
An Anytime, Scalable and Complete Algorithm for Embedding a
Manufacturing Procedure in a Smart Factory

Christopher Leet1, Aidan Sciortino2, and Sven Koenig3

Abstract— Modern automated factories increasingly run
manufacturing procedures using a matrix of programmable ma-
chines, such as 3D printers, interconnected by a programmable
transport system, such as a fleet of tabletop robots. To embed
a manufacturing procedure into a smart factory, an operator
must: (a) assign each of its processes to a machine and (b)
specify how agents should transport parts between machines.
The problem of embedding a manufacturing process into a
smart factory is termed the Smart Factory Embedding (SFE)
problem. State-of-the-art SFE solvers can only scale to factories
containing a couple dozen machines. Modern smart factories,
however, may contain hundreds of machines. We fill this hole by
introducing the first highly scalable solution to the SFE, TS-
ACES, the Traffic System based Anytime Cyclic Embedding
Solver. We show that TS-ACES is complete and can scale to
SFE instances based on real industrial scenarios with more than
a hundred machines.

I. INTRODUCTION
Flexible manufacturing is a key objective of the modern

manufacturing industry [1]. A smart factory is flexible if
it can be easily reconfigured to produce different products.
Flexible manufacturing systems can reduce the cost of pro-
ducing new products, lower the time required to fulfill orders,
and allow products to be customized. To perform flexible
manufacturing, a smart factory needs two components:
Flexible Machines. Flexible machines are general purpose
machines such as CNC machines which can be used to per-
form a range of manufacturing processes. Flexible machines
can be easily reprogrammed with a new process when a smart
factory’s manufacturing procedure changes.
Flexible Transport System. Flexible transport systems make it
easy to adjust the materials that the machines in a smart fac-
tory are supplied with. Most flexible transport systems trans-
port materials with a team of agents [2]. These agents are
generally autonomous mobile vehicles [2]. However, recent
mag-lev based systems such as BOSCH’s ctrlX Flow6D [3].

To embed a manufacturing procedure into a smart factory,
the smart factory’s operator needs to:

1) assign each process in the manufacturing procedure to
one or more machines in the smart factory.

2) construct a transport plan that specifies how the smart
factory’s agents should carry parts between machines.

The problem of embedding a manufacturing procedure in a
smart factory is termed the Smart Factory Embedding (SFE)
problem. A good embedding maximizes the smart factory’s
throughput, that rate that it makes finished products.

1University of Southern California cjleet@usc.edu
2University of Rochester asciorti@u.rochester.edu
3University of Southern California skoenig@usc.edu

Most existing systems for coordinating agents in a smart
factory assume processes have already been assigned to the
smart factory’s machines [4], [5]. Assigning processes to
machines and paths to agents separately, however, limits the
throughput that these solvers can achieve.

One recent approach to the SFE problem, ACES [6],
jointly optimizes its two components. ACES models a smart
factory as a grid of cells. Time is discretized. ACES uses
a Mixed Integer Linear Program (MILP) to jointly assign
processes to machines and find a transport plan to its agents.
ACES generates a transport plan which loops after a certain
number of timesteps, allowing it to be run continuously.

Unfortunately, ACES scales poorly. ACES’s MILP has
a binary variable which indicates if a given cell contains
an agent carrying a given component on given timestep
for every possible (cell, component, timestep) combination.
A SFE instance may have hundreds of cells and tens of
components. A transport plan may have tens of timesteps. As
a result, when ACES is used to solve a large SFE instance,
it may generate a MILP with 100,000s of these variables. A
MILP with 100,000s of variables is often difficult to solve.
Thus, to date, there is no solver which jointly optimizes both
components of the SFE problem that works at scale.

We address this hole by proposing the Traffic System
based Cyclic Embedding Solver, TS-ACES. TS-ACES is
based on the following observation: most smart factories
coordinate agents using a traffic system, a network of roads.
TS-ACES aggregates timesteps into epochs. It uses a MILP
to construct a traffic system based embedding, an embedding
which moves agents through a traffic system at the rate of
one road per epoch. A traffic system often has several times
fewer roads than cells. A traffic system based embedding
often has several times fewer epochs than timesteps. TS-
ACES’s MILP thus often has dozens of times fewer variables
than ACES’s MILP, making it much easier to solve.

The throughput and runtime of TS-ACES’s MILP are
dependent on its hyperparameters, the number of epochs and
the length of an epoch in the embedding that it generates.
We introduce a novel, principled search algorithm to find
good values for these hyperparameters. TS-ACES uses its
traffic system based embedding to construct a transport plan
generator. This generator can generate timestep by timestep
instructions for the smart factory’s agents in real time,
allowing it to run its manufacturing procedure indefinitely.

We analyze TS-ACES and show that it is complete. Our
evaluations show that TS-ACES can scale to SFE instances
based on real scenarios with more than 100 machines.

Fig. 1. (a) An example manufacturing procedure. Source and sink process are yellow and blue. (b) An example smart factory and (c) its traffic system.

II. PROBLEM FORMULATION

Our model of the SFE problem adapts the model given
in [6] to smart factories that use traffic systems.

A. Manufacturing Procedure

Token. We model each assemblage, part or raw material
produced or consumed during a manufacturing procedure as
a token. The set of tokens associated with a manufacturing
procedure is denoted Z := {z1, z2, . . .}.
Process. A process pi is an atomic operation in a manu-
facturing procedure. Each process pi consumes a multiset
of input tokens INTK(pi) and emits a multiset of output
tokens OUTTK(pi). The number of copies of a token zj ∈
Z that a process pi consumes and produces are denoted
NUMIN(pi, zj) and NUMOUT(pi, zj).

