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Abstract

Multi-Agent Path Finding (MAPF) is the challenging problem of finding collision-free
paths for multiple agents, which has a wide range of applications, such as automated ware-
houses, smart manufacturing, and traffic management. Recently, machine learning-based
approaches have become popular in addressing MAPF problems in a decentralized and
potentially generalizing way. Most learning-based MAPF approaches use reinforcement
and imitation learning to train agent policies for decentralized execution under partial ob-
servability. However, current state-of-the-art approaches suffer from a prevalent bias to
micro-aspects of particular MAPF problems, such as congestions in corridors and potential
delays caused by single agents, leading to tight specializations through extensive engineer-
ing via oversized models, reward shaping, path finding algorithms, and communication.
These specializations are generally detrimental to the sample efficiency, i.e., the learning
progress given a certain amount of experience, and generalization to previously unseen sce-
narios. In contrast, curriculum learning offers an elegant and much simpler way of training
agent policies in a step-by-step manner to master all aspects implicitly without extensive
engineering. In this paper, we propose a generative curriculum approach to learning-based
MAPF using Variational Autoencoder Utilized Learning of Terrains (VAULT). We intro-
duce a two-stage framework to (I) train the VAULT via unsupervised learning to obtain
a latent space representation of maps and (II) use the VAULT to generate curricula in
order to improve sample efficiency and generalization of learning-based MAPF methods.
For the second stage, we propose a bi-level curriculum scheme by combining our VAULT
curriculum with a low-level curriculum method to improve sample efficiency further. Our
framework is designed in a modular and general way, where each proposed component
serves its purpose in a black-box manner without considering specific micro-aspects of the
underlying problem. We empirically evaluate our approach in maps of the public MAPF
benchmark set as well as novel artificial maps generated with the VAULT. Our results
demonstrate the effectiveness of the VAULT as a map generator and our VAULT curricu-
lum in improving sample efficiency and generalization of learning-based MAPF methods
compared to alternative approaches. We also demonstrate how data pruning can further
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Figure 1: Overview of learning-based MAPF, which comprises map generation and learning
algorithms to train decentralized agent policies, with some prior work listed here. Our main
contributions are a map generator, namely the VAULT, and a curriculum scheme using the
VAULT for reinforcement learning (RL) algorithms, e.g., CACTUS, PRIMAL, etc.

reduce the dependence on available maps without affecting the generalization potential of
our approach.

1. Introduction

Multi-Agent Path Finding (MAPF) is the challenging problem of finding collision-free paths
for multiple agents, which has a wide range of applications, such as automated warehouses
(Li et al., 2021; Zhang et al., 2023b), smart manufacturing (Zhang et al., 2023a), and
traffic management (Li et al., 2023). Finding optimal conflict-free paths is NP-hard, which
limits the scalability of state-of-the-art MAPF solvers with optimality guarantees (Ratner
& Warmuth, 1986; Yu & LaValle, 2013).

Traditional MAPF solvers are centralized and use heuristic search to plan paths and
resolve potential collisions for all agents (Felner et al., 2018; Li et al., 2019b; Sharon et al.,
2015). Despite recent advances in solving MAPF fast and suboptimally, which can efficiently
scale up to thousands of agents (Li et al., 2022; Okumura, 2023, 2024), these solvers cannot
generalize to novel maps or dynamic changes without replanning and may require manual
adjustments of heuristics (Phan et al., 2024b; Sartoretti et al., 2019). The centralized
design of the solvers poses a major obstacle to dynamic real-time applications, as the costs
of sufficient communication bandwidth and node availability measures are prohibitive for
large-scale systems, where all agents need to communicate with a central computing node,
especially for replanning (Oliehoek & Amato, 2016; Tanenbaum & Van Steen, 2007).

Recently, machine learning-based approaches have become popular in addressing MAPF
problems in a decentralized and potentially generalizing way, as sketched in Figure 1. Most
learning-based MAPF approaches use reinforcement and imitation learning to train agent
policies for decentralized execution under partial observability, e.g., due to noisy and lim-
ited sensors (Phan et al., 2023; Sartoretti et al., 2019). However, current state-of-the-art

2472



Generative Curricula for MAPF via Unsupervised and Reinforcement Learning

Maze

Random

Game Warehouse

Room

City

(a) Coverage with Original Maps

Maze

Random

Generated
Maps

Game Warehouse

Room

City

(b) Coverage with Generated Maps

Figure 2: Illustration of the potential generalization coverage when training with the origi-
nal test maps, e.g., (Stern et al., 2019) (a), or generated maps (b). The former can overfit
on edge cases (black), while the latter can interpolate between those cases (blue), thus gen-
eralizing better. Note that this illustration only sketches the intuition behind our generative
approach and does not necessarily reflect the actual map distribution or alignment.

approaches suffer from a prevalent bias to micro-aspects of particular MAPF problems, such
as congestions in corridors and potential delays caused by single agents, leading to tight spe-
cializations through extensive engineering using oversized models (Sartoretti et al., 2019),
reward shaping (Damani et al., 2021), path finding algorithms (Skrynnik et al., 2024a),
and communication (Skrynnik et al., 2024b; Wang et al., 2023a). These specializations are
generally detrimental to the sample efficiency, i.e., the learning progress given a certain
amount of experience, and generalization to previously unseen scenarios.

In contrast, curriculum learning offers an elegant and much simpler way of training
agent policies in a step-by-step manner to master all aspects implicitly without extensive
engineering. This was demonstrated recently by a novel auto-curriculum approach that
achieved notably higher sample efficiency while requiring less than 5% of the compute, data,
and parameters than prior learning-based MAPF methods (Phan et al., 2024b). To promote
fast and cost-efficient progress in this field, we advocate such directions to reduce tight
specialization in micro-aspects and improve sample efficiency and generalization instead.

So far, most learning-based MAPF approaches have focused on unstructured maps with
random obstacles (Sartoretti et al., 2019; Phan et al., 2024b; Wang et al., 2023a), hand-
crafted maps (Damani et al., 2021), or the original test maps (Skrynnik et al., 2024b; An-
dreychuk et al., 2025), according to Figure 1. This induces bias and can lead to overfitting
on edge cases, as illustrated in Figure 2a.

