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Abstract

Focal search (FS) is a bounded-suboptimal search
(BSS) variant of A*. Like A*, it uses an open list
whose states are sorted in increasing order of their
f-values. Unlike A*, it also uses a focal list con-
taining all states from the open list whose f-values
are no larger than a suboptimality factor times the
smallest f-value in the open list. In this paper, we
develop an anytime version of FS, called anytime
FS (AFS), that is useful when deliberation time is
limited. AFS finds a “good” solution quickly and
refines it to better and better solutions if time al-
lows. It does this refinement efficiently by reusing
previous search efforts. On the theoretical side, we
show that AFS is bounded suboptimal and that any-
time potential search (ATPS/ANA*), a state-of-the-
art anytime bounded-cost search (BCS) variant of
A*, s a special case of AFS. In doing so, we bridge
the gap between anytime search algorithms based
on BSS and BCS. We also identify different prop-
erties of priority functions, used to sort the focal
list, that may allow for efficient reuse of previ-
ous search efforts. On the experimental side, we
demonstrate the usefulness of AFS for solving hard
combinatorial problems, such as the generalized
covering traveling salesman problem and the multi-
agent pathfinding problem.

1 Introduction

A* [Hart et al., 1968] is a best-first search algorithm that
continuously expands a state with minimal key from OPEN',
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'OPEN is the set of generated and not expanded states.

where the key of state n is given by f(n) = g(n) + h(n).
Here, g(n) is the distance of n from the start state computed
and maintained by A*, and h(n) is the state’s cost-to-goal es-
timate (heuristic value). Despite the many successes of A*,
it is known to be unviable for large combinatorial problems
when heuristic guidance is not perfect [Helmert and Roger,
2008]. This has prompted the development of several vari-
ants of A* that have the freedom to produce suboptimal so-
lutions since this freedom often leads to faster runtimes [Wilt
and Ruml, 2016]. Nevertheless, in many real-world domains,
such as in robotics and probabilistic reasoning, solution cost
cannot be compromised beyond a reasonable factor.

Hence, subsequent work has focused on bounded-
suboptimal search (BSS), that tries to trade-off solution cost
with runtime. BSS algorithms produce solutions with costs at
most w times the optimal cost, for some user-specified sub-
optimality bound w > 1. One such algorithm is weighted-A*
(wA*) [Pohl, 1970]. wA* differs from A* only in the keys it
uses: It puts more weight on the heuristic value by inflating
it by an inflation factor w, that is, f(n) = g(n) + wh(n).
wA* generates solutions faster than A* in many domains
[Bonet and Geffner, 2001; Korf, 1993]. However, increas-
ing the weight of the heuristic value may also lead to larger
runtimes, especially when the correlation between the heuris-
tic values and the minimal number of edges-to-goal is weak
[Wilt and Ruml, 2012].

Inflating heuristic values also allows for the development
of anytime search algorithms [Thayer and Ruml, 2010]. Any-
time algorithms are useful when deliberation time is limited.
They are intended to generate an initial solution quickly and
use any additional available time to generate better and bet-
ter solutions. ARA* [Likhachev er al., 2003] is an anytime
heuristic search algorithm that repeatedly runs wA* with de-
creasing values of w. ARA* reuses search efforts from pre-
vious search iterations and is considered efficient since it ex-
pands each state at most once per search iteration. This ef-
ficiency property relies on bounded admissibility? [Aine and
Likhachev, 2016].

Since ARA* is based on wA¥*, it is subject to a restric-

%A state n is said to be bounded admissible iff g(n) < wg*(n)
when it is selected for expansion, where ¢g* (n) is the distance from
the start state to n.



tion: Like A*, it expands states greedily in order of increas-
ing f-values from OPEN. Therefore, its intended trade-off
between solution quality and runtime stems from the infla-
tion of heuristic values rather than the freedom of expand-
ing states with suboptimal f-values. Unlike A*, wA* or
ARA¥*, focal search (FS) [Pearl and Kim, 1982] leverages
this freedom to expand states with suboptimal f-values. FS
guarantees bounded suboptimality by using f-values in con-
junction with arbitrary priorities to order state expansions.
While the f-values determine a set of possible states (de-
noted FOCAL) that qualify for expansion, the arbitrary pri-
orities are used to choose a particular state for expansion
from FOCAL. FS has been successfully used to efficiently
solve many combinatorial problems [Hatem and Ruml, 2014;
Barer et al., 2014].