A process that does not consume any tokens is a source
process. Source processes represent operations which retrieve
raw materials. A process which does not produce any tokens
is a sink process. Sink processes represent operations which
remove finished products or waste. A manufacturing proce-
dure’s the set of processes is denoted P := {p1, p2, . . .}.
Exactly one of these processes OUTP(P) must be an output
process, a sink process which exports finished products.
Manufacturing Procedure. A manufacturing procedure
(Z,P) is a set of tokens and a set of processes that consume
and produce those tokens.
Example. Fig. 1. (a) shows a manufacturing procedure for toy
cars. It has the tokens Z := {zp, zf , za, zw, zc}, the source
processes p1 and p4, and the sink process p6, which is also
an output process. The tokens that a process consumes and
produces are shown below it. Process p5 consumes a chassis,
4 wheel and 2 axle tokens and produces a car token.

B. Smart Factory

Machines. A smart factory has a set of machines M :=
{m1,m2, . . .}. A machine mi can run a subset P(mi) ⊆
P of a manufacturing procedure’s processes. Time is dis-
cretized. A process pj takes a machine mi RUNTIME(mi, pj)
timesteps to run. Machines have input and output buffers.
To initiate a process pj , a machine must consume the
multiset of tokens INTK(pj) from its input buffer. When a
machine finishes process pj , it deposits the multiset of tokens
OUTTK(pj) into its output buffer. Source and sink machines
are special types of machines. Only source machines can run
source processes. They represent bins of raw materials. Only
sink machines can run sink processes. They represent chutes
for waste and finished products.

Machine Type Instances Supported Processes
Bin of Planks m1 p1
CNC Machine m2, m3, m4 p2, p3
Assembler m5 p5
Bin of Axles m6 p4
Output Chute m7 p6

TABLE I
THE MACHINES IN THE EXAMPLE SMART FACTORY.

Layout. We model the layout of a smart factory as a grid of
square cells. Each cell has a set of entry cells and a set of
exit cells, which must be vertically or horizontally adjacent.
An agent can only enter a cell from its entry cells and leave
a cell to its exit cells. Our model has three types of cells:

• Road Cells. A road cell has one entry and one exit cell.
• Junction Cells. A junction cell has at least one entry

and exit cell. These cells must be road cells.
• Non-Traversable Cells. Agents may not enter non-

traversable cells. Any cell which contains an obstacle
like a machine chassis must be a non-traversable cell.

Let cell ci be the ith road or junction cell in a layout.
Let C := {c1, c2, . . .} be the set of all road and junction
cells in a layout. We represent the connections between the
cells in a layout with a directed graph called a layout graph
GL := (C,EL). Each vertex in the layout graph is a road or
junction cell. There is an arc (ci, cj) ∈ EL iff cell ci is one
of cell cj’s entry cells. Note that if cell ci is one of cell cj’s
entry cells, then cell cj must be one of cell ci’s exit cells.

To be valid, a layout must have the following properties:
1) Its layout graph must be strongly connected. If a layout

graph is not strongly connected, agents may not be able
to carry tokens between certain pairs of machines.

2) It must contain at least one junction cell. In this paper,
we exclude the trivial case where a factory’s machines
are connected by a single loop of road cells.

Any machine’s input buffer and output buffer is associated
with an input cell and an output cell. An agent can only
deposit tokens into an input buffer on its input cell and
remove tokens from an output buffer on its output cell.

Example. Fig. 1. (b) depicts an example smart factory.
Regular road cells are colored purple and junction cells
green. Road cells which are also input and output cells
are colored blue and yellow. An impassable cell is gray
if it contains a machine’s chassis and white if it empty. A
machine’s border with its input and output cells is indicated
with a dotted line. For example, the cells (5, 1) and (0, 2)
are machine m5’s input and output cells. Table I describes
this smart factory’s machines. It has two source machines,
m1 and m5, and one sink machine, m6.

Traffic System. We group the road and junction cells in a
layout into roads and junctions. A road Ri is a path of
LEN(Ri) road cells which connects two junction cells. We
denote the set of roads in a layout R := {R1, R2, . . .}. A
junction Ji is single junction cell. Each junction connects
two or more roads. We denote the set of junctions in a
layout J := {J1, J2, . . .}. A layout’s roads and junctions
collectively form a traffic system (R,J). Fig. 1. (c) shows
the example smart factory’s traffic system. It has 9 junctions
J := {J1, . . . , J9} and 12 roads R := {R1, . . . , R12}.

A junction Ji has a set of entry and exit roads ENTRY(Ji)
and EXIT(Ji). Any road which leads to and away from Ji is
one of its entry and exit roads. For example, in the example
smart factory, junction J8 has the entry roads ENTRY(J8) =
{R11} and the exit roads EXIT(J8) = {R9, R11}.

C. Agents

A team of n agents A := {a1, . . . , an} carries tokens
between machines. At the start of each timestep t, each agent
ai ∈ A occupies a road or junction cell. We denote this cell
π(ai, t) ∈ C. Each timestep, an agent ai ∈ A must either
wait at its current cell or move to one of its current cell’s exit
cells. Two agents may not occupy the same cell or traverse
the same edge in the layout graph on the same timestep.

Agents can carry a single token at a time. We term the
token that an agent ai is carrying its cargo. If an agent is not
carrying a token, we say that it is carrying the null token z0.
We denote the cargo that agent ai is carrying on timestep t
σ(ai, t) ∈ Z ∪{z0}. The state (π(ai, t), σ(ai, t)) of agent ai
on timestep t is its location and cargo.

If an agent carrying a non-null token is on a machine’s
input cell at the end of a timestep t, it may deposit its token
into the machine’s input buffer. If an agent carrying a null
token is on a machine’s output cell at the end of a timestep
t, it may pick up a token from the machine’s output buffer.

D. Cell Based Embedding

A cell based embedding specifies how a manufacturing
procedure is implemented by a smart factory. It is a 3-tuple
(α,λ,G) with the following elements:

Assignment Matrix. An assignment matrix α is a |M | × |P |
matrix. The field α(mi, pj) contains a binary variable which
indicates if machine mi has been assigned process pj . A
machine may only be assigned one process.