In this paper, we propose a generative curriculum approach to learning-based MAPF
using Variational Autoencoder Utilized Learning of Terrains (VAULT). To train and use
the VAULT, we describe a modular and general framework where each proposed component
serves its purpose in a black-box manner without considering specific micro-aspects of the
underlying problem. Our contributions are as follows:
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• We introduce a two-stage framework to (I) train the VAULT via unsupervised learning
to obtain a smooth latent space representation of maps to interpolate between edge
cases (Figure 2b) and (II) use the VAULT to generate curricula in order to improve
sample efficiency and generalization of learning-based MAPF methods.

• For the second stage, we propose a bi-level curriculum scheme by combining our
VAULT curriculum with the auto-curriculum method mentioned above to improve
sample efficiency further (Phan et al., 2024a).

• We empirically evaluate our approach in maps of the public MAPF benchmark set as
well as novel artificial maps generated with the VAULT. Our results demonstrate the
effectiveness of the VAULT as a map generator and our VAULT curriculum in improv-
ing sample efficiency and generalization of learning-based MAPF methods compared
to alternative approaches. We also demonstrate how data pruning can further reduce
the dependence on available maps without affecting the generalization potential of our
approach. Code is available at https://github.com/thomyphan/gen-curricula-mapf.

Scope of this Work We focus on unsupervised learning (to train the VAULT) and rein-
forcement learning (to train agent policies) for decentralized MAPF. Any additional mech-
anism, such as integrated imitation learning, path finding algorithms, or communication,
is excluded to avoid distraction from our goal. However, we will discuss them in related
work to distinguish our approach from prior methods and highlight their inability to fully
leverage the generalization potential of machine learning due to extensive engineering.

2. Background

2.1 Multi-Agent Path Finding (MAPF)

We focus on maps as undirected unweighted graphs G = ⟨V, E⟩, where the vertex set V
contains all locations v and the edge set E contains all transitions or movements {u, v}
between adjacent locations u, v ∈ V. An instance I consists of a map G and a set of agents
D = {1, ..., N} with each agent i ∈ D having a start location vstart,i ∈ V and a goal location
vgoal,i ∈ V. At every time step t, each agent i can move along the edges in E or wait at its
current location vt,i ∈ V (Stern et al., 2019). MAPF aims to find a collision-free plan for all
agents. A plan P = {p1, ..., pN} consists of individual paths pi = ⟨pi,1, ..., pi,l(pi)⟩ per agent
i, where {pi,t, pi,t+1} ∈ E , pi,1 = vstart,i, pi,l(pi) = vgoal,i, and l(pi) is the length or travel time
of pi.

In this paper, we consider vertex conflicts ⟨i, j, v, t⟩ that occur when two agents i, j ∈ D
occupy the same location v ∈ V at time step t and edge conflicts ⟨i, j, u, v, t⟩ that occur
when two agents i, j ∈ D traverse the same edge {u, v} ∈ E in opposite directions at time
step t (Stern et al., 2019). A plan P is a solution, i.e., feasible, when it does not have
any vertex or edge conflicts, therefore being collision-free. The goal is to find a solution
that minimizes the flowtime

∑
p∈P l(p) or makespan maxp∈P l(p). The completion rate

ρt =
|{i∈D|vt,i=vgoal,i}|

N ∈ [0, 1] is the fraction of agents at time step t which have reached their
respective goals. An instance I is completely solved when ρH = 1 at some time step H.
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2.2 MAPF as a Stochastic Game

To apply reinforcement learning (RL) to MAPF in a principled way, we need to formulate
the MAPF problem, defined in Section 2.1, as a stochastic game SG = ⟨D,S,A, T ,R,O,Ω⟩,
where D = {1, ..., N} is the set of agents, S is a set of states st, A(st) = A1(st)× ...×AN (st)
is the set of joint actions at = ⟨at,1, ..., at,N ⟩ executable at state st ∈ S, T (st+1|st, at) is
the transition probability, R(st, at) = ⟨rt,1, ..., rt,N ⟩ ∈ RN is the joint reward with rt,i
being the reward of agent i ∈ D, O is a set of local observations ot,i for each agent i,
and Ω(st+1) = ot+1 = ⟨ot+1,1, ..., ot+1,N ⟩ ∈ ON is the subsequent joint observation (Emery-
Montemerlo et al., 2004; Hansen et al., 2004).

Regarding MAPF problems, the set of agents D is equivalent. Given a map G = ⟨V, E⟩,
the state space S is defined by the joint locations of all agents st = ⟨vt,i, ..., vt,N ⟩ ∈ S ⊂ VN ,
where each location in st is unique such that vt,i ̸= vt,j for each agent pair i, j ∈ D with
i ̸= j. The individual action space Ai(st) of each agent i is defined by the degree of its
current location vt,i ∈ V plus a wait action. The state transitions w.r.t. T are deterministic,
where a valid move action will change the current location vt,i of the corresponding agent
i to an adjacent location vt+1,i with {vt,i, vt+1,i} ∈ E . Any attempt to move over a non-
existent edge or cause a collision, i.e., a vertex or edge conflict, is automatically treated as a
wait action. The individual reward rt,i is defined by +1 if agent i reaches its goal vgoal,i, -1
if agent i is not at its goal location vt,i ̸= vgoal,i, and zero if it is staying at its goal location
vgoal,i (Phan et al., 2024b). Each agent i can partially observe the state st through ot,i,
i.e., a local neighborhood around its location vt,i, modeling noisy and limited sensors for
decentralized decision-making (Oliehoek & Amato, 2016; Phan et al., 2023).

Due to the partial observability, each agent i needs to maintain an action-observation
history τt,i = ⟨o0,i, a0,i, ..., at−1,i, ot,i⟩ (Oliehoek & Amato, 2016). π = ⟨π1, ..., πN ⟩ is the
joint policy with local policies πi, where πi(at,i|τt,i) is the action selection probability of
agent i. In the following, we refer to the joint policy as agent policies to express the
decentralization of all agent decisions. Each local policy πi can be evaluated with a value
function Qπ

i (st, at) = Eπ[Rt,i|st, at] for all st ∈ S and at ∈ A(st), where Rt,i =
∑H−1

b=0 γbrt+b,i

is the return of agent i, H > 0 is the horizon, and γ ∈ [0, 1] is the discount factor.