In this paper, we therefore develop an anytime version of
FS, called anytime FS (AFS). Because the source of subop-
timality in FS comes from the flexibility of expanding states
with suboptimal f-values rather than the inflation of h-values,
AFS works by iteratively tightening the flexibility rather than
adopting ARA*’s strategy of iteratively decreasing the infla-
tion factor. Like ARA*, AFS also reuses search efforts from
previous search iterations while guaranteeing the suboptimal-
ity bounds. In addition, the mechanism that AFS uses to up-
date FOCAL between consecutive search iterations is easy to
implement and analyze.

For pedagogical reasons, we also relate our work to the
bounded-cost search (BCS) framework and its anytime adap-
tations. In BCS, a cost bound C' is given and the task is to find
a solution with cost at most C' as fast as possible. Two state-
of-the-art anytime BCS algorithms, anytime potential search
(ATPS) [Stern ef al., 2011] and anytime non-parametric A*
(ANA*) [van den Berg et al., 20111, have been shown to be
equivalent [Stern ef al., 2014]. Both ATPS and ANA* can
be thought of as AFS that uses a specific mechanism for it-
eratively tightening FOCAL and a specific priority function,
called the potential function, to sort it. Furthermore, Gilon et
al. 2016 have recently shown that any BCS algorithm can be
transformed to the BSS framework and vice versa.

On the theoretical side, we show the bounded suboptimal-
ity of AFS, identify different ways to define FOCAL along
with properties of priority functions used to sort it, and thus
bridge the gap between anytime BSS and anytime BCS. On
the experimental side, we demonstrate the usefulness of AFS
for solving hard combinatorial problems, such as the general-
ized covering traveling salesman problem and the multi-agent
pathfinding problem.

2 Focal Search (FS)

Two prominent suboptimal search frameworks, BSS and
BCS, are defined as follow: Given a user-specified subopti-
mality bound w > 1, a BSS algorithm is guaranteed to find
a solution of cost at most w P, where P, is the cost of an
optimal solution. Given a user-specified cost bound C' > 0, a
BCS algorithm is guaranteed to find a solution of cost at most
C.

We now characterize FS under both frameworks and de-
velop a unified view. FS has two main components that are

BSS Bounded-suboptimal search

BCS Bounded-cost search
FS Focal search

PS Potential search

AFS Anytime focal search

ATPS Anytime potential search

ANA* Anytime non-parametric A*
wA* Weighted A*
ARA* Anytime repairing A*
EES Explicit estimation search
GCTSP | Generalized cost traveling salesman problem
MAPF Multi-agent pathfinding
Table 1: Acronyms
- - -

fmin C
(b) BCS’s FOCAL and OPEN

(a) BSS’s FOCAL and OPEN

Figure 1: Illustrates FOCAL (black) and OPEN (black+grey) for BSS
and BCS in (a) and (b), respectively.

independent of each other. The first one is about which states
are in FOCAL, and the second one is about which priority
function is used to sort FOCAL.

2.1 Focal List

We use OPEN to denote A*’s open list, which is sorted
in increasing order of f(n) = g(n) + h(n), where h is
consistent. We also define f,,;, = min,ecopey f(n) and
head(OPEN) — arg min,copzy f(1).