Rate Matrix. A rate matrix λ is also a |M | × |P | matrix.
The field λ(mi, pj) indicates the rate that machine mi runs
process pj . A machine mi can only run process pj at a non-
zero rate if it is assigned process pj .

Cell Based Transport Plan. A cell based transport plan
specifies how agents carry tokens through a smart factory. A
smart factory often has to run a manufacturing procedure for
an indefinite length of time. We would thus like to construct
a transport plan generator G, a function which takes a smart
factory’s state ϕ(t) at any timestep t and computes its state
ϕ(t+1) at timestep t+1. As long as our generator can run in
real time, we can run a manufacturing procedure endlessly.

The state ϕ(t) of a smart factory at timestep t is a 4-tuple
(I(t),O(t),π(t),σ(t)) with the following components:
Buffer Contents Vectors. The input and output buffer contents
vectors I(t) and O(t) are length |M | vectors. The fields
I(mi, t) and O(mi, t) specify the contents of a machine
mi’s input and output buffers on timestep t. If machine mi

does not have an input buffer, I(mi, t) = ∅. If it does not
have an output buffer, O(mi, t) = ∅.
Agent State Vectors. The position and cargo vector π(t) and
σ(t) are length |A| vectors. The fields π(ai, t) and σ(ai, t)
specify agent ai’s position and cargo on timestep t.

E. Smart Factory Embedding Problem

The throughput θ(α,λ,G) :=
∑

mi∈M λ(mi, OUTP(P))
of an embedding (α,λ,G) is the total rate at which its
machines run its output process. In the smart factory em-
bedding problem, we are given a manufacturing procedure
(Z,P), and a smart factory (M,C,A,J ,R) and asked to
find a maximum throughput embedding. We term the tuple
(Z,P ,M,C,A,J ,R) a SFE instance and denote it inst.

III. RELATED WORK

The Multi-Agent Path Finding (MAPF) problem is the
problem of moving a team of agents from start locations
to goal locations without collisions. MAPF is an key part of
SFE. MAPF has been solved via a range of methods such
as SAT solving [7] and answer set programming [8].

Many other optimization problems involve MAPF. One
problem which incorporates MAPF and is related to the
SFE problem is the Collective Construction (CC) problem.
In the CC problem, a team of agents is tasked with arranging
building blocks into a structure. The agents are the same size
as the blocks, forcing them to climb the structure to position
the block. The CC problem is formalized as a combinatorial
optimization problem and solved for a single agent using
dynamic programming [9]. This approach is generalized to
multiple agents in [10]. Empirically, however, the solutions
that it generates do not achieve much parallelism. The rein-
forcement learning approach proposed in [11] finds solutions
with more parallelism. The CC problem is solved optimally
using both constraint set programming and a MILP in [12].

Several systems for coordinating agents in a smart factory
have been proposed. In [4], the authors use a traffic system to
traffic system to generate paths for agents in a manufacturing
facility. In [5], the authors assign tasks to agents and plan
their paths using a distributed petri net. Neither system,
however, assigns processes to machines. ACES [6] solves the
SFE problem using a MILP. It is unclear, however, whether
it can scale to SFE instances with more ∼ 25 machines.

IV. OVERVIEW

TS-ACES solves the SFE by constructing a traffic system
based embedding and then converting it into a cell based
embedding. In this section, we define a traffic system based
embedding and then describe TS-ACES’s workflow.
Traffic System Based Embedding. A traffic system based em-
bedding is based on roads, not cells. It aggregates timesteps

Fig. 2. TS-ACES’s workflow.

into epochs. It moves agents one road per epoch. At the start
of an epoch, each agent is in a queue at the head of a road.
During an epoch, each agent passes through the junction Ji
at the end of its road and joins a queue on one of Ji’s exit
roads. The number of timesteps in an epoch is denoted Te.

A manufacturing procedure often has to be run for an in-
definite length of time. We therefore construct an embedding
with a cyclic transport plan [13], a transport plan that can be
looped repeatedly. A cyclic transport plan is associated with
a number of epochs Ne. It loops after Ne epochs.

A traffic system based embedding can be written as an 6-
tuple: (α,λ,I,O,pk,dp). Its assignment and rate matrices
α and λ are written using the same matrices as a cell
based embedding. Its transport plan is expressed as a 4 tuple
(inB,outB,pk,dp) with the following new components:

Inbound and Outbound Traffic Tensors. The inbound and
outbound traffic tensors inB and outB are |R|×Ne+1×
|Z| tensors. The fields inB(Ri, T , zj) and outB(Ri, T , zj)
specify the number of agents carrying token zj that enter
and leave road Ri during epoch T .

Pick Up and Deposit Tensors. The pickup and deposit tensors
pk and dp are |M | × Ne + 1 × |A| tensors. Let Rout and
Rin be the roads that contain machine mi’s output and input
cells. The field pk(mi, T , zj) specifies the number of agents
entering road Rout during epoch T that pick up a copy of
token zj from mi’s output buffer. The field dp(mi, T , zj)
specifies the number of agents entering Rin during epoch T
that pick up a copy of zj from mi’s input buffer.

Since our embedding loops after Ne epochs, the values of
its tensors for the epoch T = 0 and T = Ne are the same.

TS-ACES’s Workflow. The workflow of TS-ACES is shown
in Fig. 2. TS-ACES uses a MILP termed the TS-MILP 2⃝
to generate a traffic system based embedding 4⃝ for a SFE
instance 1⃝. We describe the TS-MILP in Section V. The
TS-MILP’s solution quality and runtime depend heavily on
its hyperparameters, the number of epochs Ne and the length
of an epoch Te in the embedding that it is asked to find. TS-
ACES uses a hyper-parameter search algorithm 3⃝ to find a
pair of hyperparameters which produce a good solution. We
describe this algorithm in Section VI.

