
Virtual Network Embedding as Boolean
Satisfiability

Pavel Surynek
Faculty of Information Technology

Czech Technical University
Prague, Czechia

pavel.surynek@fit.cvut.cz

Yi Zheng1, Erik Kline2, Sven Koenig1, T. K. Satish Kumar1,2
1Department of Computer Science and 2Information Sciences Institute

University of Southern California
Los Angeles, USA

yzheng63@usc.edu, kline@isi.edu, skoenig@usc.edu, tkskwork@gmail.com

Abstract—We address the Virtual Network Embedding (VNE)
problem in which the task is to map a virtual network onto a
given physical substrate network so that the CPU and bandwidth
capacity constraints are met. Following the success of Boolean
Satisfiability (SAT) methods in areas such as Multi-Agent Path
Finding (MAPF), we propose in this paper a novel SAT-based
approach for solving the VNE problem. As in MAPF, the various
constraints that define the VNE problem are encoded into the
SAT models incrementally and via lazy refinements so as to keep
the models simple. We also propose various model relaxations
and concomitant solution extraction post-processing procedures.
Through experiments, we show that our SAT-based approach
outperforms other state-of-the-art approaches on a number of
VNE instances.

Index Terms—Virtual Network Embedding, Boolean Satisfia-
bility, Lazy Refinements

I. INTRODUCTION

Network virtualization is an enabling technology that aims
to overcome the Internet ossification problem, which refers
to the resistance of the current Internet to architectural
changes [1]. Through network virtualization, service providers
can create multiple customized virtual networks to serve
customers by leasing network resources from Infrastructure
Providers (InPs) and without investing in changing the physi-
cal infrastructure. In addition, network virtualization facilitates
increased security and manageability [2].

The physical infrastructure managed by InPs is often re-
ferred to as the Substrate Network (SN). The resourcefulness
of an SN includes its CPU capacities, i.e., the compute capaci-
ties on its vertices, and its bandwidth capacities, i.e., the com-
munication capacities on its edges. A virtual network requested
by a customer is often referred to as a Virtual Network Request
(VNR). In a VNR, each vertex is annotated with a CPU
requirement, and each edge is annotated with a bandwidth
requirement. The task is to allocate SN resources to satisfy
the requirements of the VNR: Each VNR vertex must be
mapped to an SN vertex (vertex/node mapping), and each VNR
edge must be mapped to an SN path (edge/link mapping).
The embedding must satisfy the CPU and bandwidth capacity
constraints. It may also have to satisfy additional constraints
that stem from geographical or other considerations. The
problem of embedding a VNR onto an SN characterizes the
main resource allocation task in network virtualization and is

referred to as the Virtual Network Embedding (VNE) problem.
The VNE problem and its many variants are NP-hard [3].

Recently, a Conflict-Based Search (CBS) algorithm has
been developed to solve the VNE problem [4]. The solver,
VNE-CBS, is inspired by the success of the CBS framework
in the Multi-Agent Path Finding (MAPF) domain. In the
MAPF problem [5], given an undirected graph and multiple
agents with individual start and goal vertices, the task is to
find a path for each agent from its start vertex to its goal
vertex without conflicts (collisions) between any two paths.
A conflict happens when two agents stay at the same vertex
or traverse the same edge in opposite directions at the same
time. Each action of an agent, either waiting at its current
vertex or moving to a neighboring vertex, is assigned a cost.
One of the common objectives is to minimize the sum of
the costs incurred by the agents. Solving the MAPF problem
optimally for this objective is NP-hard [6], [7]. There are many
similarities between the MAPF problem and the VNE problem.
These become apparent when the VNE problem is converted
to a constrained path-coordination problem [8]. VNE-CBS is
the first solver developed for the VNE problem that exploits
these similarities and benefits from MAPF techniques.

In this paper, we follow the success of using Boolean Satis-
fiability (SAT) methods for solving the MAPF problem [9]
and propose a novel SAT-based approach for solving the
VNE problem. More concretely, we reduce a VNE instance
to a series of SAT instances. In our SAT-based approach
for solving the VNE problem, the various constraints that
define the VNE problem are encoded into the SAT models
incrementally and via lazy refinements so as to keep the
models simple and the entire process efficient. Furthermore,
we propose various model relaxations and enable simple post-
processing procedures that extract solutions from other data
structures returned by the SAT solver. Through experiments,
we show that our SAT-based approach outperforms competing
state-of-the-art approaches on a number of VNE instances.

II. BACKGROUND

In this section, we provide the background literature on the
VNE and MAPF problems.



A. Virtual Network Embedding

The VNE problem is essentially a constrained resource
allocation problem that embeds (maps) a VNR onto an SN.
An SN is an undirected graph Gs = (V s, Es, As

V , A
s
E), where

V s is the set of SN vertices, Es is the set of SN edges, As
V

is a mapping from SN vertices to their attributes, and As
E is

a mapping from SN edges to their attributes. The attributes
of an SN vertex vs include its CPU capacity CPU(vs) and
its location LOC(vs). The attribute of an SN edge es is its
bandwidth capacity BW(es). An SN path is a path in Gs. A
VNR is an undirected graph Gr = (V r, Er, Cr

V , C
r
E), where

V r is the set of VNR vertices, Er is the set of VNR edges,
Cr

V is a mapping from VNR vertices to their demands, and
Cr

E is a mapping from VNR edges to their demands. The
demands of a VNR vertex vr include its CPU requirement
CPU(vr) and the requirement of being mapped to an SN vertex
that is within the maximum allowed distance D(vr) from a
location attribute LOC(vr). The demand of a VNR edge er is
its bandwidth requirement BW(er).