Definition 1 (Focal list (FOCAL)). There are two ways to
define FOCAL C OPEN:

1. FOCAL = {n € OPEN : f(n) < wfmin } for a user-
specified suboptimality bound w > 1.

2. FOCAL = {n € OPEN : f(n) < C} for a user-specified
cost bound C' > 0.

FS in the BSS framework is based on the following ob-
servation: While A* with admissible heuristic values might
spend a long time identifying the best solution among many
“good” solutions by expanding only states whose f-values
equal f,,:n, FS has the freedom to choose any “good enough”
solution by expanding any state from FOCAL given in Defini-
tion 1(1). This flexibility allows FS to terminate earlier than
A* while providing bounded suboptimality guarantees.

FOCAL is also useful in the BCS framework. Here, the
largest f-value in FOCAL does not depend on f;,,;,, . Instead,
we are given a cost bound and the task is to find a solution as
fast as possible whose cost is no greater than this cost bound.
Once again, we are free to expand any state from FOCAL
given in Definition 1(2)? and are not constrained to states with
minimum f-values only.

Figure 1 illustrates FOCAL in the BSS and BCS frame-
works. In both frameworks, f,,;, represents smallest f-value

3We note that it is common to not maintain OPEN explicitly in
the BCS framework because f,i» does not play a role in its FOCAL.
This has implications on its suboptimality bound, as we discuss in
the context of Lemma 2.



Figure 2: Shows an hrocaz, that is not w-admissible.

of all states in FOCAL. The difference between the two focal
lists is in the largest f-value of all states in them. In (a), the
largest such f-value increases when f,,;, increases (depicted
by the right arrow), while, in (b), it remains fixed throughout
the search.

2.2 Priority Function

The freedom to expand any state in FOCAL allows FS to find
a suboptimal solution and terminate earlier than A*. Clearly,
the runtime is heavily dependent on the states we choose to
expand and hence on the priority function Arocar used to
sort FOCAL. Different instances of BSS and BCS use differ-
ent priority functions. For example, wA* is a BSS that uses
hrocar.(n) = g(n) + wh(n), and Potential Search (PS) is a
BCS that uses hrocar(n) = (C — g(n))/h(n) (henceforth
referred to as the potential function).

It has already been shown that Arocar, can be used in both
definitions of FOCAL in the context of BSS and BCS [Gilon
et al., 2016]. This is also the case in the context of our pa-
per, that is, hrocar, can be used in both definitions of FOCAL
in the context of anytime BSS and anytime BCS. However,
not all priority functions are alike — some enable a more effi-
cient search in any given iteration or more efficient reuse of
previous search efforts. Thus, we identify the following two
properties of priority functions.

Definition 2 (w-admissible hgocar). A priority function
hrocar(n) is w-admissible iff, for every expanded state n,
g(n) < wg*(n), where g*(n) is the distance from the start
state to n.

w-admissible Arocar,, such as in case of wA* [Likhachey,
2005], enable more efficient search because the bounded-
suboptimality is guaranteed even when every state is ex-
panded at most once. Unfortunately, this is not the case for
any hrocar, as exemplified by the graph in Figure 2. S de-
notes the start state and G denotes the goal state. Assume that
w = 2 and hgocar, 1S reverse alphabetical order. After expand-
ing S, both A and C are in OPEN with g(A) = 1, f(A) = 11,
g(C) =8, and f(C) = 16. Since fy,;n, = 11, both A and C
are in FOCAL. C'is expanded next with g(C') = 8 as hpocar, is
reverse alphabetical order. Observe that g*(C') = 3 and thus
we expand C with g(C) > wg*(C).

Avoiding state re-expansions in FS can violate the bounded
suboptimality guarantee. This is exemplified by the graph in
Figure 3. S denotes the start state and G denotes the goal
state. Assume that w = 2 and hrocar, 1S reverse alphabetical
order. For simplicity, we assume that all heuristic values are
zero. When expanding every state at most once, FS has the
following trace: (‘’ represents ‘not in FOCAL’.)

Figure 3: Shows that FS may require re-expansions to guarantee
bounded-suboptimality.