Once TS-ACES has finished searching for a traffic system
based transport plan, it uses that it to construct a cell based
transport plan generator GTS . GTS implements TS-ACES’s
transport plan. For example, GTS moves inB(Ri, T , zj)
agents carrying token zj into road Ri on any epoch T ′ =
T%Ne. It takes O(|A|) time for GTS to compute the next
state in its transport plan. We describe GTS in Section VII.

V. GENERATING A TRAFFIC SYSTEM BASED EMBEDDING

In this section, we specify the TS-MILP, the MILP used
to construct a traffic system based embedding.
Objective. The TS-MILP maximizes the throughput of its
embedding that it generates:

max
∑

mi∈M

λ(mi, OUTP(P))

The TS-MILP has 5 categories of constraints.
Machine Configuration Constraints. These constraints spec-
ify how the machines in a smart factory can be configured.
Constraint 1. A machine can only be assigned one process.

∀ mi ∈ M,
∑
pj∈P

α(mi, pj) ≤ 1.

Constraint 2. A machine must be able to run its process.

∀ mi ∈ M, ∀ pj ∈ P \ P(mi), α(mi, pj) = 0.

Constraint 3. A machine mi ∈ M can only run the process
pj ∈ P(mi) once every RUNTIME(mi, pj) timesteps.

∀mi ∈ M, ∀pj ∈ P(mi), λ(mi, pj) ≤ RUNTIME(mi, pj)
−1

Constraint 4. A machine mi ∈ M can only run the process
pj ∈ P at a non-zero rate if it is assigned pj .

∀ mi ∈ M, ∀ pj ∈ P , λ(mi, pj)− α(mi, pj) ≤ 0.

Buffer Conservation Constraints. These constraints ensure
that tokens don’t appear in and disappear from buffers.
Constraint 5. Each cycle, the number of copies of a token zj
that a machine mi produces and the number of copies of zj
that agents pick up from its output buffer must be the same.

∀ mi ∈ M −Msink, ∀ zj ∈ Z,

Ne−1∑
T=0

pk(mi, T , zj) =∑
pk∈P

λ(mi, pk) · NUMOUT(pk, zj) ·Ne · Te.

Constraint 6. Each cycle, the number of copies of a token
zj that a machine mi consumes and the number of copies of
zj that agents deposit in its input buffer must be the same.

∀ mi ∈ M −Msrc, ∀ zj ∈ Z,

Ne−1∑
T=0

dp(mi, T , zj) =∑
pk∈P

λ(mi, pk) · NUMIN(pk, zj) ·Ne · Te.

Traffic System Conservation Constraints. These constraints
ensure that agents and tokens don’t appear or disappear. Let
INPUTON(Ri) ⊆ M and OUTPUTON(Ri) ⊆ M be the sets
of machines whose input and output cells are on road Ri.
Constraint 7. The number of agents carrying a non-null token
zj ∈ Z leaving the road Ri during epoch T +1 % Ne is the
number of agents carrying token zj entering road Ri during
epoch T , less the number of these agents which deposit their

copy of zj before leaving Ri, plus the number of agents
which enter Ri during epoch T that pick up a copy of zj .

∀ Ri ∈ R, ∀ zj ∈ Z, ∀ T ∈ [0..Ne − 1],

outB(Ri, T + 1 % Ne, zj) =

inB(Ri, T, zj)−
∑

mk∈INPUTON(Ri)

dp(mk, T, zj) +
∑

mk∈OUTPUTON(Ri)

pk(mk, T, zj).

Constraint 8. Similarly, the number of agents carrying a null
token leaving the road Ri during epoch T + 1 % Ne is the
number of agents carrying token z0 entering Ri during epoch
T , less the number of these agents which pick up a token
before leaving Ri, plus the number of agents entering Ri

during epoch T which deposit a token.

∀ Ri ∈ R, ∀ T ∈ [0..Ne − 1], outB(Ri, T + 1 % Ne, z0) =

inB(Ri, T, z0)−
∑

mk,zj∈OUTPUTON(Ri)×Z

pk(mk, T, zj) +
∑

mk,zj∈INPUTON(Ri)×Z

dp(mk, T, zj).

Constraint 9. Every agent which enters a junction Ji ∈ J
during epoch T must leave junction Ji during epoch T .

∀ Ji ∈ J , ∀ T ∈ [0..Ne − 1], ∀ zj ∈ Z ∪ {z0},∑
Rk∈EXIT(Ji)

inB(Rk, T , zj) =
∑

Rk∈ENTRY(Ji)

outB(Rk, T , zj).

Agent Behavior and Team Size Constraints. After an agent
changes its cargo, it must move to a new road before
changing its cargo again. The TS-MILP does not know how
a road’s input and output cells are ordered. If a road Ri’s
output cells come after its input cells, an agent on road Ri

will not be able to deposit and then pick up a token (and vice
versa). Consequently, the TS-MILP can only rely on agents
being able to change their token once per road.
Constraint 10. The number of agents that deposit a copy of
token zj on road Ri during epoch T must be less than the
number of agents that enter Ri carrying zj during epoch T .

∀ Ri ∈ R, ∀ zj ∈ Z, ∀ T ∈ [0..Ne − 1],

inB(Ri, T , zj) ≤ dp(Ri, T , zj).

Constraint 11. The number of agents that pick up token zj
on road Ri during epoch T must be less than the number of
agents that enter Ri carrying the null token during epoch T .

∀ Ri ∈ R, ∀ zj ∈ Z, ∀ T ∈ [0..Ne − 1],

inB(Ri, T , zj) ≤ dp(Ri, T , zj).

Constraint 12. The TS-MILP cannot produce a solution
which uses more agents than the |A| agents available.∑

Ri∈R

∑
zj∈Z∪{z0}

outB(Ri, 0, zj) ≤ |A|.

Road Capacity Constraints. These constraints limit the
number of agents which pass through each road every
epoch. Let totInB(Ri, T):=

∑
zj∈Z∪{z0} inB(Ri, T , zj)

and totOutB(Ri, T):=
∑

zj∈Z∪{z0} outB(Ri, T , zj) be the
number of agents that enter and leave road Ri on epoch T .