Given a VNR Gr and an SN Gs, the goal is to find a feasible
VNE mapping, i.e., a mapping VNE(·) of VNR vertices to
SN vertices and VNR edges to SN paths. The mapping must
satisfy a number of constraints: (a) each VNR vertex vr ∈ V r

is mapped to a unique and distinct SN vertex such that, for
vri , v

r
j ∈ V r, VNE(vri ) = VNE(vrj ) if and only if vri = vrj ,

(b) each VNR vertex vr ∈ V r is mapped to an SN vertex
such that CPU(vr) ≤ CPU(VNE(vr)) and GEODIST(LOC(vr),
LOC(VNE(vr))) ≤ D(vr), where GEODIST(·, ·) is the geo-
graphical distance function between two locations, and (c)
each VNR edge (vri , v

r
j ) ∈ Er is mapped to an SN path

VNE((vri , v
r
j )) from VNE(vri ) to VNE(vrj ) in Gs such that, for

any SN edge es ∈ Es, the sum of the bandwidth requirements
of the VNR edges that utilize it does not exceed the bandwidth
capacity of the SN edge, i.e.,

∑
er∈Er: es∈VNE(er)

BW(er) ≤

BW(es).
There are several popular metrics used to measure the

quality of an embedding. The revenue refers to the sum of
the virtual resources that are requested by the VNR and
successfully meted out to it. That is, the revenue is given
by

∑
vr∈V r

CPU(vr) +
∑

er∈Er

BW(er). The cost refers to the

sum of the SN resources that are allocated for embedding
the VNR. That is, the cost is given by

∑
vr∈V r

CPU(vr) +∑
er∈Er

∑
es∈VNE(er)

BW(er). Hence, the cost of embedding a VNR

is at least its revenue.
The VNE problem has been formulated as a Mixed Integer

Linear Programming (MILP) problem [8]. One approach re-
laxes the MILP formulation to a Linear Programming (LP)
formulation and employs a deterministic or a randomized
rounding technique to heuristically retrieve a solution from
the fractional LP solution, resulting in two algorithms, D-ViNE
and R-ViNE, respectively. These two algorithms are often used
as the baseline for evaluating new VNE algorithms.

G-SP [10] and G-MCF [3] are two algorithms that first map
VNR vertices to SN vertices greedily and then use shortest
path or multi-commodity flow computations to map VNR
edges to SN paths. Drawing inspiration from Google’s Page
Rank algorithm, RW-MaxMatch-SP sorts the SN and VNR
vertices and maps them according to their ranks [11]. Then,
it uses shortest path computations to map VNR edges to SN
paths. The survey articles in [2] and [12] provide details of
the VNE problem and its variants and classify many existing
algorithms for solving them.

Inspired by the success of the CBS framework for solving
the MAPF problem, a CBS algorithm VNE-CBS has been
proposed for solving the VNE problem [4]. It converts the
VNE problem to a constrained path-coordination problem as
proposed in [8]. The resulting VNE-CBS solver conducts
a two-level search. On the high level, VNE-CBS conducts
a best-first search in conflict-resolution space: If the SN
elements allocated to the VNR vertices and edges violate a
constraint, it is resolved via branching. On the low level,
VNE-CBS conducts a best-first search to repair the VNE
mapping locally under the constraints imposed by the high-
level search node. The success of VNE-CBS demonstrates that
the VNE problem can benefit from importing and/or adapting
the research conducted in the MAPF domain.

B. Multi-Agent Path Finding

The MAPF problem consists of k agents {a1, a2 . . . ak} on
a graph G = (V,E), where each agent aj has a start vertex
sj ∈ V and a goal vertex gj ∈ V . Time is discretized into
time steps, and each agent can either move to a neighboring
vertex or wait at its current vertex at each time step. Each
action has a cost. A path of an agent is a sequence of move
and wait actions that lead the agent from its start vertex to
its goal vertex. A conflict arises when two agents are at the
same vertex or traverse the same edge in opposite directions
at the same time step. A solution of a MAPF instance is a set
of paths without any conflicts. The commonly used objective
is to minimize the sum of the costs incurred by all agents.
The MAPF problem arises in many real-world applications,
including video games [13], automated warehousing [14], and
multi-drone delivery [15].

A successful approach for solving the MAPF problem
optimally is via its reduction to a series of SAT instances and
subsequent invocations of a SAT solver [9], [16]. The SAT
problem [17] is the problem of determining whether a given
Boolean formula in Conjunctive Normal Form (CNF) has an
assignment under which the formula evaluates to TRUE . A
formula in CNF is a conjunction of clauses, where a clause
is a disjunction of literals and each literal is either a Boolean
variable or its negation.

III. VNE AS PATH COORDINATION

In this section, we present the conversion of the VNE
problem to a path-coordination problem and identify the simi-
larities of the converted VNE problem to the MAPF problem.



Fig. 1. An example of an augmented SN. The fictitious vertex B is connected
via fictitious edges to the SN vertices 3 and 6 that satisfy its geographical
constraint. The red arrows show the paths in the augmented SN for the VNR
edges. Path [A, 1, 2, 3, B] represents the vertex mappings of VNR vertices A
and B and the edge mapping of VNR edge (A,B). A is mapped to the SN
vertex 1, B is mapped to the SN vertex 3, and (A,B) is mapped to the SN
path [1, 2, 3].

The VNE problem can be reformulated as a constrained
path-coordination problem on a newly created structure called
the augmented SN [8]. To create the augmented SN Gm =
(V m, Em), where V m = V s ∪ V f and Em = Es ∪ Ef , we
create a fictitious vertex vf ∈ V f that represents each VNR
vertex vr ∈ V r and inherits all attributes of vr, including
CPU(vr), LOC(vr), and D(vr). Each vf is connected via a
fictitious edge (vf , vs) ∈ Ef to each SN vertex vs that satisfies
the geographical constraint GEODIST(LOC(vf ), LOC(vs)) ≤
D(vf ). The fictitious edges are given infinite bandwidth.