OPEN f(n)(=g(n)) heocar

Expand S A 1 2
(W fmin = 2) B 2 1
Expand B A 1 1
(wf'm'in = 2) C 24+ € 1]}

G 4 [
Expand A C 2+e€ 2
(Wfmin =4+ 2¢) G 4 1
Expand G C 2+ € 1

Thus, FS terminates after expanding G with ¢g(G) = 4,
while the optimal solution’s cost is 1 4 3¢ (for e < 1). We can
easily choose € such that the returned solution’s cost is not
within the suboptimality bound. In fact, we can extend this
example with additional gadgets (shown in Figure 3 in grey)
to make the solution’s suboptimality arbitrarily bad.

The w-admissible property affects the efficiency of any one
iteration of FS. In the next section, we discuss the anytime
setting which involves consecutive iterations of FS. The fol-
lowing property affects the efficiency of reusing search efforts
between such consecutive iterations.

Definition 3 (Efficiently reusable hrocar). A priority func-
tion hrocar(n) is efficiently reusable iff it does not depend on
w or C.

The priority functions of wA* and PS are not efficiently
reusable. Thus, any change in w or C' may require reorder-
ing FOCAL, which is a costly operation. As we discuss in
the next section, anytime algorithms repeatedly tighten their
bounds. Thus, the efficiently reusable property can bear sig-
nificant implications on their runtimes. For example, although
ARA* is efficient due to the w-admissible property, its hrocar,
is not efficiently reusable and thus ARA* may still have to re-
order its FOCAL between search iterations. Another example
is the potential function, used in ATPS/ANA*, which is nei-
ther w-admissible nor efficiently reusable.

Another state-of-the-art BSS algorithm that is closely re-
lated to FS is explicit estimation search (EES) [Thayer and
Ruml, 2011]. EES maintains three lists: The first list is
OPENy, which is equivalent to OPEN as defined previously.
The second list is OPEN > which includes all states in OPEN

but is sorted according to f(n) = g(n) + h(n), where h(n)
is a (possibly inadmissible) estimate of the cost-to-goal. The
third list is FOCAL ;, which includes all the nodes in OPEN i

with f(n) < wf(n) and is sorted according to d(n), a
(possibly inadmissible) estimate of the edges-to-goal. Un-
like FOCAL, one cannot simply expand states from FOCAL ;

while maintaining suboptimality guarantees because h may
be inadmissible. Thus, EES uses the following rule when ex-
panding a state: If f(head(FOCAL;)) < wfmin, then ex-

pand head(FOCALy;). Otherwise, if f(head(OPEN)) <



W frnin, then expand head(OPENf). Otherwise, expand

head(OPENy). Thus, EES does not fit our formulation of FS
although it terminologically uses a focal list.

2.3 Pseudocode

Algorithm 1: Focal Search (FS).

nstart 18 the start state; isGoal(n) is a predicate that re-
turns true iff n is a goal state; succ(n) returns a list of all
successors of n; and w (or C) is the suboptimality bound
(or cost bound). Blue (red) represents pseudocode relevant
for BSS (BCS) only.

Input: n,:qr¢, isGoal(n), succ(n), w (or C).
Output: A solution.

1 OPEN = FOCAL = {nstart }
2 return findPath(w (or C'))

3 Procedure findPath(w (or C)):
while FOCAL # () do

4

5 fmin < f(head(OPEN))

6 n < head(FOCAL)

7 FOCAL « FOCAL \ {n}

H] OPEN ¢ OPEN \ {n}

9 if isGoal(n) then

10 | return solution

1 for eachn’ € succ(n) do

12 OPEN < OPENU {n'}

3 if f(n') < w fmin (or C) then

14 | FOCAL « FOCALU {n'}

15 if OPEN # () and fmin < f(head(OPEN)) then
16 | updateLowerBound(w fp.in,w f(head(OPEN)))
17| return “no solution exists”