Algorithm 1 TSPLANNER(inst, timer)
1: sol∗, Ne

∗, Te
∗ ← NULL, NULL, NULL

2: Ne ← 1
3: while timer has not expired do
4: sol, Te ← PLANFORNUMEPOCHS(inst, timer)
5: if sol ̸= NULL ∧ θ(sol) > θ(sol∗) then
6: sol∗, Ne

∗, Te
∗ ← sol,Ne, Te

7: Ne ← Ne + 1
8: return sol∗, Ne

∗, Te
∗

Constraint 13. Our ILP cannot specify when a road Ri’s
outbound agents will leave or its inbound agents arrive during
any given epoch. Its inbound agents may all arrive before
any of its outbound agents leave. Every agent inbound to and
outbound from a road Ri during any epoch T must therefore
be able to fit on road Ri at the same time.

∀ Ri ∈ R,∀ T ∈ [0..Ne − 1],

totInB(Ri, T, zj) + totOutB(Ri, T, zj) ≤ LEN(Ri).

Constraint 14. Each epoch, every agent must move from the
queue at the end of one road to the queue at the end of a
different road. If there are a lot of agents on a junction’s entry
roads, it will take them a long time to reach these queues on
its exit roads. We ensure that this process doesn’t take longer
than one epoch by limiting the number of agents which can
be on a junction’s entry roads at the start of any epoch.

Theorem 1: An agent in a queue on one of a junction
Ji ∈ J ’s entry roads at the start of epoch T takes at most:∑
Rj∈ENTRY(Ji)

totOutB(Rj , T)+ max
Rj∈EXIT(Ji)

[LEN(Rj)−totInB(Rj , T)]+1

timesteps to reach a queue on any one of Ji’s exit roads.

Proof. Let ak be the last agent to enter junction Ji on epoch
T . Agent ak has to wait

∑
Rj∈ENTRY(Ji)

totOutB(Rj , T)−1
timesteps for the other agents on Ji’s entry roads to pass
through Ji. Entering Ji takes ak an additional timestep.

Agent ak then has to reach the queue at the end of one of
Ji’s exit roads. Let Rj ∈ EXIT(Ji) be the exit road whose
queue takes ak the longest to reach. Agent ak will be the last
agent on road Rj to reach its queue. Thus, when ak reaches
the queue, it will be totInB(Ri, T)− 1 agents long. Agents
on a road move one cell per timestep until the reach its
queue. It therefore takes ak LEN(Rj)− totInB(Rj , T)] + 1
timesteps to reach road Rj’s queue. □

By Theorem 1, we can ensure that all agents reach the
queue at the end of their road with the constraint:

∀ Ji ∈ J , ∀ Rj ∈ EXIT(Ji), ∀ T ∈ [0..Ne − 1], Te ≥∑
Rk∈ENTRY(Ji)

totOutB(Rk, T) + LEN(Rj)− totInB(Rj , T) + 1.

VI. HYPERPARAMETER SEARCH

In this section, we introduce an algorithm which finds
good values for the number of epochs Ne and the length of
an epoch Te in the embedding that the TS-MILP constructs.

Number of Epochs. The space of solutions to the TS-MILP
with Ne epochs can be very different to the space of solutions

Algorithm 2 PLANFORNUMEPOCHS(inst,Ne, timer)

1: sol∗, Te
∗ ← NULL, NULL

2: Te ← maxRi∈R LEN(Ri) + δ
3: runsSinceBestSol← 0
4: while timer has not expired and runsSinceBestSol < γ do
5: sol← RUNMILP(inst,Ne, Te, timer)
6: if sol ̸= NULL ∧ θ(sol) > θ(sol∗) then
7: sol∗, Te

∗ ← sol, Te

8: runsSinceBestSol← 0
9: else

10: runsSinceBestSol← runsSinceBestSol + 1
11: Te ← Te + δ

to the TS-MILP with Ne+1 epochs. We would therefore like
our solver to try to solve the TS-MILP with as many different
values of Ne as possible. We accomplish this using the
function TSPLANNER. TSPLANNER is shown in Algorithm 1.

TSPLANNER. Let timer be a timer which tracks the time
allocated to TSPLANNER. Let PLANFORNUMEPOCHS(inst,
Ne, timer) be a function which returns an optimized solution
sol to the TS-MILP for the SFE instance inst with Ne

epochs and its epoch length Te. If the timer expires while
this function is running, it returns its current best solution if
one exists and (NULL, NULL) otherwise.

The number of variables in the TS-MILP increases with
the number of epochs in its transport plan. Solving the TS-
MILP with a small number of epochs is thus usually faster
than solving it with a large number of epochs. TSPLANNER
therefore begins by passing the TS-MILP a small value of
Ne. It then solves the TS-MILP with progressively larger
values of Ne until the timer runs out, whereupon it returns
sol∗, the highest throughput solution that it has found.

Epoch Length. Most epoch lengths do not produce good
solutions. If our solver’s epoch length is too small, only a
couple of agents can pass through a junction every epoch.
If its epoch length is too large, agents spend most of their
time waiting in a queue for the next epoch to start. We pick
epoch lengths heuristically using the function PLANFORNU-
MEPOCHS, shown in Algorithm 2.

PLANFORNUMEPOCHS. Let RUNMILP(inst,Ne, Te,
timer) be a function which uses the TS-MILP to solve the
TS-SFE instance inst with Ne epochs and the epoch length
Te. If the timer expires before it has finished, it returns its
current best solution if one exists and NULL otherwise.

PLANFORNUMEPOCHS starts by solving the TS-MILP
with an epoch length Te intended to be smaller than optimal.
It then solves the TS-MILP for progressively larger values
of Te. When Te grows larger than optimal, the throughput
of RUNMILP’s solutions will stop improving. Let sol∗ be
RUNMILP’s best solution. If γ consecutive epoch length in-
creases pass without sol∗ improving, the function terminates.