Consider a path [vfi , v
s
1 . . . v

s
2, v

f
j ] in Gm, where vfi and vfj

are the fictitious vertices created for vri and vrj , respectively.
The fictitious edges (vfi , v

s
1) and (vs2, v

f
j ) correspond to the

mapping of the VNR vertices vri and vrj to the SN vertices vs1
and vs2, respectively. The remaining SN edges correspond to
the mapping of the VNR edge (vri , v

r
j ). Such a path is similar

to an agent’s path from its start vertex vs1 to its goal vertex vs2
in the MAPF domain. Figure 1 shows an example.

A feasible VNE mapping must satisfy a number of con-
straints. We capture the violations of these constraints as
conflicts pertaining to the paths. A vertex conflict arises when
two paths map the same VNR vertex to two different SN
vertices or map two different VNR vertices to the same SN
vertex. A CPU capacity conflict arises when a VNR vertex
is mapped to an SN vertex that does not have sufficient
CPU capacity to accommodate the CPU requirement of the
VNR vertex. A bandwidth capacity conflict arises when one
or more VNR edges utilize an SN edge that does not have
sufficient bandwidth capacity to accommodate the bandwidth
requirements of all the VNR edges.

IV. A SAT-BASED SOLVER FOR THE VNE PROBLEM

Given a VNE instance on an SN Gs = (V s, Es, As
V , A

s
E)

with n vertices and a VNR Gr = (V r, Er, Cr
V , C

r
E) with

k vertices, a solution of our proposed SAT encoding should
simultaneously establish the mapping of VNR vertices to SN
vertices and the mapping of VNR edges to SN paths. It should
also satisfy the geographical constraints, the CPU constraints,

Fig. 2. An example of a TEG. TEG3
G represents paths in G of length at

most 3. A path [v1, v2, v3] in G can be represented by a path [v11 , v
2
2 , v

3
3 ] in

TEG3
G.

and the bandwidth constraints. Hence, we provide methods to
satisfy each of the following: (a) the vertex and edge mapping
constraints, (b) the geographical constraints, and (c) the CPU
and bandwidth constraints.

A. Encoding Vertex and Edge Mapping Constraints

The mapping of VNR vertices to SN vertices is modeled
via direct encoding (one-hot encoding). For each vri ∈ V r,
i ∈ {1, 2 . . . k}, we introduce a set of Boolean variables Vj

i ,
for j ∈ {1, 2 . . . n}, where Vj

i is TRUE if and only if vri ∈ V r

is mapped to vsj ∈ V s. To ensure that each VNR vertex is
mapped to exactly one SN vertex, we introduce the following
pseudo-Boolean constraints:

n∑
j=1

Vj
i = 1

∀i ∈ {1, 2 . . . k}.

(1)

In addition, we do not allow mapping two different VNR
vertices to the same SN vertex. Therefore, we introduce the
following constraints:

k∑
i=1

Vj
i ≤ 1

∀j ∈ {1, 2 . . . n}.

(2)

To model the mapping of VNR edges to SN paths, we use
a depth parameter d ∈ {2, 3 . . . n}. The depth specifies the
maximum length of an SN path—measured by the number of
vertices—to which a VNR edge can be mapped.

The encoding of the edge mapping is analogous to the
encoding of paths in the SAT-based approach for solving the
MAPF problem [9]. This approach uses the Time Expansion
Graph (TEG). For a given undirected graph G = (V,E) and
depth d, TEGd

G is a layered directed graph, where each layer
corresponds to a copy of V and the interconnection between
consecutive layers corresponds to a copy of E. Formally, we
define the TEG as follows.

Definition 1: For G = (V,E) with V = {v1, v2 . . . vm},
the TEG of depth d is a directed graph TEGd

G = (V ′, E′),
where V ′ = {vti | i ∈ {1, 2 . . .m} ∧ t ∈ {1, 2 . . . d}} and
E′ = {⟨vti , v

t+1
j ⟩ | (vi, vj) ∈ E∧ t ∈ {1, 2 . . . d−1}}. The set

of vertices {vti | i ∈ {1, 2 . . .m}}, for each t ∈ {1, 2 . . . d}, is
called a layer.

Figure 2 shows an example of a TEG. In the VNE domain,
we build TEGs of varying depth d for the SN. A TEG encodes



the existence of a path between a pair of SN vertices to which
the endpoint vertices of a VNR edge are mapped.

Let TEGd
SN be the TEG of depth d constructed for the SN.

For each VNR vertex vri ∈ V r, let vsℓ(i) ∈ V s be the SN vertex
that it is mapped to via the constraints specified in Equations 1
and 2. For each VNR edge (vri , v

r
j ) ∈ Er, the existence of a

path from vsℓ(i) to vsℓ(j) in the SN must be encoded in the SAT
model. If the length of any such path is restricted to be ≤ d,
its existence can be encoded via TEGd

SN . Since TEGd
SN is a

directed layered graph, such a path should exist from vsℓ(i) in
the first layer to vsℓ(j) in a subsequent layer. We use Boolean
variables X (i, j)tl to encode such a path. Here, the superscript
refers to the t-th layer of the TEG, and the subscript refers to
the SN vertex vtl in this layer. X (i, j)tl is TRUE if and only
if vtl is included in the path.

To encode the required path, at most one SN vertex has to
be chosen from each layer of the TEG. Hence, we have the
following constraints for all (vri , v

r
j ) ∈ Er:

n∑
l=1

X (i, j)tl ≤ 1

∀t ∈ {1, 2 . . . d}.
(3)

To ensure that an SN path visits each SN vertex at most
once, we have the following constraints for all (vri , v

r
j ) ∈ Er:

d∑
t=1

X (i, j)tl ≤ 1

∀l ∈ {1, 2 . . . n}.

(4)

The choice variables encoding the required path are related
to the choice variables in Equations 1 and 2. Hence, we have
the following constraints for all (vri , v

r
j ) ∈ Er:

Vl
i → X (i, j)1l
∀l ∈ {1, 2 . . . n}

(5)

and

Vl
j →

d∨
t=2

X (i, j)tl

∀l ∈ {1, 2 . . . n}.