18 Procedure updateLowerBound(old_b, new_b):

19 for each m € OPEN do

20 if (f(n) > old.-b) A (f(n) < new_b) then
21 L | FOCAL ¢ FOCALU {n}

Algorithm 1 presents pseudocode for the unified view of BSS
and BCS (blue for BSS and red for BCS). Procedure findPath
(line 3) implements FS, which starts with a singleton OPEN
and FOCAL containing the start state n4:4,¢. The main loop
of FS is conditioned on a non-empty FOCAL. Inside this loop,
we first pop the head of FOCAL and remove it from OPEN as
well (lines 5-8). If the popped state is a goal state, we return
the solution found and terminate (lines 9-10). Otherwise, we
generate its successors and add them to OPEN and possibly
FOCAL (lines 11-14) (only if their g-values improve, that is,
g(n') < g(n) 4+ ¢(n,n’), where ¢(n, n’) is the transition cost
from state n to its successor state n’). In case the f-value of
the head of OPEN increases as a consequence of the above
operations, we need to update FOCAL accordingly (lines 15-
16). Finally, if FOCAL is empty, we report that no solution
exists (line 17).

3 Anytime Focal Search

Anytime search algorithms find a solution quickly and con-
tinue the search process to find improved solutions until time
runs out. They are useful for solving combinatorial problems

when deliberation time is limited. In this section, we present
AFS. Like ARA* and ATPS/ANA*, AFS finds an optimal so-
lution given enough time, provides suboptimality guarantees
for each search iteration, and reuses previous search efforts.
However, AFS can compute tighter suboptimality bounds
than ATPS/ANA* and, unlike ARA* and ATPS/ANA*, it can
use an arbitrary hrocar,. Moreover, AFS may reuse previous
search efforts more efficiently than ARA* and ATPS/ANA*
if hrocar is efficiently reusable.

We start by discussing different ways of changing the (sub-
optimality or cost) bound between consecutive search itera-
tions.

3.1 Anytime Bounds

Denote the costs of the solutions found in progressive search
iterations of an anytime algorithm by Sy, So, .. ..

Definition 4 (Bounds update scheme). Three ways to update
the (suboptimality or cost) bound between consecutive search
iterations are as follows:

1. Given a sequence w; > ... > wg = 1, search iteration
7 uses w; as the suboptimality bound.

2. Given a sequence C; = oo > ... > (¥, search itera-
tion 7 uses C; as the cost bound.

3. The first search iteration uses cost bound C; = oo. In
search iteration ¢+ > 1, we adaptively update the cost
bound based on S;_;. One common choice is C; =
Si—1 — € (which is equivalent to suboptimality bound

w; = f?—*l — €), where € is a small positive number and
fmin 1s the f-value of the head of OPEN when search

iteration ¢ — 1 terminates.

In the anytime BSS framework, Definition 4(1) is com-
monly used. Using w; > ... > wg guarantees a sequence of
solutions, each with a better suboptimality guarantee than the
previous ones. However, just using w; > ... > wg does not
guarantee that the sequence of solutions has strictly decreas-
ing costs, that is, it is not necessarily the case that S; > S; ;1.
From a user’s perspective, it seems reasonable to expect that
an anytime algorithm produces solutions with strictly de-
creasing costs as time progresses, and, ideally, with “dimin-
ishing returns,” that is, the algorithm converges quickly to a
“good” solution.

One way to accommodate this expectation is to use S;_1 as
a cost bound for search iteration ¢. We can use this cost bound
to prune surplus states, that is, in search iteration ¢, when gen-
erating a state with a cost higher than the current cost bound
S;_1 we do not add it to OPEN or FOCAL. Furthermore, when
popping such a state from the head of FOCAL (lines 6-7 in Al-
gorithm 1), we do not “process” it (lines 9-14 in Algorithm 1)
and instead continue immediately to the next state in FOCAL.
With these modifications, an anytime BSS algorithm guaran-
tees that the sequence of solution costs are strictly decreasing,
that is, S; > S; 11 for every i. Since wx = 1, it is guaranteed
to eventually find an optimal solution. Figure 4(a) illustrates
the iterative behavior of FOCAL in this update scheme.