We increase RUNMILP’s epoch length by δ every run.
Small values of δ improve PLANFORNUMEPOCHS’s solution
quality but increase its runtime, large values do the opposite.

TS-MILP needs an epoch length of maxRi∈R LEN(Ri)+1
or more to allow agents to traverse every road in the traf-
fic system. PLANFORNUMEPOCHS initially runs RUNMILP
with an epoch length δ timesteps longer than this minimum.

Algorithm 3 GTS(ϕ(t), t)

1: global (Z,P ,M,A,J ,R)
2: global (α,λ, inB,outB,pk,dp), Ne, Te

3: global canChgTk, enT
4: global inB′,outB′,pk′,dp′

5: global (I(t),O(t),π(t),σ(t))← ϕ(t)
6: global at(t)← GENOCCUPANCYVEC(π(t))
7: initialize I(t+ 1),O(t+ 1),σ(t+ 1),at(t+ 1)
8: T ← ⌊t/Te⌋
9: if t % Te = 0 then

10: ADJUSTSTATEFORNEWEPOCH()

11: for Jh ∈ J do
12: ai ← at(CELL(Jj), t− 1)
13: if ai ̸= NULL then
14: MOVEAGENTONJUNCTION(Jh, ai, t, T)

15: for Rh ∈ R do
16: MOVEAGENTSONROAD(Rh, t, T)

17: DEPOSITTOKEN(M, t, T)
18: PICKUPTOKEN(M, t)
19: KEEPTOKEN(t)
20: π(t+ 1)← GENPOSITIONVEC(at(t+ 1))
21: return (I(t+ 1),O(t+ 1),π(t+ 1),σ(t+ 1))
22: function MOVEAGENTONJUNCTION(Jh, ai, t, T)
23: zj ← σ(ai, t)
24: Rk ← RNDELE({Rl ∈ EXIT(Jh) : inB(Rl, T , zj) > 0})
25: at(TAIL(Rk), t+ 1)← ai

26: inB′(Rk, T , zj)← inB′(Rk, T , zj)− 1
27: canChgTk ← canChgTk ∪ {ai}
28: enT (ai)← T

VII. GENERATING A CELL BASED EMBEDDING

TS-ACES uses the traffic system based embedding gen-
erated by the TS-MILP to construct the cell based transport
plan generator GTS . GTS takes the smart factory’s state ϕ(t)
at timestep t and generates its state ϕ(t + 1) at timestep
t+1. GTS is shown in Algorithm 3. GTS begins by loading
the following global state variables:

1) The SFE instance that TS-ACES is solving (Line 1)
and its traffic system based embedding (Line 2).

2) The set canChgTk, which contains every agent which
is allowed to change tokens on timestep t (Line 3).

3) The length |A| entry epoch vector enT . The field
enT (ai) stores the epoch during which agent ai en-
tered its current road (Line 3).

4) The maps inB′,outB′,pk′ and dp′ (Line 4). The
fields inB′(Ri, T , zj) and outB′(Ri, T , zj) store the
number of additional agents carrying token zj that GTS

need to move into and out of road Rk during epoch
T . The fields pk′(mh, T , zj) and dp′(mh, T , zj) store
the number of additional copies of zj that need to be
picked up from and deposited into mh’s buffers by
agents that entered their current road during epoch T .

GTS then loads the smart factory’s state (Line 5).

GENOCCUPANCYVEC. GTS stores the positions of its agents
in an occupancy vector at(t), a length |C| vector (Line 6).
The field at(cj , t) stores the agent on cell cj on timestep t.
If no agent is on cj on timestep t, at(cj , t) = NULL.

GTS then initializes the vectors storing the smart factory’s
state at timestep t+1 (Line 7). Their fields are set to NULL.

ADJUSTSTATEFORNEWEPOCH. If timestep t is the start of

Algorithm 4 MOVEAGENTSONROAD(Rh, t, T)

1: for cj ∈ REVERSEPATH(Rh) do
2: ai ← at(cj , t)
3: if ai ̸= NULL then
4: if EXIT(cj) = HEAD(Rh) ∧ enT (ai) = T then
5: at(cj , t+ 1)← ai

6: else if at(EXIT(cj), t+ 1) = NULL then
7: at(EXIT(cj), t+ 1)← ai

8: else
9: at(cj , t+ 1)← ai

Algorithm 5 DEPOSITTOKEN(M, t)
1: for mh ∈M s.t. ¬ISSOURCEM(mh) do
2: ai ← at(INPUTCELL(mh), t+ 1)
3: if ai ̸= NULL ∧ σ(ai, t) ̸= z0 ∧ ai ∈ canChgTk then
4: zj ← σ(ai, t)
5: if dp′(mh, enT (ai), zj) > 0 then
6: σ(ai, t+ 1)← z0
7: I(mh, t+ 1)← I(mh, t+ 1) ∪ {{zj}}
8: canChgTk ← canChgTk \ {ai}
9: dp′(mh, enT (ai), zj)←dp′(mh, enT (ai), zj)−1

a new epoch T (Line 9), GTS adjusts its state variables
(Line 10) with the function ADJUSTSTATEFORNEWEPOCH.
It adds a field inB′(Ri, T , zj) to inB′ for every (road, token)
combination. This field is set to inB(Ri, T%Ne, zj) since no
agents carrying token zj have moved into road Ri on epoch
T . It removes each field from the epoch T − 2. It performs
analogous operations on the maps outB′, pk′ and dp.
MOVEAGENTONJUNCTION. Next, GTS moves each agent ai
on a junction Jh’s cell CELL(Jh) into one of its exit roads
with the function MOVEAGENTONJUNCTION (Lines 11-14,
22-28). Let the token zj be agent ai’s cargo (Line 23). GTS

identifies a road Rk that needs an additional agent carrying zj
(Line 24). It moves ai to the tail TAIL(Rk) of Rk (Line 25).
It adds ai to the set canChgTk (Line 27) since it is on a
new road and updates inB′ (Line 26) and enT (Line 28).
MOVEAGENTSONROAD. GTS then moves each agent ai
on a road Rh with the function MOVEAGENTSONROAD
(Algorithm 4). Let cell cj be the cell that ai is on (Line 2).
Let EXIT(cj) be cell cj’s exit cell if cell cj is a road cell.
If agent ai is at the head HEAD(Rh) of road Rh and it
entered Rh on the current epoch, it waits on cj for the next
epoch to begin (Lines 4-5). Otherwise, if the cell EXIT(cj)
is currently unoccupied on timestep t + 1, ai moves onto
EXIT(cj) (Lines 6-7). If it is, ai waits on cj (Line 9).