When the discount factor is γ = 1, then the negated return −Rt,i of each agent i is
equivalent to its travel time l(pi) plus a constant reward of +1 from the beginning to time
step t, if vgoal,i was reached, and horizon H otherwise. Therefore, to minimize the MAPF
flowtime, according to Section 2.1 we need to find optimal agent policies π∗ = ⟨π∗

1, ..., π
∗
N ⟩,

which maximize the expected sum of individual returns Qtot for all instances I:

π∗ = argmaxπEπ,I [Qtot(s0, a0)] = argmaxπEπ,I [
∑
i∈D

Qπ
i (s0, a0)] = argminπEπ,I [

∑
i∈D

l(pi)]

(1)

In addition, we need to ensure the maximization of the completion rate ρt to incentivize
feasible solutions for ideally all instances I and avoid local optima, e.g., via exploration.
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2.3 Multi-Agent Reinforcement Learning (Multi-Agent RL)

2.3.1 Policy-Based Reinforcement Learning

To learn optimal policies π∗
i in large state spaces, function approximators π̂i,θ with param-

eters θ are trained with gradient ascent on an estimate of J = Eπ̂,I [R0,i]. Policy gradient
methods use gradients of the following form (Sutton et al., 2000):

Aπ̂
i (st, at)∇θlogπ̂i,θ(at,i|τt,i) (2)

where Aπ̂
i (st, at) = Qπ̂

i (st, at)−V π̂
i (st) is the advantage of agent i and V π̂

i (st) = Eπ̂,I [Rt,i|st]
is its state value function. Actor-critic approaches often approximate Âi ≈ Aπ̂i

i by replacing

Qπ̂
i (st, at) with Rt,i and V π̂

i with Eπ̂i,I [Q
π̂
i ]. Q

π̂
i can be approximated with a critic Q̂i,ω and

parameters ω using value-based RL (Watkins & Dayan, 1992; Mnih et al., 2015).
Alternatively, π̂i,θ can be trained via proximal policy optimization (PPO) by minimizing

the following surrogate loss (Schulman et al., 2017):

LPPOi (θ) = E[min{Âi(st, at)ξt,i(θ), Âi(st, at)clip(ξt,i(θ), 1− ϵ, 1 + ϵ)}] (3)

where ξt,i(θ) =
π̂i,θ(at,i|τt,i)
π̂old
i,θ (at,i|τt,i)

is the policy update ratio and ϵ ∈ [0, 1) is a clipping parameter.

For simplicity, we omit the parameters θ, ω and write π̂i, Q̂i for the rest of the paper.
The effectiveness of the policies strongly depends on the data quality and, therefore, on

the exploration capabilities of the employed RL algorithm (Osband et al., 2019; Schmid-
huber, 1991; Schulman et al., 2017). Sparse reward or hard exploration domains, such as
MAPF, where agents only receive positive rewards when reaching their goals (Section 2.2),
pose a significant challenge to policy-gradient RL algorithms, which can converge to poor
policies due to the lack of informative feedback for the advantage calculation (Eysenbach
et al., 2019; Eysenbach & Levine, 2022; Plappert et al., 2018).

In multi-agent scenarios, independent (policy gradient) RL is not guaranteed to converge
in general due to the non-stationarity caused by simultaneously learning agents (Hernandez-
Leal et al., 2017; Laurent et al., 2011).

2.3.2 Centralized Training Decentralized Execution (CTDE)

For many problems, RL training takes place in a laboratory or in a simulated environment
where global information is available (Foerster et al., 2018; Rashid et al., 2020). There-
fore, state-of-the-art multi-agent RL algorithms approximate centralized value functions Q̂i,
which condition on global states st and joint actions at, and use them as critics in Equation
2 or 3 (Lowe et al., 2017; Foerster et al., 2018; Yu et al., 2022). While the centralized value
functions Q̂i are only required during RL training, the learned policies π̂i fully condition
on local histories τt,i thus enable decentralized execution. Unlike conventional MAPF plans
P , these policies can generalize over a variety of scenarios and thus ideally do not need any
retraining or replanning for novel maps G′ or instances I ′ (Sartoretti et al., 2019).

Q̂i can be approximated separately for each agent i using global information, which
is often done in actor-critic algorithms like MAPPO or MADDPG (Lowe et al., 2017; Yu
et al., 2022). However, this approach lacks a multi-agent credit assignment mechanism for
agent teams, where all agents optimize a common objective, such as Qtot in Equation 1.
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Therefore, a common value function Q̂(τt, at) ≈ Qtot(st, at) can be learned, which is
factorized into ⟨Q̂1, ..., Q̂N ⟩ as local utility functions by using a factorization operator Ψ
(Rashid et al., 2020; Phan et al., 2021, 2023):

Q̂(τt, at) = Ψ(Q̂1(τt,1, at,1), ..., Q̂N (τt,N , at,N )) (4)

In practice, Ψ is realized with deep neural networks, such that ⟨Q̂1, ..., Q̂N ⟩ can be learned
end-to-end by minimizing the mean squared temporal difference (TD) loss (Rashid et al.,
2020; Sunehag et al., 2018). A factorization operator Ψ is decentralizable when satisfying
the IGM (Individual-Global-Max) such that (Son et al., 2019):

argmaxatQ̂(τt, at) =

 argmaxat,1Q̂1(τt,1, at,1)
...

argmaxat,N Q̂N (τt,N , at,N )

 (5)

Satisfying the IGM ensures coordinated behavior at any time step t given an adequate
value function approximation Q̂i per agent i (whose quality depends on the exploration).
Alternatively, Q̂i can serve as individual critics to learn coordinated policies π̂i via actor-
critic RL (Peng et al., 2021; Phan et al., 2021; Su et al., 2021).

There exists a variety of factorization operators Ψ, which satisfy Equation 5 using mono-
tonicity constraints like QMIX (Rashid et al., 2020) or nonlinear transformation like QPLEX
or QTRAN (Son et al., 2019; Wang et al., 2020).