Definition 4(2) fits the anytime BCS framework. Unlike the
anytime BSS framework, here, there is no guarantee to even-
tually find an optimal solution for an arbitrary sequence of
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Figure 4: Illustrates the anytime effect on FOCAL for the three different ways of updating the bounds.

cost bounds C7 > ... > Ck. Figure 4(b) illustrates the itera-
tive behavior of FOCAL in this update scheme.

Definition 4(3) is commonly used in the anytime BCS
framework [Stern et al., 2014] when we want to guarantee
that we eventually find an optimal solution. Here, too, we
start with C; = oo but in later search iterations update the
cost bound adaptively with respect to the cost of the best solu-
tion found so far. Figure 4(c) illustrates the iterative behavior
of FOCAL in this update scheme. This update scheme essen-
tially unifies the previous two update schemes if we prune
surplus states. In fact, ATPS/ANA* uses this update scheme
along with the potential function for prioritization of states in
FOCAL. Thus, ATPS/ANA* is a special case of AFS. When
using Definition 4(3), using S;_1 is better than w; f,,;, since
it is at least as tight a bound but perhaps tighter (that is, if
fmin increases during search iteration ¢). The pruning of sur-
plus nodes then effectively implements the cost bound .S;_1,
and — like in ATPS/ANA* — it thus suffices to maintain only
FOCAL since OPEN and FOCAL are identical.

3.2 Pseudocode

Algorithm 2: Anytime Focal Search (AFS).

Nstert 18 the start state; and getNextBound() is a specifica-
tion of one of the update schemes in Definition 4. Blue (red)
represents pseudocode relevant for BSS (BCS) only.

Input: 14+, getNextBound().
Output: Solution(s)).

1 OPEN = FOCAL = {nsqare }
2 while search not halted or optimal solution not found do
3 w (or C') < getNextBound()

4 updateFocalBound(w f (head(OPEN)) (or C))
5 if hrocar is not efficiently reusable then

6 | reorder FOCAL

7 sol < findPath(w (or C'))

8 if sol = no-solution then

9 | break

10 report sol

11 Procedure updateFocalBound(new_b):
12 for each n’’ € FOCAL do

3 if f(n") > new_b then

14 L | FOCAL + FOCAL\ {n"}

Algorithm 2 presents the pseudocode for AFS. AFS uses a
specification of one of the update schemes in Definition 4.

The main loop of AFS (line 2) is conditioned on the avail-
ability of runtime and the suboptimality of the best solution
found so far*. Inside this loop, AFS calls FS with the current
(suboptimality or cost) bound as an argument (line 7). After
each search iteration terminates, FOCAL is updated to ensure
that all of its states are within the new (suboptimality or cost)
bound (line 4). If hrocar is not efficiently reusable, FOCAL is
reordered (line 6).

3.3 Theoretical Properties

FS and AFS are different from ARA¥* in that they may require
state re-expansions within the same search iteration to guar-
antee finding solutions with costs within the (suboptimality
or cost) bound if hrocar, is not w-admissible. While state re-
expansions may result in longer runtimes of some search it-
erations, they allow AFS to provide suboptimality guarantees
for each search iteration. Such (suboptimality or cost) bounds
are important since it is not known in advance when an any-
time algorithm is forced to terminate. Moreover, AFS does
not need to maintain any additional lists, such as INCONS
in ARA*. This makes AFS simpler to understand and imple-
ment.

Theorem 1. In each search iteration i, if AFS reports a solu-
tion with cost S;, it is guaranteed that S; < w;S™, where S*
is the cost of an optimal solution.

Proof. Follows directly from the bounded suboptimality
guarantees of FS. O

We now prove that AFS with the potential function com-
putes tighter suboptimality bounds than ATPS/ANA*. This is
because FS maintains f,,;, at all times and its suboptimal-
ity bound is S/ fimin while PS has a suboptimality bound of
maxperocar(C — g(n))/h(n) [Stern et al., 2014]. Here, S is
the cost of the solution found by both FS and PS, f,,;, is the
f-value of the head of OPEN when FS terminates and C'is the
cost bound used by PS.