(6)

The forward propagation of the path in the TEG is encoded
using the following constraints for all (vri , v

r
j ) ∈ Er:

X (i, j)1l →
∨

l′ | (vs
l
,vs

l′ )∈Es

X (i, j)2l′

∀l ∈ {1, 2 . . . n}
(7)

and

X (i, j)tl →
∨

l′ | (vs
l
,vs

l′ )∈Es

X (i, j)t+1
l′ ∨ Vl

j

∀l ∈ {1, 2 . . . n}, ∀t ∈ {2, 3 . . . d− 1}.
(8)

By symmetric reasoning in the reverse direction, an SN
vertex in layer t can be reached from vsℓ(i) in the first layer
only via an SN vertex in layer t − 1. Hence, we have the
following constraints for all (vri , v

r
j ) ∈ Er:

X (i, j)1l → V
l
i

∀l ∈ {1, 2 . . . n}
(9)

and

X (i, j)tl →
∨

l′ | (vs
l′ ,v

s
l
)∈Es

X (i, j)t−1
l′

∀l ∈ {1, 2 . . . n},∀t ∈ {2, 3 . . . d}.
(10)

Equations 1 to 10 can be converted to the clauses of a CNF
formula FVNE . However, there are multiple ways to convert
the pseudo-Boolean constraints of Equations 1, 2, 3, and 4 to
CNF [18]–[20]. Here, we choose an adaptive encoding, which
uses a pairwise encoding for a small number of variables but
a sequential counter encoding for a large number of variables.
We also note that FVNE is derived from a fixed depth d of
the TEG, which is iteratively increased in an outer loop.

B. Satisfying Geographical, CPU, and Bandwidth Constraints

Equations 1 to 10 encode the vertex mapping and edge
mapping constraints of the VNE problem. They do not encode
the geographical constraints, the CPU constraints, or the band-
width constraints: These constraints are satisfied differently.

Adding geographical constraints to FVNE is easy: We set
Vj
i to TRUE if and only if GEODIST(LOC(vri ), LOC(vsj )) ≤

D(vri ). However, the geographical constraints can also be
controlled to exploit the power of incremental SAT-solving
techniques: We first add tightened versions of the geographical
constraints to reduce the search space and then incrementally
relax them until we find a solution or the original geographical
constraints are reinstated. Hence, in each iteration, we set Vj

i

to TRUE if and only if GEODIST(LOC(vri ), LOC(vsj )) ≤ g.
The parameter g is used as a threshold for all geographical
constraints. Starting from a minimum value, it is incremented
by a unit amount in each iteration, up to a maximum value
gmax. However, it is not allowed to exceed D(vri ) for the
geographical constraint of any specific vri . The iterations
on the relaxation of the geographical constraints, i.e., the
iterations that increase g, are nested within the iterations that
increase the depth d of the TEG. The tightened geographical
constraints can be incorporated in the SAT-solving procedure
on FVNE via the use of assumptions [21].

We satisfy the CPU and bandwidth capacity constraints
of the VNE problem using nogood recording: a technique
commonly used in lazy SAT encoding.1 This technique is very
effective in problem domains which have numerical constraints
that express resource requirements and capacities. Eagerly
encoding such numerical capacity constraints using Boolean
variables is representationally unwieldy. In nogood recording,
the idea is to only check the violations of these constraints
instead of encoding them. If any such constraint is violated,
the variables responsible for the violation are identified and
recorded as a nogood. The nogood constraints are disjunctions
that are simpler than the numerical capacity constraints. They
are added back to the encoding of the problem for the next

1For the particular version of the VNE problem discussed in this paper,
the CPU capacity constraints can be preprocessed to constraints on individual
Vj
i variables since no more than one VNR vertex can be assigned to any SN

vertex. However, our approach of recording nogoods serves the purpose of
solving more general versions of the VNE problem as well.



iteration of SAT solving. This process is repeated until there
are no more constraint violations or until unsatisfiability can
be concluded. In the VNE domain, the CPU and bandwidth
capacity constraints are not encoded explicitly in FVNE but
are enforced via nogood recording.2

A violation of a CPU capacity constraint arises if
CPU(vri ) > CPU(VNE(vri )). Suppose vsj = VNE(vri ). The
constraint violation can be eliminated by recording the nogood
¬Vj

i . In the more general version of the VNE problem, a
violated CPU capacity constraint may resemble CPU(vri1) +
CPU(vri2) + CPU(vri3) > CPU(vsj ), where vri1 , vri2 , and vri3 are
all mapped to vsj . In such a case, the violated constraint is
resolved by recording the nogood ¬Vj

i1
∨ ¬Vj

i2
∨ ¬Vj

i3
.

A violation of a bandwidth capacity constraint arises if
one or more VNR edges utilize an SN edge that does not
have the bandwidth capacity to accommodate them together.
A nogood is recorded to resolve such a violation. For example,
if three VNR edges er1 = (vr(1,a), v

r
(1,b)), e

r
2 = (vr(2,a), v

r
(2,b)),

and er3 = (vr(3,a), v
r
(3,b)) utilize the SN edge es = (vsj1 , v

s
j2
)

such that BW(er1) + BW(er2) + BW(er3) > BW(es), a no-
good is recorded as follows. Suppose erinx utilizes es be-
tween layers tinx and tinx + 1 of TEGd

Gs , for inx ∈
{1, 2, 3}, with the Boolean variables X ((inx, a), (inx, b))tinx

j1

and X ((inx, a), (inx, b))tinx+1
j2

set to TRUE . The recorded
nogood is:

¬X ((1, a), (1, b))t1j1 ∨ ¬X ((1, a), (1, b))t1+1
j2

∨¬X ((2, a), (2, b))t2j1 ∨ ¬X ((2, a), (2, b))t2+1
j2

∨¬X ((3, a), (3, b))t3j1 ∨ ¬X ((3, a), (3, b))t3+1
j2

.

Proposition 1: For a given VNE instance with Gs and Gr,
FVNE built on TEGd

Gs , with all recorded nogoods for the
CPU and bandwidth capacity constraints, is satisfiable if and
only if there exists a feasible VNE mapping with embedded
paths of length at most d.