2.4 Curriculum Learning

Curriculum learning is a machine learning paradigm inspired by human learning to master
complex tasks through stepwise solving of easier (sub-)tasks, which are sorted by difficulty
(Bengio et al., 2009; Soviany et al., 2022). The difficulty can depend on various aspects
like the complexity of data samples, the objective function, or the machine learning model
itself (Narvekar et al., 2016; Florensa et al., 2017).

Curriculum learning has been applied to RL to solve hard exploration problems with
sparse rewards and constraints (Narvekar et al., 2020). The methods commonly use self-
play (Tesauro et al., 1995), task graphs with traversal mechanisms (Silva & Costa, 2018),
or automatic task generation (Dennis et al., 2020; Gabor et al., 2019; Wang et al., 2019).

A key challenge of curriculum learning is to determine a suitable sequence of tasks that
are neither too easy nor too difficult for the learner to ensure steady and robust progress
(Florensa et al., 2017; Phan et al., 2024b; Silva & Costa, 2018; Wang et al., 2019).

In this paper, we focus on automatic task generation via artificial maps G′ and instances
I ′ for learning-based MAPF, which is controlled by a flexibly usable generative model and
a black-box optimization algorithm.

2.5 Autoencoder (AE)

2.5.1 Preliminaries

An autoencoder (AE) is a neural network f trained to approximate the identity function
w.r.t. a given dataset X = {x1, ..., xK} with K unlabeled samples of dimension d ≥ 1
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Figure 3: Schematic illustration of an autoencoder. The original input x ∈ X ⊂ Rd, e.g., an
image of a finite dataset X , is passed through the encoder to produce a latent representation
or vector z ∈ Z ⊆ Rc with c < d. The latent representation z is then passed through the
decoder to generate a reconstruction x′ ∈ Rd of the original input x. Note that x′ is not
necessarily included in the original dataset X .

such that f(xk) ≈ xk (Bank et al., 2023; Kramer, 1992; Rumelhart et al., 1986). As
illustrated in Figure 3, an AE consists of a learnable encoder enc : Rd → Rc and decoder
dec : Rc → Rd with d > c1. The encoder compresses data samples x ∈ X ⊂ Rd into a
latent representation or vector z ∈ Z ⊆ Rc with Z denoting the latent space of the AE. The
decoder dec : Rc → Rd, attempts to reconstruct x via z by generating an artificial sample
x′ ∈ Rd. Note that x′ is not necessarily included in the original dataset X . Both encoder
and decoder are neural networks with potentially multiple layers to learn arbitrary abstract
representations of x. AEs are trained via unsupervised learning by minimizing the following
loss function using gradient descent (Baldi, 2012):

LAE
enc,dec = Ex∈X [diff(x, f(x))] (6)

where f(x) = dec(enc(x)) represents the AE, and diff is the reconstruction loss function,
e.g., the mean squared error for numeric data or the cross-entropy loss for categorical data.

AEs are commonly used for compression of complex data and non-linear clustering (Bank
et al., 2023). In fact, AEs can be viewed as a generalization of the principal component
analysis (PCA), being able to learn non-linear manifolds (Japkowicz et al., 2000; Kramer,
1991; Plaut, 2018).

2.5.2 Variational Autoencoder (VAE)

Variational autoencoders (VAE) are an extension of AEs based on variational Bayes infer-
ence (Kingma, 2013). Instead of mapping a sample x to a latent vector z, the VAE encoder
enc maps x to a conditional latent distribution P(z|x). In practice, P(z|x) is approximated
with a multivariate Gaussian distribution qϕ(z|x) = N (µ(x), σ2(x)), where µ(x) is the cen-
troid and σ2(x) is the covariance of the latent distribution associated with x (Baldi, 2012;
Kingma, 2013). A latent vector z ∼ qϕ(·|x) is sampled from the latent distribution and
passed through the decoder dec for reconstruction. Through the distributional representa-
tion qϕ(z|x), VAEs can learn a smooth latent space representation. This allows them to

1. If c ≥ d, the autoencoder only needs to set the weights of d units per layer to one, while setting the
weights of the remaining c− d units to zero. Thus, the bottleneck constraint c < d enforces the learning
of non-trivial latent representations (Bank et al., 2023; Kramer, 1992; Rumelhart et al., 1986).
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interpolate between known data samples and morph them together, which is useful for, e.g.,
image generation (Kingma, 2013). Thus, the decoder in Figure 3 represents a generative
model, which can create artificial samples x′ from any latent vector sample z′ ∈ Rc (Dai &
Wipf, 2019; Van Den Oord et al., 2017).

In addition to the reconstruction loss LAE
enc,dec of Equation 6, a VAE minimizes the

Kullback–Leibler (KL) divergence DKL between qϕ(z|x) and the normal distribution N (0, I)
as a regularizing term (Kingma, 2013):

LVAE
enc,dec = LAE

enc,dec + λEx∈X [DKL(qϕ(z|x),N (0, I))] (7)

where λ ≥ 0 regulates the KL divergence term. The higher λ, the more randomness is
injected into the VAE, whereas smaller λ values lead to more deterministic VAE behavior
and less smooth representations. The VAE reduces to a standard AE, when λ = 0.

Besides data generation, VAEs are also used for efficient processing in complex neural
network architectures, such as modern diffusion models (Esser et al., 2021, 2024; Rombach
et al., 2022) and planning-based decision-making (Asai et al., 2022; Ha & Schmidhuber,
2018; Hafner et al., 2019, 2020, 2021, 2023).

3. Related Work

3.1 Map Generation for Reinforcement Learning

Map generation is often used to create curricula for RL using coevolution or regret-based
learning (Dennis et al., 2020; Jiang et al., 2021; Parker-Holder et al., 2022; Samvelyan et al.,
2023; Wang et al., 2019). Most methods operate directly on the vertex space V, e.g., grid
cells, and only scale to small map sizes, such as 15×15 grids. All learning-based generators
are tightly coupled to the learned agent policies due to being co-trained along with them
(Bolland et al., 2022; Dennis et al., 2020; Samvelyan et al., 2023), which complicates reuse
for other purposes, such as new RL training tasks or unbiased testing of other agent policies.