Lemma 2. Let Bps and Bpg be the suboptimality bound
computed by PS and F'S, respectively. Brs < Bpg.

Proof.

max

Bps = — TN
nEFOCAL

“When fonin equals the cost of the best solution found so far we
can terminate with the optimal solution.



Since C;(gn()") > 1l and g(n) > 0 for every n in FOCAL,
C - C
Bps> max 9t - o O
nEFOCAL h(n) + g(n) nEFOCAL f(n)
Since C'is a constant and C' > S,
C C S

Bps > — = > = Brs.

P 1Ny crocAL f(TL) fmzn fmin F
Hence, Brs < Bpgs. ]

The fact that AFS computes tighter suboptimality bounds
than ATPS/ANA* can have implications on the anytime
behavior because it allows AFS to decrease the bound
faster. AFS is also more general than ATPS/ANA* because
ATPS/ANA* is a special case of AFS in which FOCAL is
sorted according to a specific priority function (namely, the
potential function), while AFS allows for arbitrary priori-
ties. Unlike ATPS/ANA*, when the priorities for ordering
FOCAL are efficiently reusable, AFS is not required to it-
erate over FOCAL and reorder it when the bound changes
between search iterations. This could translate to substan-
tial time savings when FOCAL is large or when solutions
are found frequently. Moreover, AFS also facilitates anytime
search in domains, as in one of our experimental domains,
that have no well-defined heuristic function, and hence no
useful definition of potential function. Here, AFS is still vi-
able but ATPS/ANA* is not. Finally, the flexibility with arbi-
trary priorities in AFS allows incorporating domain-specific
knowledge. This, in turn, can guide the search process better.

4 Experimental Results

We now demonstrate the usefulness of AFS for solving hard
combinatorial problems. We choose two NP-hard problems
for our experiments: 1) the generalized covering traveling
salesman problem (GCTSP) and 2) the multi-agent path find-
ing (MAPF) problem. For GCTSP, we show the runtime ad-
vantage of AFS over other anytime algorithms, which stems
from its ability to use domain-specific priority functions. For
MAPF, we show the broader applicability of AFS compared
to other anytime algorithms. Here, a domain-specific hrocar,
is informative while, in fact, no non-zero admissible A is cur-
rently known. This makes the other anytime algorithms dis-
cussed in this paper inapplicable to this domain. In both do-
mains, we use Definition 4(3) as the bound update scheme.

The Generalized Covering Traveling Salesman Problem

The GCTSP [Shaelaie et al., 2014] is defined by an undi-
rected graph that has one depot vertex and other vertices
called facilities. Weighted edges between vertices represent
distances. Each facility has a set of costumers associated with
it, and customer ¢ has a prize p;. A customer can be covered
by more than one facility. The task in GCTSP is to find a
tour that starts at the depot and collects a specified minimum
prize P while minimizing the total distance traveled. A tour
collects the prizes of all customers associated with any of its
facilities. In GCTSP’s search space, each state represents a
partial tour of facilities with its cumulative prize [Pohl, 1973;
Thayer and Ruml, 2008]. The successors of a state n augment
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Figure 5: Shows the behaviors of anytime BSS and BCS algorithms
in the GCTSP domain. The first and third panels show behaviors on
typical medium and large size instances, respectively. The second
and fourth panels show aggregate behaviors on 69 medium and 14
large instances, respectively. BKS stands for best known solution.
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Figure 6: Shows the behavior of AFS in the MAPF domain. The first
panel shows AFS’s typical behavior on a few random instances with
60 agents each. The second panel shows AFS’s aggregate behavior
on different numbers of agents with 50 instances each. All exper-
iments use a 32 x 32 four-neighbor grid with 20% blocked cells
placed randomly.

a non-visited facility to s. We define the heuristic value of a
state n with cumulative prize cp to be h(n) = H(P — cp).
H(P — ¢p) is the minimum distance from the depot to any
state with prize P — cp. This heuristic is admissible and is
pre-computed using Dijkstra’s algorithm.