Let the function REVERSEPATH(Rh) return a list of the
cells in road Rh starting at its head and ending at its tail.
We process the agents on a road Rh in reverse order of their
distance from its head (Line 1). Consequently, whenever we
process an agent ai on a cell cj on road Rh, we know if an
agent in front of ai on Rh needs to wait at the cell EXIT(cj).
DEPOSITTOKEN. GTS then checks if each agent ai on a
machine mh’s input cell INPUTCELL(mh) carrying a non-
null token zj should deposit its token using the function
DEPOSITTOKEN (Algorithm 5). If (a) agent ai is allowed to
deposit its token (Line 3) and (b) machine mh needs an
additional agent which entered its current road on epoch
enT (ai) to deposit a copy of token zj (Line 5), agent

ai’s token is placed in mh’s input buffer (Lines 6-7). The
variables canChgTk and dp′ are then updated (Lines 8-9).
PICKUPTOKEN. GTS instructs agents to pick up tokens using
the function PICKUPTOKEN (Algorithm 3, Line 18). This
function operates analogously to DEPOSITTOKEN.
KEEPTOKEN. If an agent neither picks up nor deposits a
token, the token that it is holding does not change (Line 19).

Finally, GTS converts the occupancy vector at(t+1) back
into a position vector π(t+ 1) (Line 20).
INITIALIZESF. TS-ACES determines the smart factory’s
state on timestep t = 0 using the function INITIALIZESF.
Each agent is initialized in a queue at the head of a road.
There are outB(Ri, 0, zj) agents in the queue at the head of
road Ri carrying the token zj ∈ Z ∪ {z0}. Agents do not
pick up or deposit tokens until they have passed through an
intersection for the first time. Each machine’s input buffer is
initialized with every token that it consumes in a single cycle
of epochs. Since every one of these tokens will be replaced
by the start of the next cycle, a machine will never run out of
tokens. We initialize each machine’s output buffer with every
token that it emits in a single cycle for similar reasons.

VIII. ANALYSIS

A solution to the SFE problem is complete if, given
enough time, it can solve any SFE instance.

Theorem 2: TS-ACES is complete.
Proof. By construction, any traffic system based embedding
can be converted into a cell based embedding. TS-ACES is
therefore complete if it can construct a traffic system based
embedding for any SFE instance. A smart factory’s layout
graph is strongly connected. There is thus a traffic system
based embedding sol for any SFE instance whose transport
plan uses a single agent. We will show that TS-ACES will
find sol if no better embedding exists.

Let ζ be the finite sequence of roads that sol’s agent
traverses every cycle. The TS-MILP is always run with a
large enough epoch length to allow an agent on any of a
junction’s input roads to move to any of its output roads
as long as there are not other agents on its input roads.
Therefore, the TS-MILP can construct an embedding with
a single agent that traverses the sequence of roads ζ if it is
run with |ζ| epochs. If TSPLANNER is given enough time,
the TS-MILP will be run with |ζ| epochs. □

IX. EVALUATIONS

Our evaluations investigate the following questions:
• How do TS-ACES’s solution quality and runtime com-

pare to those of ACES [6], a state-of-the-art SFE solver?
• Can the TS-MILP and GTS scale to factories with more

than a hundred machines based on realistic scenarios?

Implementation. TS-ACES is written in Python 3.11. The
TS-MILP is expressed using the Gurobipy library and solved
using the Gurobi MILP solver [17].
Experimental Hardware. Our evaluations were performed on
a 3.2 GHz, 8 Core AMD Ryzen 5800H CPU with 14 GB of
RAM running Ubuntu 20.04.6 LTS.

Scenario Name Machines ACES Thr. TS-ACES Thr. ACES Runt. TS-MILP Runt. GTS Runt. TS-ACES Agents Used

Contact Lens Small [14] 24 2 1.14 60 0.31 0.004 102
Contact Lens Large [14] 107 2.14 4.71 60 1.92 0.01 430
Drug Synthesis Small [15] 18 0.2 0.095 60 11.6 0.003 44
Drug Synthesis Large [15] 108 N/A 0.5 60 60 0.02 222
Hard Candy Small [16] 8 0.25 0.14 60 0.16 0.008 28
Hard Candy Large [16] 104 0.8 1.86 60 60 0.02 368

TABLE II
EVALUATION RESULTS

Methodology. TS-ACES is benchmarked on 6 scenarios
taken from the food and pharmaceutical manufacturing in-
dustry. Companies in these industries frequently want to
manufacture different versions of a product. A drug maker,
for instances, frequently wants to manufacture different sizes
of pill. As a result, these industries benefit from flexible
manufacturing. Table II shows the number of machines in
each scenario. Each of the contact lens, drug synthesis and
hard candy scenarios have 6, 8 and 8 processes. The solvers
were allowed to use at most 1000 agents in their solutions.
Roads contained at most one input or output cell. Each solver
was given a maximum runtime of 60 seconds. TS-ACES was
terminated if it failed to improve on its best solution after
increasing Ne or Te γ = 2 consecutive times. TS-ACES
increased Te by δ = 1 each run.
Results. Table II shows ACES’s and TS-ACES’s throughput,
ACES’s, the TS-MILP’s and GTS’s runtime, and the number
of agents that TS-ACES used on each of our 6 scenarios.
Runtimes are measured in seconds. ACES outperforms TS-
ACES on each of its small scenarios, since its MILP does
not have the traffic system based limitations that the TS-
MILP does. ACES, however, generates less than half of TS-
ACES’s throughput on Contact Lens Large and Hard Candy
Large and could not solve Drug Synthesis Large within
60 seconds. The TS-MILP can generate solutions for SFE
instances with over 100 machines in 60 seconds. Despite
the TS-MILP producing solutions that use 430, 222 and 368
agents, GTS 0.01, 0.02 and 0.02 seconds to run (averaged
over 100 runs). TS-ACES is able to scale to very large SFE
instances based on real industrial scenarios.