Our work uses unsupervised learning to train VAEs for map generation in a dedicated
stage without bias toward any agent policy. Therefore, we can flexibly use our map generator
for different training and testing purposes. Instead of optimizing over the vertex space V, we
search the low-dimensional latent space of the VAE via optimization algorithms to generate
larger maps, such as 64× 64 grids, for learning-based MAPF (Section 4.1.1).

3.2 Map Optimization for MAPF

Map optimization for MAPF is an emerging field where layouts are modified to aid tradi-
tional MAPF solvers in maximizing their completion rate (Gao & Prorok, 2023b, 2023a;
Zhang et al., 2023b; Qian et al., 2024). Most approaches operate on the vertex space V and
enforce domain-specific constraints, e.g., the obstacle density and the alignment of obstacle
and goal locations (Gao & Prorok, 2023b; Zhang et al., 2023b).

(Gao & Prorok, 2023b, 2023a) use RL and constraint optimization to generate maps
for MAPF, which only scale to small maps with a handful of obstacles. (Zhang et al.,
2023b; Qian et al., 2024) uses quality diversity (QD) optimization based on MAP-Elites
(Mouret & Clune, 2015). The method optimizes a diverse population of maps under domain-
specific constraints using evolutionary operators and a surrogate fitness function for efficient
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evaluation to improve the completion rate of traditional MAPF solvers. Map connectivity
and betweenness centrality have been used to regulate the difficulty of QD-optimized maps
w.r.t. their empirical hardness for traditional MAPF solvers (Ewing et al., 2022; Ren et al.,
2024; Qian et al., 2024). (Zhang et al., 2023a) proposes a map generator based on neural
cellular automata (NCA) and CMA-ES optimization (Fontaine & Nikolaidis, 2023; Fontaine
et al., 2020) to replicate known structures for arbitrary map sizes.

Our work focuses on map generation for learning-based MAPF, as depicted in Figure 1.
Besides improving the completion rate of RL algorithms, we want to improve their sample
efficiency and generalization capabilities. Therefore, we do not enforce domain-specific
constraints to avoid bias. The notion of difficulty for RL algorithms depends on the amount
of exploration needed to progress (Ecoffet et al., 2019), in contrast to traditional MAPF
solvers, which seem more sensitive to map connectivity and betweenness centrality (Ewing
et al., 2022; Ren et al., 2024).

3.3 Machine Learning for Traditional MAPF Solvers

Machine learning is increasingly integrated into traditional MAPF solvers to guide search
algorithms or select appropriate MAPF solvers for certain instances (Huang et al., 2021,
2022; Kaduri et al., 2020; Ren et al., 2021; Yan & Wu, 2024). Most techniques are offline
learning approaches based on supervised or imitation learning, where scores or recommen-
dation labels are provided by an oracle, e.g., a traditional MAPF solver or a human expert
(Huang et al., 2022; Kaduri et al., 2020; Zhang et al., 2022). Multi-armed bandit algo-
rithms have been used recently for online learning in anytime MAPF to further improve the
scalability and effectiveness (Phan et al., 2024, 2025). A broad overview of the integration
of machine learning techniques in MAPF is provided in (Alkazzi & Okumura, 2024). De-
spite the increasing popularity of machine learning techniques, the enhanced MAPF solvers
remain centralized, thus being limited regarding generalization, dynamic changes, and pro-
hibitive cost regarding communication and availability measures of central computing nodes
(Oliehoek & Amato, 2016; Sartoretti et al., 2019; Tanenbaum & Van Steen, 2007).

Our work focuses on machine learning techniques that enable decentralized and general-
izing MAPF, i.e., agent policies that can be executed separately under partial observability,
ideally in previously unseen environments. In particular, we use unsupervised learning to
train map generators and reinforcement learning to train agent policies by using the map
generators to create curricula. According to our scope defined in the Introduction and
Figure 1, we do not regard combinations with traditional centralized MAPF solvers yet.

3.4 Learning-Based MAPF for Decentralized Planning

3.4.1 Reinforcement Learning-Based MAPF

Many learning-based MAPF approaches use RL to train agent policies for decentralized
planning under partial observability. Since MAPF is a hard exploration problem, imita-
tion learning is often employed by using a traditional MAPF solver as a “teacher”, which
generates action recommendations for small-scale scenarios (Sartoretti et al., 2019; Damani
et al., 2021; Li et al., 2020; Skrynnik et al., 2024a; Wang et al., 2023a). To further enhance
the RL training, rewards are extensively shaped by assigning handcrafted penalties for very
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specific situations, such as collision attempts, out-of-boundary moves, and blocking, which
is heuristically determined by a separate A* search (Sartoretti et al., 2019). While this
may be promising for particular map categories, e.g., unstructured maps, it can funda-
mentally change our original objective of Equation 1 and lead to unintended side effects
or reward gaming when used for novel maps with different structures (Devlin & Kudenko,
2011; Foerster et al., 2018; Skalse et al., 2022).

Pathfinding via Reinforcement and Imitation Multi-Agent Learning (PRIMAL) is the
first learning-based MAPF approach, combining RL, imitation learning, and reward shap-
ing (Sartoretti et al., 2019). PRIMAL employs a considerably complex neural network
architecture composed of convolutional neural networks (CNN), recurrent neural networks
(RNN), multi-input streams for an agent’s observation and its coordinates for training and
execution. PRIMAL was succeeded by PRIMAL2, adding convention learning, i.e., spe-
cialization in handcrafted corridor scenarios (Damani et al., 2021), and SCRIMP, adding
communication and a more advanced neural network architecture with residual networks
and attention mechanisms (Wang et al., 2023a). Large neural networks can memorize
training data due to overparameterization, which eases specialization in micro-aspects of
particular MAPF problems (Baldi & Sadowski, 2013; Srivastava et al., 2014; Wager et al.,
2013). However, tight specializations are detrimental to generalization, which is known as
overfitting (Srivastava et al., 2014).