Proof: ‘⇐’: Consider a feasible VNE mapping VNE(·).
We can set the variables in FVNE according to VNE(·),
which, by construction, satisfies Equations 1 to 10. Moreover,
since VNE(·) satisfies all CPU and bandwidth capacity con-
straints, no recorded nogood prohibits it. Hence, FVNE with
all recorded nogoods is satisfiable. ‘⇒’: We prove this by
contradiction. Consider a satisfying assignment A of FVNE

with all recorded nogoods. A satisfies Equations 1 to 10 and,
hence, correctly maps the VNR vertices to SN vertices via the
Vj
i variables and the VNR edges to SN paths via the X (i, j)tl

variables. If A does not encode a feasible VNE mapping, then
it must violate a CPU or bandwidth capacity constraint. Hence,
the corresponding nogood that is recorded is also violated.
This contradicts our assumption that A satisfies FVNE with
all recorded nogoods.

Corollary 1: If d = n, then FVNE with all recorded nogoods
is satisfiable if and only if a feasible VNE mapping exists.

Proof: This follows from Proposition 1 and the fact that the
maximum length of any path in Gs is n.

2This lazy encoding technique has also been shown to be successful in the
MAPF domain [22].

Algorithm 1: VNE-SAT: an incremental SAT-solving
procedure for the VNE problem.

Input: Gs, Gr , dmax

1 gmax ← maxki=1 D(vri )
2 d← 2
3 while d ≤ dmax do
4 g ← 1
5 while g ≤ gmax do
6 VNEsol ← VNE-SAT-bounded-geodist(Gs, Gr , d, g)
7 if VNEsol ̸= FAIL then
8 return VNEsol

9 g ← g + 1

10 d← d+ 1

11 return FAIL

Algorithm 2: VNE-SAT-bounded-geodist: a SAT-
solving procedure for the VNE problem with a fixed
depth and bounded geographical distance.

Input: Gs, Gr , d, g
1 FVNE ← build-VNE-SAT-model(Gs, Gr , d, g)
2 while TRUE do
3 sol ← solve-SAT-instance(FVNE )
4 if sol ̸= FAIL then
5 VNEasgn ← extract-VNE-assignment(sol)
6 Ur ← {vri ∈ V r | CPU(vri ) > CPU(VNE(vri ))}
7 F s ← {es ∈ Es |

∑
er∈Er : es∈VNE(er)

BW(er) > BW(es)}

8 if Ur = ∅ ∧ F s = ∅ then
9 return VNEasgn

10 else
11 for vri ∈ Ur do
12 FVNE ← FVNE ∧ generate-CPU-nogood(vri ,

VNEasgn)

13 for es ∈ F s do
14 FVNE ← FVNE ∧ generate-BW-nogood(es,

VNEasgn)

15 else
16 return FAIL

C. Our Proposed Algorithm: VNE-SAT

Algorithm 1 shows the pseudocode of our proposed SAT-
based algorithm, which we call VNE-SAT. VNE-SAT uses
the same practitioners’ intuitions and working principles as
SAT solvers used in automated planning. It is more promising
to start with small SAT instances since the complexity of
solving SAT instances typically increases exponentially with
the number of variables. Hence, the idea in VNE-SAT is to
create SAT encodings with iteratively increasing values of d
in the outer loop and iteratively increasing values of g in the
inner loop. Here, d ∈ {2, 3 . . . n} is the depth parameter in
TEGd

SN and g ∈ {1, 2 . . . gmax} is the threshold employed
for all geographical constraints.

On Lines 1–2, Algorithm 1 initializes gmax and d. It
increments d in the outer loop on Lines 3–10. It increments
g in the inner loop on Lines 5–9. On Line 6, it calls the
function VNE-SAT-bounded-geodist to check the feasibility of
the problem for a given depth d and all geographical distances



bounded by g. If this function finds a solution, Algorithm 1
returns it on Line 8. Else, the loops continue until termination;
and, on Line 11, the algorithm returns failure to find a solution.

Algorithm 2 shows the pseudocode of the function VNE-
SAT-bounded-geodist. It uses fixed values of d and g. On Line
1, it builds the SAT encoding FVNE of the VNE problem for
the specified values of d and g using Equations 1 to 10. On
Lines 2–16, it tries to satisfy the CPU and bandwidth capacity
constraints using nogood recording. On Line 3, it tries to solve
FVNE using an off-the-shelf complete SAT solver. If FVNE

is reported to not admit a solution, the algorithm immediately
reports a failure on Line 16. Else, if FVNE admits a solution,
the algorithm first extracts the VNE assignment corresponding
to this solution on Line 5. Then, on Lines 6–7, the algorithm
checks for any violated CPU or bandwidth capacity constraints
and stores them in Ur and F s, respectively. If both Ur and
F s are empty, then the extracted VNE assignment is a valid
solution, which the algorithm returns on Line 9. Else, for each
violated CPU and bandwidth capacity constraint, the algorithm
adds a nogood to FVNE on Lines 12 and 14, respectively, as
described before.

The following corollary establishes the completeness of
VNE-SAT in Algorithm 1.

Corollary 2: VNE-SAT is complete with respect to the
specified maximum length dmax of the SN paths implementing
the VNR edges. For dmax = n, the algorithm is complete for
the VNE problem.

D. Model Relaxations

While the CPU and bandwidth capacity constraints are
handled via nogood recording, the other requirements of the
VNE problem are encoded in Equations 1 to 10. However,
Equations 3 and 4 introduce a lot of clauses in FVNE since
they are pseudo-Boolean constraints that involve summations.
Their expansion to SAT clauses can be impeding and unwieldy.
Hence, we consider methods that circumvent these equations.