X. CONCLUSION

In this paper, we addressed the Smart Factory Embedding
(SFE) problem with TS-ACES, the Traffic System based
Anytime Cyclic Embedding Solver. We analyze TS-ACES
and show that it is complete. In future work, we hope
to scale TS-ACES further. We also hope to find ways to
automatically generate smart factory traffic system layouts.

ACKNOWLEDGEMENT

The research at the University of California, Irvine and
University of Southern California was supported by the
National Science Foundation (NSF) under grant numbers
2434916, 2346058, 2321786, 2121028, and 1935712 as well
as gifts from Amazon Robotics. The views and conclusions
contained in this document are those of the authors and
should not be interpreted as representing the official policies,
either expressed or implied, of the sponsoring organizations,
agencies, or the U.S. government.

REFERENCES

[1] J. M., A. Haleem, R. P. Singh, and R. Suman, “Enabling Flexible
Manufacturing System (FMS) through the Applications of Industry
4.0 Technologies,” Internet of Things and Cyber-Physical Systems,
vol. 2, pp. 49–62, 2022.

[2] X. Zhao and T. Chidambareswaran, “Autonomous Mobile Robots in
Manufacturing Operations,” The International Conference on Automa-
tion Science and Engineering, pp. 1–7, 2023.

[3] BOSCH, “ctrlX Flow: Everything in the flow: Intralogistics
Solutions for the Smart Factory,” 2024, accessed: 2024-09-14.
[Online]. Available: https://apps.boschrexroth.com/microsites/ctrlx-
automation/en/portfolio/ctrlx-flow/

[4] M. Jasprabhjit, N. Mauludin, and R. Y. Zhong, “Smart Automated
Guided Vehicles for Manufacturing in the Context of Industry 4.0,”
Procedia Manufacturing, vol. 26, pp. 1077–1086, 2018.

[5] D. Herrero-Perez and H. Martinez-Barbera, “Modeling Distributed
Transportation Systems Composed of Flexible Automated Guided
Vehicles in Flexible Manufacturing Systems,” IEEE Transactions on
Industrial Informatics, vol. 6, no. 2, pp. 166–180, 2010.

[6] C. Leet, A. Sciortino, and S. Koenig, “Jointly Assigning
Processes to Machines and Generating Plans for Autonomous
Mobile Robots in a Smart Factory,” 2025. [Online]. Available:
https://arxiv.org/abs/2502.21101

[7] J. Yu and S. LaValle, “Multi-agent Path Planning and Network Flow,”
Algorithmic Foundations of Robotics X, pp. 157–173, 2013.

[8] V. Nguyen, P. Obermeier, T. C. Son, T. Schaub, and W. Yeoh,
“Generalized Target Assignment and Path Finding Using Answer
Set Programming.” The International Joint Conference on Artificial
Intelligence, pp. 1216–1223, 2017.

[9] T. K. S. Kumar, S. Jung, and S. Koenig, “A Tree-Based Algorithm
for Construction Robots,” The International Conference on Automated
Planning and Scheduling, pp. 481–489, 2014.

[10] T. Cai, D. Y. Zhang, T. K. S. Kumar, S. Koenig, and N. Ayanian,
“Local Search on Trees and a Framework for Automated Construction
Using Multiple Identical Robots,” The 2016 International Conference
on Autonomous Agents and Multiagent Systems, p. 1301–1302, 2016.

[11] G. Sartoretti, Y. Wu, W. Paivine, T. Kumar, S. Koenig, and H. Choset,
“Distributed Reinforcement Learning for Multi-Robot Decentralized
Collective Construction,” The International Symposium on Distributed
Autonomous Robotic Systems, pp. 35–49, 2018.

[12] E. Lam, P. J. Stuckey, S. Koenig, and T. K. S. Kumar, “Exact
Approaches to the Multi-agent Collective Construction Problem,” The
International Conference on Principles and Practice of Constraint
Programming, pp. 743––758, 2020.

[13] C. Leet, C. Oh, M. Lora, S. Koenig, and P. Nuzzo, “Co-Design of
Topology, Scheduling, and Path Planning in Automated Warehouses,”
The Design, Automation and Test in Europe Conference and Exhibi-
tion, pp. 1–6, 2023.

[14] J. Xu, Y. Xue, G. Hu, T. Lin, J. Gou, T. Yin, H. He, Y. Zhang, and
X. Tang, “A comprehensive review on contact lens for ophthalmic
drug delivery,” Journal of Controlled Release, vol. 281, pp. 97–118,
2018.

[15] S. D. Schaber, D. I. Gerogiorgis, R. Ramachandran, J. M. B. Evans,
P. I. Barton, and B. L. Trout, “Economic Analysis of Integrated
Continuous and Batch Pharmaceutical Manufacturing: A Case Study,”
Industrial and Engineering Chemistry Research., pp. 10 083–10 092,
2011.

[16] N. Efe and P. Dawson, “A Review: Sugar-Based Confectionery and
the Importance of Ingredients,” European Journal of Agriculture and
Food Sciences, vol. 4, pp. 1–8, 2022.

[17] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”
2024, accessed: 2024-09-15. [Online]. Available: www.gurobi.com