Alternative approaches focus on further micro-aspects, such as the locality of agent
interaction and periodic neighborhood sensing, using path finding algorithms (Skrynnik
et al., 2024a), Monte-Carlo algorithms (Skrynnik et al., 2024a), and large foundation models
(Andreychuk et al., 2025). In most cases, a plain RL algorithm like PPO is used to train
agent policies. We particularly highlight CostTracer, which is a PPO variant guided by
modified observations and rewards via best-first-search, and used for decentralized online
planning, e.g., Monte-Carlo tree search (Skrynnik et al., 2024a). Despite depending on an
online planning algorithm for execution, CostTracer uses a simpler learning architecture
than previous methods, like PRIMAL, PRIMAL2, and SCRIMP.

Most of the approaches mentioned above use independent RL, without any credit as-
signment mechanism, such as value factorization, according to Equations 4 and 5 (Rashid
et al., 2020; Sunehag et al., 2018). Thus, there is no guarantee of convergence due to the
non-stationarity, caused by simultaneously learning agents (Hernandez-Leal et al., 2017;
Laurent et al., 2011), and effective coordination w.r.t. the IGM condition of Equation 5
(Son et al., 2019; Wang et al., 2020) – regardless of the engineering effort.

3.4.2 Curriculum Learning-Based MAPF

Besides the lack of modern multi-agent RL techniques, the extensive engineering of methods
described above also indicates a lack of exploration, which can cause convergence to poor
policies, as mentioned in Section 2.3.1. To learn effective policies, an agent must explore
its environment sufficiently to understand its dynamics (Sutton & Barto, 2018). The lack
of exploration in prior learning-based MAPF approaches can have various reasons, such
as bias through imitation learning, poorly designed reward functions, a strong dependence
on additional replanning algorithms, and overfitting due to oversized neural networks and
handcrafted scenarios (Silver et al., 2017; Skalse et al., 2022; Srivastava et al., 2014)
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(a) Example scenario (b) Original CACTUS (c) Modified CACTUS

Figure 4: Curriculum scheme of CACTUS (Phan et al., 2024b). (a) Example scenario with
an agent as a blue circle, black obstacles, and an initial goal allocation area. The goal is
randomly allocated anywhere in the yellow region. (b) Original CACTUS variant increasing
the goal allocation area with the Chebyshev distance. (c) Modified CACTUS variant, as
used in this paper, increasing the goal allocation area with the geodesic distance.

Curriculum learning is promising to improve exploration while enabling methods that
are both simple and effective. Some works proposed manually designed curricula to enhance
PRIMAL, where agents focus on particular skills, e.g., navigation, before moving on to the
next task (Zhao et al., 2023; Pham & Bera, 2023). However, these approaches also rely on
oversized models and reward shaping, limiting computational efficiency and generalization
potential (Zhao et al., 2023; Pham & Bera, 2023).

Confidence-based Auto-Curriculum for Team Update Stability (CACTUS) is the first
auto-curriculum approach to learning-based MAPF (Phan et al., 2024b). As illustrated in
Figure 4, CACTUS follows a simple reverse curriculum scheme of randomly placing goal
locations within close vicinity of all agents and gradually increasing their goal allocation
areas, according to the RL progress, which is assessed with a confidence-based measure.
The size of the goal allocation areas is determined by a distance function, e.g., Euclidean,
Chebyshev, or geodesic distance. In contrast to other learning-based MAPF approaches,
CACTUS uses value factorization as a credit-assignment mechanism for decentralized co-
ordination and convergence in a general way without domain-specific engineering (Phan
et al., 2021; Rashid et al., 2020; Wang et al., 2020). The pseudocode and hyperparam-
eters are provided in Appendix A.2.4. CACTUS demonstrated superior sample efficiency
to PRIMAL with less than 5% of the PRIMAL effort regarding computational resources,
training data, and neural network size. (Phan et al., 2024a) provides further extensions and
theoretical insights about the effectiveness and efficiency of CACTUS.

3.4.3 Summary and Limitations of Prior Work

In the last half-decade, the prevalent focus on micro-aspects of particular MAPF problems
and the extensive engineering of methods have become the norm in learning-based MAPF
(Alkazzi & Okumura, 2024), leading to a lack of sample efficiency and generalization, and
slow progress in our field with only a handful of publications in top-tier venues per year.
This contrasts the fast-evolving multi-agent RL community (Gronauer & Diepold, 2022;
Hernandez-Leal et al., 2019), which uses much simpler and general methods for complex
and large-scale tasks, e.g., such as video games (Rashid et al., 2020; Foerster et al., 2018;
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Phan et al., 2021, 2023; Yu et al., 2022). This trend bears the risk of “reinventing the
wheel” and missing out on the latest advances that could help to improve and generalize
our methods (Phan et al., 2021; Rashid et al., 2020; Son et al., 2019; Wang et al., 2020).

We provide an overview of state-of-the-art learning-based MAPF approaches and their
additional components and mechanisms beyond RL and basic neural networks, such as
feedforward networks, CNNs, and RNNs, in Table 1. The additions are grouped according
to the level of bias they induce regarding domain-specific aspects:

(I) The machine learning techniques make abstract assumptions, e.g., decomposability of
tasks for curriculum learning, or expert data for imitation learning, but they can be
transferred to other domains due to not being MAPF or navigation-specific.

(II) The neural network architectures can have inductive biases that make certain assump-
tions about the data, e.g., CNNs for matrix or tensor data, RNNs for sequence data,
and attention mechanisms for high-dimensional inputs of varying sizes. The generality
of these architectures depends on the problem, e.g., matrices could represent images,
spatial structures in a grid world, or adjacency matrices of graphs.

(III) The additions are designed explicitly for MAPF or navigation-related aspects and
cannot be trivially transferred to other domains, e.g., convention learning for corridors
may be less relevant for airspace coordination, where avoiding movable obstacles is
more important (thus requiring new handcrafted scenarios).

Table 1 highlights the complexity and bias induced by prior work like PRIMAL, PRI-
MAL2, and SCRIMP, especially regarding the additions in aspect group (III), which limits
transferability to other domains and generalization beyond the scenarios of the training
distribution. For example, methods specializing in corridors could do well in 2D multi-
robot warehouses but not necessarily in 3D airspace coordination with movable obstacles
of different sizes and variable speeds, e.g., birds and helicopters (Ho et al., 2022b, 2022a).
Reward shaping also limits generalization since obstacle and collision avoidance might need
different penalties for different map categories to avoid unintended side effects and reward
gaming (Skalse et al., 2022).