Removing Equation 3 results in the possibility of a VNR
edge not being implemented as a proper SN path. In particular,
multiple X (i, j)tl variables can be TRUE for the same i, j, and
t. As a result, every X (i, j)tl variable that is TRUE may have
multiple predecessors at layer t−1 and multiple successors at
layer t+1 that are also TRUE . However, the other equations
still enforce a structure on the combination of variables that
can be TRUE . In particular, Equation 4 still ensures that every
SN vertex is chosen at most once. Hence, we refer to this
relaxation as the tree relaxation.

It is also possible to remove Equation 4. While Equation 4
enforces the absence of repeating vertices from the SN paths
that implement the VNR edges, its removal allows for cycles
in the output structure. Hence, removing Equations 3 and 4 is
referred to as the graph relaxation.

While the tree and the graph relaxations do not necessarily
yield the embeddings of the VNR edges, they yield output
structures that are still useful.

Proposition 2: The original SAT model, its tree relaxation,
and its graph relaxation, are all equisatisfiable, i.e., a solution

exists for one model if and only if a solution exists for the
other models.

Proof: We first prove that if the graph relaxation admits a
solution then so does the original model. Although the graph
relaxation removes Equations 3 and 4, the other equations
in it enforce that the endpoints of each VNR edge are still
reachable from one another in the SN. This means that there
exists an SN path between the endpoints. Hence, a solution
exists for the original model. All other conditions required
for equisatisfiability follow from the foregoing proof and the
following simple argument: If a solution exists for a certain
model, then a solution exists for any relaxation of that model.

The tree and the graph relaxations significantly reduce
the size of the SAT instances. However, both relaxations
necessitate a post-processing step in solution extraction for
the original VNE problem: A search procedure is required to
be carried out on the generated output structures to find a valid
SN path that implements each VNR edge.

E. An Alternative SAT Model not Based on the TEG
We note that the TEG has a layer for each time step, in

which there is a vertex corresponding to each SN vertex. Such
a representation is justified in the MAPF domain since an agent
can visit a single vertex multiple times. However, in the VNE
domain, an SN path does not have multiple occurrences of the
same SN vertex. Hence, it is possible to design an alternative
SAT model which does not use the TEG.

In the new SAT model, sets of Boolean variables are
introduced in correspondence to the SN Gs. For each VNR
edge (vri , v

r
j ) ∈ Er, a set of Boolean variables encodes an

SN path for it. In this set, the variable X (i, j)l is TRUE if
and only if the SN vertex vsl ∈ V s is chosen to be on the
SN path. Moreover, the Boolean variables E(i, j)(l1,l2), for
all (vri , v

r
j ) ∈ Er and (vsl1 , v

s
l2
) ∈ Es, are introduced so that

E(i, j)(l1,l2) is TRUE if and only if the SN edge (vsl1 , v
s
l2
) is

chosen to be on the SN path that implements (vri , v
r
j ). We use

FFLAT to denote the resulting SAT model. Although FFLAT

does not use time expansion, it may introduce a large number
of variables corresponding to the edges of the SN. FFLAT

introduces the following constraints.
If an SN edge (vsl1 , v

s
l2
) is selected, then both its endpoints

should be selected. Hence, we have:

E(i, j)(l1,l2) → X (i, j)l1 ∧ X (i, j)l2 (11)

If an SN vertex vsl is selected as an intermediate vertex on
the SN path, then exactly one incoming edge to it and exactly
one outgoing edge from it should be selected. Hence, we have:

X (i, j)l1 →
∨

l2 | (vs
l1

,vs
l2

)∈Es

E(i, j)(l1,l2) ∨ V
l1
j (12)

∑
l2 | (vs

l1
,vs

l2
)∈Es

E(i, j)(l1,l2) + V
l1
j ≤ 1 (13)

X (i, j)l2 →
∨

l1 | (vs
l1

,vs
l2

)∈Es

E(i, j)(l1,l2) ∨ V
l2
i (14)

∑
l1 | (vs

l1
,vs

l2
)∈Es

E(i, j)(l1,l2) + V
l2
i ≤ 1 (15)



V. EXPERIMENTS

In this section, we present an empirical evaluation of VNE-
SAT against popular VNE algorithms that are standardly
used as baseline procedures to evaluate new VNE algorithms.
These include VNE-CBS, D-ViNE, R-ViNE, G-SP, and RW-
MaxMatch-SP. We use VNE-CBS with the suboptimality fac-
tor w = 2.0. In our experiments, we denote the vanilla version
of Algorithm 1 by VNE-SAT. We denote the tree and the graph
relaxations of it by VNE-SAT-TREE and VNE-SAT-GRAPH,
respectively. When these procedures are used with a fixed
depth d = 10, we denote them by VNE-SAT-FD, VNE-SAT-
FD-TREE, and VNE-SAT-FD-GRAPH, respectively. When
Algorithm 1 uses FFLAT instead of FVNE , we denote it by
FLAT.

We implemented our algorithms in C++ and used Glucose
3.0 [23] as the underlying SAT solver. Glucose is used to
solve SAT instances incrementally [21]. After solving a SAT
instance, Glucose preserves the state of the solver, including
the learned clauses, to facilitate incrementally solving a new
SAT instance that may differ only marginally from the previ-
ously solved SAT instance. This is useful for Algorithm 1.

We used a standard methodology from the VNE literature
to generate VNE instances via Waxman graphs. Waxman
graphs [24] are frequently chosen in simulations as topologies
that resemble communication networks. We generated SN
topologies as random Waxman graphs in a 50× 50 grid space
with the parameters α = 0.5 and β = 0.2. We generated 5
SNs, each with 100 vertices that resulted in 511, 530, 556,
576, and 594 edges, respectively. The CPU and bandwidth
capacities of the SN vertices and the SN edges were set to
real numbers drawn uniformly at random from the interval
[50, 100]. We also generated VNR topologies in the same
manner. We generated 1, 000 VNRs in each of four categories:
with 10, 20, 30, and 40 VNR vertices. For each VNR vertex vr,
we set D(vr) to be 15. The CPU and bandwidth requirements
were drawn uniformly at random from the intervals [0, 20]
and [0, 50], respectively. Our VNE instances are significantly
larger than the ones commonly used in previous work since
our proposed algorithm is more scalable.

