell, it must replace a null token z0.

∀ ci, t ∈ Cout × [0..Tc],
∑
zj∈Z

pl(ci, t, zj) = rm(ci, t, z0).

Constraint 12. A non-null token zj ∈ Z cannot be placed on
an input cell or removed from an output cell.

∀ ci, t, zj ∈ Cin × [0..Tc]× Z, pl(ci, t, zj) = 0.

∀ ci, t, zj ∈ Cout × [0..Tc]× Z, rm(ci, t, zj) = 0.

Constraint 13. A null token z0 cannot be placed on an output
cell or removed from an input cell.

∀ ci, t ∈ Cout × [0..Tc], pl(ci, t, z0) = 0.

∀ ci, t ∈ Cin × [0..Tc], rm(ci, t, z0) = 0.

Constraint 14. Two tokens may not traverse the same edge
in the movement graph on the same timestep.

∀ (ci, cj), t ∈ E × [0..Tc],∑
zk∈Z0

mv(ci, cj , t, zk) +mv(cj , ci, t, zk) ≤ 1.

Constraint 15. At most n tokens may be on the factory floor.∑
ci∈C

∑
zj∈Z0

at(ci, 0, zj) ≤ n

Selecting the Initial Contents of a Buffer. We initialize each
machine’s input buffer with the multiset of tokens that
it consumes during the transport plan. As a result, even
if replacement tokens arrive late, a machine will always
have enough tokens to run its process. We initialize each
machine’s output buffer with the multiset of tokens that it
emits during the transport plan for similar reasons.

Algorithm 2 TOSFEEMB(A,R,I,O,at,mv,pl, rm)

1: π ← an empty n× (T + 1) matrix // Stores agent positions
2: σ ← an empty n× (T + 1) matrix // Stores agent cargo
3: i← 0 // Agent index
4: for (cj , zk) ∈ C × Z do
5: if at(cj , 0, zk) = 1 then
6: π(ai, 0)← cj
7: σ(ai, 0)← zk
8: for t from 0 to Tc do
9: for (π(ai, t), cl) ∈ E do

10: if mv(π(ai, t), cl, t, σ(ai, t)) = 1 then
11: π(ai, t+ 1)← cl
12: σ(ai, t+ 1)← σ(ai, t)
13: if rm(π(ai, t), t, σ(ai, t)) then
14: for zh ∈ Z0 do
15: if pl(π(ai, t), t, zh) then
16: π(ai, t+ 1)← π(ai, t)
17: σ(ai, t+ 1)← zh
18: i← i+ 1
19: return (A,R,I,O,π,σ)

D. Solving the SFE problem

We use our solution to the FLAT SFE problem to construct
ACES. ACES is given in Algorithm 1. Let timer be a
timer which triggers an interrupt after a specified amount of
time. Let FLATSFE(Z,P ,M,G,A, Tc, timer) (Line 5) be
a implementation of our solution to the FLAT SFE problem
which returns an embedding and its throughput (emb, θ)
if successful and the tuple (NULL, NULL) if interrupted
by the timer. Finally, let TOSFEEMB(emb∗) be a function
which converts a FLAT SFE embedding into a full SFE
embedding with the same throughput (Line 9). ACES’s
main loop (Lines 4-8) solves the FLAT SFE problem for
incrementally higher values of Tc until time runs out. ACES
then converts the best embedding found into a full SFE
embedding and returns it (Line 9).

Converting a FLAT SFE Embedding to a SFE Embedding.
To convert a FLAT SFE embedding into a SFE embedding,
we need to convert its transport plan for agent-tokens into a
transport plan for regular agents. Our conversion algorithm
is shown in Algorithm 2. If cell cj contains a copy of token
zk at t = 0 in the FLAT SFE embedding, we position an
agent ai carrying a copy of token zk on cell cj at t = 0
(Lines 5-7). Agent ai follows this token as it moves through
the factory (Lines 9-12). If this token is replaced with a copy
of a new token zh, agent ai replaces its cargo with a copy of
token zh by picking up or depositing a token and then starts
following this new token (Lines 13-17).

E. Optimizing ACES

ACES is optimized in two ways.