As mentioned in Section 3.4.2, most of these additions are presumably (unintended) com-
pensation measures for outdated multi-agent RL technology and insufficient exploration, as
curriculum approaches like CACTUS do not require extensive engineering effort to learn
effective agent policies (Phan et al., 2024b). This allows for much simpler and more general
techniques, which can be transferred to other domains more easily. In addition to the tech-
nical merits, this also has positive societal benefits due to reduced energy consumption and
easier usability for researchers and students without the need for vast computing resources.

So far, most works have focused on policy learning algorithms and used unstructured
maps (Phan et al., 2024b; Sartoretti et al., 2019; Wang et al., 2023a), handcrafted scenarios
(Damani et al., 2021), or the actual test maps (Skrynnik et al., 2024a, 2024b) for training,
as shown in Figure 1, limiting their generalization potential.

To this end, we propose a generative curriculum approach using the VAULT to create
artificial maps for sample-efficient and generalizing RL training. As specified in Table 1,
our VAULT approach adds unsupervised learning to the curriculum learning to train a VAE
for map generation that is unbiased toward the agent policies and, therefore, flexibly usable
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Table 1: Overview of state-of-the-art learning-based MAPF approaches and their additional
components and mechanisms beyond RL and basic neural networks, such as feedforward
networks, CNNs, and RNNs. The additions are grouped according to the level of bias they
induce w.r.t. domain-specific aspects, where (I) represents the least and (III) the most
biased additions. Additions that are not directly related to any machine learning technique
(except for additional data or inputs) are highlighted in italics.

PRIMAL PRIMAL2 SCRIMP CostTracer CACTUS VAULT
(I) Machine Learning Techniques

Curriculum
Learning

✗ ✗ ✗ ✗ ✓ ✓

Unsupervised
Learning

✗ ✗ ✗ ✗ ✗ ✓

Imitation
Learning

✓ ✓ ✓ ✗ ✗ ✗

(II) Neural Network Additions
Multi-Input

Stream
✓ ✓ ✓ ✗ ✗ ✗

Residual
Networks

✗ ✗ ✓ ✓ ✗ ✗

Attention
Mechanisms

✗ ✗ ✓ ✗ ✗ ✗

(III) Domain-Specific Additions
Reward
Shaping

✓ ✓ ✓ ✓ ✗ ✗

Handcrafted
Conventions

✗ ✓ ✗ ✗ ✗ ✗

Path Finding
Algorithms

✓ ✓ ✓ ✓ ✗ ✗

Communication
Channel

✗ ✗ ✓ ✗ ✗ ✗

for different training and testing purposes. We employ an optimization algorithm to search
the latent space of the VAULT in order to improve sample efficiency and generalization of
the agent policies without further updates or adjustments to the VAULT. In the following,
we will describe all components of our curriculum approach in more detail.

4. Generative Curricula for Learning-Based MAPF

We now introduce our two-stage framework to generate curricula for learning-based MAPF
via Variational Autoencoder Utilized Learning of Terrains (VAULT), as illustrated in Figure
5. At Stage I, we train the VAULT as an artificial map generator using unsupervised
learning. At Stage II, we use the fully trained VAULT to generate curricula based on maps
G′ or instances I ′ for RL training2 of agent policies π̂. Our goal is to improve sample
efficiency and generalization of learning-based MAPF methods.

2. To avoid confusion about the term “training” regarding the VAULT and the actual agent policies π̂, we
refer to the latter as “RL training”, according to our focus explained in the Introduction.
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Encoder Decoder

Original Map

(I) VAULT Training

VAULT Generator

Reconstructed MapLatent
Distribution

Latent Vector
Sample

Decoder

Generated Maps

Test Maps

Feedback

Agent Policies Agent Policy
Training

Agent Policy
Evaluation

Latent Vector
Samples

(II) VAULT Curriculum

Optimization
Algorithm

Figure 5: Overview of our two-stage framework. All blue components represent our con-
tributions integrated into the established framework of learning-based MAPF, as shown in
Figure 1, which is represented by the gray components in Stage II. (I) VAULT Training:
A variational autoencoder (VAE) is trained on a set of maps G ∈ X . The VAE decoder
represents the VAULT generator or VAULT for short. (II) VAULT Curriculum: An
optimization algorithm searches the latent space of the VAULT with a parametrized distri-
bution Cη(z

′) to generate maps for the RL training of agent policies π̂. The policies π̂ are
evaluated with test maps G∗ ∈ X ∗, listed in Table 2, for feedback to update the parameters
η in order to refine the map generation. More details on Stage II are illustrated in Figure 11.
Note that the VAULT is only trained once at Stage I and remains unchanged throughout
Stage II, thus can be flexibly used for different training and testing purposes.
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While Stage I only needs to be run once to train the VAULT (and potentially pruned
versions of it), Stage II can be run arbitrarily often by reusing the fully trained VAULT for
generative curricula without further updates to it. This flexibility enables further research
with a common generative model without the need to train new ones from scratch.

4.1 Stage I: VAULT Training

We now describe our approach to training the VAULT using all maps G of a dataset X , as
depicted in Figure 5 (top). We provide intermediate results of this stage to visualize and
motivate the introduced concepts for the subsequent sections.

4.1.1 Data Preparation

For simplicity and computational efficiency, we encode all maps G as binary matrices, which
can represent obstacle locations in a 2D grid world or the adjacency matrix of a graph with
unit edge weights, according to Section 2.1. More general representations, e.g., for arbitrary
edge weights or whole instances I with agent locations, will require more advanced learning
models, such as transformers and graph attention networks (Vaswani et al., 2017; Veličković
et al., 2018), which is out of scope of this work.

To train the VAULT, we create a map dataset X from the 2D grid maps of the public
MAPF benchmark set (Stern et al., 2019), including the map categories m ∈ {Random,
Game, City, Warehouse, Room, Maze}, as listed in Table 2. Empty maps are not included in
X because they are trivial to reconstruct.

Table 2: The map categories m of the public MAPF benchmark set (Stern et al., 2019),
considered in this paper. We list the test maps G∗ ∈ X ∗ and their sizes, as used in our
experiments in Section 6, and indicate if the map categories are used for training the VAULT
and the CoreVAULT as its pruned version, which is explained later in Section 4.1.3.