We evaluate AFS in the GCTSP domain on benchmark
instances from [Shaelaie et al., 2014]. We use 69 medium
instances (between 100 and 200 vertices) and 14 large in-
stances (between 535 and 1000 vertices). AFS uses the cu-
mulative prize multiplied by the potential function as its pri-
ority function. We also evaluate ATPS/ANA* and ARA*.
All runs have a time limit of 100 seconds. Figure 5 shows
the results. On medium-sized instances, AFS convincingly
beats ATPS/ANA* and ARA*. More significantly, both
ATPS/ANA* and ARA* fail to find any solution within the
time limit for any of the 14 large sized instances. These results
suggest that adding domain-dependent knowledge to the pri-
ority function, as allowed in the general framework of AFS,
has significant runtime benefits.

The Multi-Agent Pathfinding Problem

Given an undirected graph and a set of agents with unique
start and goal vertices, the MAPF problem is to find collision-
free paths for all agents from their start vertices to their goal
vertices. The agents traverse edges in unit time but can also

wait at vertices. Here, we consider minimizing the solution
cost given by the sum of travel times of agents along their
paths, which is known to be NP-hard [Yu and LaValle, 2013].
Conflict-Based Search (CBS) [Sharon et al., 2015] is a state-
of-the-art MAPF solver. CBS uses a two-level search. On
the high level, a search is performed on a constraint tree.
In this constraint tree, each state represents a set of con-
straints imposed on the motions of individual agents. On the
low level, single-agent searches are performed such that none
of the constraints imposed by the relevant high-level states
are violated. We adapt BCBS [Barer er al., 2014] to AFS.
BCBS(w, 1) is a variant of CBS that uses focal search with
suboptimality bound w to conduct the high-level search and
A* to conduct the low-level search.

The high-level search of CBS uses the paths lengths of
the agents in a high-level state as its g-value. It does not
have non-zero admissible h-values. Thus, we cannot apply
ATPS/ANA¥* in this domain because the potential function
is undefined, and we cannot apply ARA* in this domain be-
cause f(n) = g(n) + wh(n) = g(n). On the other hand, the
number of collisions between paths of agents in a high-level
state is an informative but inadmissible estimate for the cost-
to-goal. Fortunately, the general framework of AFS allows us
to use this informative estimate in hgocar, and, moreover, it is
efficiently reusable. In fact, to the best of our knowledge, this
adaptation of AFS constitutes the first anytime MAPF solver.
Hence, the experimental results in Figure 6 report only on the
performance of AFS. We observe that this adaptation of AFS
exhibits the diminishing returns property that is characteristic
of good anytime behavior.

5 Conclusions

In this paper, we presented AFS, an anytime version of FS
that unifies the anytime variants of BSS and BCS. We also
emphasized the generality of AFS and showed how other
state-of-the-art anytime search algorithms, like ARA* and
ATPS/ANA¥*, are special cases of it. Theoretically, we proved
the correctness and bounded suboptimality of AFS, the better
quality of its bounds compared to ATPS/ANA*, and its abil-
ity to efficiently reuse previous search efforts when it does
not need to reorder FOCAL between search iterations. Empir-
ically, we demonstrated the benefits of incorporating domain-
specific knowledge in hrocar.-

Finally, the success of AFS in the GCTSP and MAPF do-
mains is illustrative of a more general advantage of its frame-
work. When admissible estimates of the costs-to-goal are
available, AFS can always use them in h. When the avail-
able estimates are inadmissible but informative, AFS gives
us the important option to use them in hrocar. Indeed, for
many hard combinatorial problems, efficient approximation
algorithms produce such inadmissible but informative esti-
mates of cost-to-goal. Moreover, abstractions and relaxations
of search problems are admissible but not always informa-
tive. While their additive combinations may not be admissi-
ble, they are often informative and can be used in the AFS
framework while providing bounded-suboptimality guaran-
tees.
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