Ignoring Short Cycle Lengths. A cyclic transport plan must
move each agent ai ∈ A from its start position to agent
Ω(ai)’s starting position. Consequently, agent ai and Ω(ai)’s
starting positions can be at most Tc cells apart. When Tc is
small, a transport plan must use relays of agents to cross large
distances. These relays require an impractical number of
agents to construct. Consequently, we only generate transport
plans with a cycle length greater than 4.



Fig. 2. The FLAT SFE solver’s throughput and runtime on the Benchmark Scenarios.

Scenario Name Processes Machines Max Agents

Drug Synthesis [24] 8 16 100
Pill Production [25] 8 24 100
Hard Candy Man. [26] 8 32 100
Small-Scale Brewing [27] 12 16 100
Contact Lens Man. [28] 6 23 100
Large-Scale Brewing [27] 12 32 100

TABLE II
BENCHMARK SCENARIO DETAILS

Limiting the FLAT SFE Solver’s Runtime. A FLAT SFE
instance’s cycle length can make it difficult to solve. ACES
often gets stuck on these hard instances. Limiting our solver’s
runtime by asking it to return the best solution found in a
given time frame increases the range of cycle lengths that
ACES examines, which can improve its solution quality.

V. EVALUATIONS

Implementation. We implement ACES in Python 3.11 [21].
We represent the layout graph with the NetworkX [22]
library, and solve the FLAT SFE as an ILP using Gurobi [23].

Methodology. ACES is evaluated on 6 scenarios taken from
the pharmaceutical and food manufacturing industries. These
industries were chosen since they often require manufac-
turers to produce many slightly different variations of the
same product. A hard candy manufacturer, for example, often
wants to produce a range of candy with different flavors.
As a result, these industries benefit heavily from flexible
manufacturing. Table II lists the number of processes and
machines and maximum number of agents allowed in each
scenario. ACES was given a time limit of 30 minutes in each
experiment. This time limit is realistic since embeddings are
computed offline. Its FLAT SFE solver was set to time out
after 2.5 minutes.

Experimental Hardware. Each evaluation was performed on
a 3.2 GHz, 8 Core AMD Ryzen 5800H CPU with 14 GB of

RAM running Ubuntu 20.04.6 LTS.

Results. The 1st and 3rd column of graphs show how the
cycle length of a FLAT SFE instance affects the throughput
that the FLAT SFE solver achieves in each scenario. A
throughput of 0.0 indicates that the FLAT SFE solver could
not solve that instance. The throughput of the FLAT SFE
solver’s overall best embedding in each scenario is indicated
with a black line. There is little correlation between the
cycle length of a FLAT SFE instance and the throughput of
its best solution. Our FLAT SFE solver’s solution quality
decreases as the cycle length of a FLAT SFE instance
increases, however, because it begins to time out before
finding an optimal solution. The FLAT SFE solver never
produced a solution that used all 100 agents, suggesting that
its throughput was limited by its machines.

The 2nd and 4th column of graphs show how the cycle
length of a FLAT SFE instance affects the runtime of the
FLAT SFE solver. Note that the FLAT SFE solver timed
out after 150 seconds. Increasing the cycle length of an
FLAT SFE instance usually increases the FLAT SFE solver’s
runtime. Interestingly, however, this is not always true.
Certain cycle lengths make some FLAT SFE instances very
easy to solve.

VI. CONCLUSION

In this paper, we introduced the SFE, formulated it as a
combinatorial optimization problem, and addressed it with
ACES, the Anytime Cyclic Embedding Solver. We see two
directions for future work. First, we plan to address larger
SFE instances. Large automotive plants may operate hun-
dreds of machines. ACES cannot scale to SFE instances of
that size. Second, we plan to allow machines to multi-task
between processes. Multi-tasking is increasingly common in
modern smart factories, but we have neglected it in this paper.



REFERENCES

[1] J. M., A. Haleem, R. P. Singh, and R. Suman, “Enabling Flexible
Manufacturing System (FMS) through the Applications of Industry
4.0 Technologies,” Internet of Things and Cyber-Physical Systems,
vol. 2, pp. 49–62, 2022.
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