We ran all experiments on an AWS machine with 8 CPUs
and 16 GB RAM. We set a timeout of 60 seconds for each
VNE instance.

A. Offline Experiments

In this subsection, we present experimental results from an
offline setting. In this setting, we used 5, 000 VNE instances
from all possible combinations of the generated 5 SNs and
1, 000 VNRs. For each competing algorithm, we report the
success rate as well as the average cost and the average
runtime. The success rate is the percentage of successfully
solved instances. The average cost measures the SN resources
allocated for the VNR embedding, averaged over all success-
fully solved instances. The average runtime is also computed
only over all successfully solved instances.

Figure 3 shows the results of our experiments. On the top
row, it presents comparative results for the various versions

of our proposed VNE-SAT. On the bottom row, it presents
comparative results for the top-performing versions of VNE-
SAT against the standardly used baseline VNE algorithms.

On the top row, we observe that the VNE-SAT algorithms
have better success rates compared to the VNE-SAT-FD algo-
rithms. FLAT has the worst performance. The same trends are
also true on the metrics of average cost and average runtime.
These observations indicate that the incremental SAT-solving
methodology is very beneficial. VNE-SAT, VNE-SAT-TREE,
and VNE-SAT-GRAPH achieve nearly 100% success rates
even for embedding VNRs with 40 vertices. Also, they do
so while maintaining a low average cost and a short runtime.

On the bottom row, we observe that the VNE-SAT algo-
rithms also have better performance compared to other stan-
dard VNE algorithms. For VNRs with 40 vertices, VNE-SAT,
VNE-SAT-TREE, and VNE-SAT-GRAPH achieve 99.74%,
99.80%, and 99.82% success rates, respectively, marginally
outperforming RW-MaxMatch-SP, which has a success rate of
99.4%, and significantly outperforming all other algorithms.
D-ViNE and R-ViNE fail to solve many instances with 30
VNR vertices, and VNE-CBS fails to solve many instances
with 40 VNR vertices. On the metric of average cost, VNE-
SAT, VNE-SAT-TREE, and VNE-SAT-GRAPH are close to
the top-performing VNE-CBS. Their average costs are much
lower than those of G-SP and RW-MaxMatch-SP. On the
metric of average runtime, VNE-SAT, VNE-SAT-TREE, and
VNE-SAT-GRAPH yield 2.53, 2.56, and 2.38 seconds, re-
spectively, for VNRs with 40 vertices. These numbers are
marginally larger than those of G-SP and RW-MaxMatch-SP,
since these latter algorithms are greedy. The overall supe-
rior performance of our proposed VNE-SAT algorithms over
competing VNE algorithms can be attributed to the efficient
algorithmic techniques packaged in modern SAT solvers.

B. Online Experiments

In this subsection, we present the experimental results from
an online setting. In this setting, we embed a series of VNRs
that arrive at different time steps, with the assumption that each
successfully embedded VNR holds the SN resources allocated
to it until it departs at the end of its lifetime. We generated the
arrival times of the VNRs according to a Poisson process at an
average arrival rate of 4 VNRs per 100 time steps. The lifetime
of each VNR was drawn from an exponential distribution with
an average lifetime of 100 time steps. We do not allow for
the reconfiguration of any previously embedded VNRs that
still hold the SN resources. If an incoming VNR cannot be
embedded within 60 seconds, the VNE algorithm rejects it and
tries the next VNR. We used 5 runs, each corresponding to
one of the 5 SNs. All algorithms were run on the same 1, 000
VNRs for each category of the number of VNR vertices.

For each competing algorithm, we report the average ac-
ceptance ratio, the average total revenue, and the average
cost/revenue ratio. The acceptance ratio is the percentage of
VNRs that are successfully embedded. The average acceptance
ratio is the acceptance ratio averaged over the 5 runs. The
total revenue measures the sum of the revenues from all



Fig. 3. Offline Experiments: the success rate, the average cost, and the average runtime (seconds) across different numbers of VNR vertices.

Fig. 4. Online Experiments: the acceptance ratio, the average total revenue, and the average cost/revenue across different numbers of VNR vertices.

successfully embedded VNRs. The average total revenue is
the total revenue averaged over the 5 runs. The cost/revenue
is the cost divided by the revenue for each accepted VNR.
The average cost/revenue is the cost/revenue averaged over all
VNRs accepted across the 5 runs.

Figure 4 shows the results of our experiments. On the top
row, it presents comparative results for the various versions
of our proposed VNE-SAT. On the bottom row, it presents
comparative results for the top-performing versions of VNE-
SAT against the standardly used baseline VNE algorithms.
We excluded FLAT from the online experiments since its
performance is very poor even in the offline setting.

On the top row, we observe that the VNE-SAT algorithms
significantly outperform the VNE-SAT-FD algorithms on all

metrics. These observations demonstrate the benefits of incre-
mental SAT-solving methodology even in the online setting.

On the bottom row, we observe that the VNE-SAT al-
gorithms also have better performance compared to other
standard VNE algorithms. On the metric of average acceptance
ratio, VNE-SAT, VNE-SAT-TREE, and VNE-SAT-GRAPH
achieve the highest performances. For VNRs with 40 vertices,
they achieve 92.14%, 92.18%, and 91.60% average acceptance
ratios, respectively. However, D-ViNE, R-ViNE, and VNE-
CBS do not scale as the number of vertices increases. On the
metrics of average total revenue and average cost/revenue ra-
tio, VNE-SAT, VNE-SAT-TREE, and VNE-SAT-GRAPH once
again achieve the highest performances. These observations
are indicative of our proposed VNE-SAT algorithms being able



to use the SN resources much more effectively than other VNE
algorithms.

VI. CONCLUSIONS

The VNE problem arises as a cornerstone optimization
problem in the efficient and effective management of resources
on a communication network. In this paper, we presented
a SAT-based approach for solving the VNE problem. Our
approach used several ideas. First, we found it beneficial to
build the SAT model incrementally and harness the power
of incremental SAT-solving techniques. Second, we used lazy
refinements and nogood recording to handle CPU and band-
width capacity constraints efficiently and effectively. Third, we
proposed relaxation techniques with concomitant solution ex-
traction post-processing procedures to improve the efficiency
of the SAT encoding. We encapsulated all these techniques in a
solver called VNE-SAT and its variants. Through experiments
on a number of VNE instances, we showed that VNE-SAT
and its variants comfortably outperform other existing state-
of-the-art VNE algorithms in both the offline and the online
settings.

VII. ACKNOWLEDGEMENTS

This research was supported by DARPA under grant number
HR001120C0157, by NSF under grant numbers 2112533,
2434916, 2346058, 2321786, 2121028, and 1935712, by gifts
from Amazon Robotics, and by the Czech Science Foundation
under project number 22-31346S.

REFERENCES

[1] M. Chowdhury and R. Boutaba, “Network Virtualization: State of the
Art and Research Challenges,” IEEE Communications Magazine, 2009.

[2] A. Fischer, J. F. Botero, M. T. Beck, H. de Meer, and X. Hesselbach,
“Virtual Network Embedding: A Survey,” IEEE Communications Sur-
veys and Tutorials, 2013.

[3] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking Virtual Network
Embedding: Substrate Support for Path Splitting and Migration,” Com-
puter Communication Review, 2008.

[4] Y. Zheng, S. Ravi, E. Kline, S. Koenig, and T. K. S. Kumar, “Conflict-
Based Search for the Virtual Network Embedding Problem,” in Interna-
tional Conference on Automated Planning and Scheduling, 2022.

[5] R. Stern, N. R. Sturtevant, A. Felner, S. Koenig, H. Ma, T. T. Walker,
J. Li, D. Atzmon, L. Cohen, T. K. S. Kumar, R. Barták, and E. Boyarski,
“Multi-Agent Pathfinding: Definitions, Variants, and Benchmarks,” in
Symposium on Combinatorial Search, 2019.

[6] J. Yu and S. M. LaValle, “Structure and Intractability of Optimal Multi-
Robot Path Planning on Graphs,” in AAAI Conference on Artificial
Intelligence, 2013.

[7] H. Ma, C. A. Tovey, G. Sharon, T. K. S. Kumar, and S. Koenig, “Multi-
Agent Path Finding with Payload Transfers and the Package-Exchange
Robot-Routing Problem,” in AAAI Conference on Artificial Intelligence,
2016.

[8] M. Chowdhury, M. R. Rahman, and R. Boutaba, “Virtual Network Em-
bedding with Coordinated Node and Link Mapping,” in Joint Conference
of the IEEE Computer and Communications Societies, 2009.

[9] P. Surynek, A. Felner, R. Stern, and E. Boyarski, “Efficient SAT Ap-
proach to Multi-Agent Path Finding under the Sum of Costs Objective,”
in European Conference on Artificial Intelligence, 2016.

[10] Y. Zhu and M. H. Ammar, “Algorithms for Assigning Substrate Network
Resources to Virtual Network Components,” in Joint Conference of the
IEEE Computer and Communications Societies, 2006.

[11] X. Cheng, S. Su, Z. Zhang, H. Wang, F. Yang, Y. Luo, and J. Wang,
“Virtual Network Embedding through Topology-Aware Node Ranking,”
Computer Communication Review, 2011.

[12] H. Cao, S. Wu, Y. Hu, Y. Liu, and L. Yang, “A Survey of Embedding
Algorithm for Virtual Network Embedding,” China Communications,
2019.

[13] D. Silver, “Cooperative Pathfinding,” in Artificial Intelligence and Inter-
active Digital Entertainment Conference, 2005.

[14] P. R. Wurman, R. D’Andrea, and M. Mountz, “Coordinating Hundreds
of Cooperative, Autonomous Vehicles in Warehouses,” AI Magazine,
2008.

[15] S. Choudhury, K. Solovey, M. J. Kochenderfer, and M. Pavone, “Ef-
ficient Large-Scale Multi-Drone Delivery Using Transit Networks,” in
IEEE International Conference on Robotics and Automation, 2020.

[16] P. Surynek, R. Stern, E. Boyarski, and A. Felner, “Migrating Techniques
from Search-Based Multi-Agent Path Finding Solvers to SAT-Based
Approach,” Journal of Artificial Intelligence Research, 2022.

[17] G. S. Tseitin, “On the Complexity of Derivation in Propositional
Calculus,” Structures in Constructive Mathematics and Mathematical
Logic, 1968.

[18] O. Bailleux and Y. Boufkhad, “Efficient CNF Encoding of Boolean
Cardinality Constraints,” in Principles and Practice of Constraint Pro-
gramming, 2003.

[19] J. P. M. Silva and I. Lynce, “Towards Robust CNF Encodings of
Cardinality Constraints,” in Principles and Practice of Constraint Pro-
gramming, 2007.

[20] V. Nguyen and S. T. Mai, “A New Method to Encode the At-Most-One
Constraint into SAT,” in International Symposium on Information and
Communication Technology, 2015.

[21] G. Audemard, J. Lagniez, and L. Simon, “Improving Glucose for Incre-
mental SAT Solving with Assumptions: Application to MUS Extraction,”
in International Conference on Theory and Applications of Satisfiability
Testing, 2013.

[22] P. Surynek, “Unifying Search-Based and Compilation-Based Approaches
to Multi-Agent Path Finding through Satisfiability Modulo Theories,” in
International Joint Conference on Artificial Intelligence, 2019.

[23] G. Audemard and L. Simon, “On the Glucose SAT Solver,” International
Journal on Artificial Intelligence Tools, 2018.

[24] B. M. Waxman, “Routing of Multipoint Connections,” IEEE Journal on
Selected Areas in Communications, 1988.