Category m VAULT? CoreVAULT? Test Map G∗ Size of G∗

Empty ✗ ✗ empty-48-48 48× 48

Random ✓ ✓ random-64-64-10 64× 64

City ✓ (✓) Paris 1 256 256× 256

Game ✓ (✓) den520d 256× 257

Warehouse ✓ (✓) warehouse-10-20-10-2-2 170× 84

Room ✓ ✓ room-64-64-16 64× 64

Maze ✓ (✓) maze-128-128-2 128× 128

For each map, we extract random 64 × 64 subgrids which are randomly rotated and
flipped to augment and diversify our dataset (Shorten & Khoshgoftaar, 2019; Wang et al.,
2017). Focusing on fixed-size (sub)maps simplifies the VAULT curriculum at Stage II so
that we can optimize over a fixed-dimensional latent space. It also improves the diversity
of our dataset because we can focus on different regions of the same map. Therefore, RL
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training on such (sub)maps can reduce bias toward the original benchmark maps to some
extent. Our dataset X is balanced such that it contains an equal amount of 2, 000 (sub)maps
per category m considered for training, i.e., |X | = 12, 000 (sub)maps in total.

4.1.2 Training and Evaluation

The encoder enc of our VAE consists of several convolutional layers, which successively
reduce the size of the original input G with d = 64 × 64 = 4, 096 dimensions. The final
convolution of enc is processed by two fully connected output heads of dimension c = 128 <
d to obtain the mean vector µ(G) and covariance σ2(G) of the approximate latent space
distribution qϕ(z|G), as shown in Figure 5 (top). A latent vector sample z ∼ qϕ(·|G) is used
to reconstruct G via the decoder dec, which processes the c-dimensional vector z with a
fully connected layer and several deconvolutional layers to restore the original map size of
d = 64× 64 = 4, 096. The decoder output is processed by a sigmoid function to normalize
the output values between 0 and 1. More details are in Appendix A.1.1.

To train the VAE, we minimize the loss function of Equation 7, where the reconstruction
loss function diffVAULT is defined by the log loss or binary cross-entropy loss:

diffVAULT(G,G′) =
1

d

d∑
b=1

[
xblogx

′
b + (1− xb)log(1− x′b)

]
(8)

where xb and x′b are the bth entry of the flattened binary matrices G and G′, respectively.
The complete VAE loss function, according to Equation 7, is calculated with our dataset

X from Section 4.1.1 and minimized iteratively via gradient descent. The VAULT training
is formulated in Algorithm 1, where X is the map dataset, enc is the encoder network, dec
is the decoder network, representing the actual VAULT as a generative model, and λ is the
VAE regularization or smoothing factor. The training stops when the VAE loss of Equation
7 converges or some time limit is exceeded.

Algorithm 1 VAULT: Variational Autoencoder Utilized Learning of Terrains (Stage I)

1: procedure TrainingTheVAULT(X , enc, dec, λ)
2: Initialize the learning parameters of enc and dec
3: while VAE not converged and time limit not exceeded do
4: LVAE

enc,dec ← 0
5: for map G in X do
6: qϕ(·|G)← enc(G) ▷ Encode map G into a latent space distribution
7: z ∼ qϕ(·|G) ▷ Sample a latent vector
8: G′ ← dec(z) ▷ Reconstruct map G from the latent vector sample
9: LVAE

G ← diffVAULT(G,G′) ▷ Reconstruction loss of Equation 8
10: LVAE

G ← LVAE
G + λDKL(qϕ(z|G),N (0, I)) ▷ KL regularization

11: LVAE
enc,dec ← LVAE

enc,dec +
1
|X |L

VAE
G

12: Calculate gradients of enc and dec via the VAE loss LVAE
enc,dec

13: Apply gradient descent to the parameters of enc and dec

14: return dec ▷ The actual VAULT, our generative model for learning-based MAPF
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Original
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Random City Game Warehouse Room Maze
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Figure 6: Map reconstruction examples of random 64×64 subgrids of the original benchmark
maps (Table 2) using the fully trained VAE of the VAULT.

Figure 7: Examples of artificial maps G′ generated with the VAULT using random sampling
of its latent space (Figure 5).

Note that the training procedure is completely unsupervised. Even though we know the
corresponding map categories m of all maps Gm ∈ X , according to Table 2, the VAE itself
is unaware of them and operates solely on the binary matrices without any labels.

Figure 6 shows some map reconstruction examples. Random and Room maps can be
reconstructed accurately in most cases. While our VAE captures most of the coarse features
of all map categories, it can be inaccurate regarding particular cells or regions, causing shifts
in obstacles, e.g., in Warehouse or Maze maps. However, our VAE is unable to reconstruct
any City map accurately.

By sampling random vectors z′ ∈ Rc of dimension c = 128, we can use the VAULT,
i.e., the decoder of our VAE, to generate artificial maps (Baldi, 2012; Kingma, 2013).
Some examples are shown in Figure 7. The VAULT can replicate certain structures, like
(incomplete) rooms, warehouse shelves, or random obstacles. Interestingly, many generated
maps are morphed with features of different map categoriesm in a way that is non-existent in
the original MAPF benchmark set (Stern et al., 2019). While this does not seem helpful for
reconstruction purposes, it is actually intriguing for learning-based MAPF. The morphing
introduces emergent novel maps G′ that are not contained in the test map set X ∗, thus can
improve generalization in learning-based MAPF without explicitly specializing in micro-
aspects, handcrafted scenarios, or even the original test maps G∗ ∈ X ∗, in contrast to
(Sartoretti et al., 2019; Damani et al., 2021; Skrynnik et al., 2024b; Wang et al., 2023a).
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Cluster Threshold

t-SNE Embedding
of the Training Maps

Figure 8: Evaluation of the VAULT model. Top: The average reconstruction losses per
map category m used for training the VAULT (Table 2) in descending order. Note the
logarithmic scale on the y-axis. Bottom: Two-dimensional t-SNE embedding of the learned
latent representation of all training maps, depicted as colored points. The colors represent
the corresponding map category shown at the top. The blue and black point clusters can
be aggregated into separate clusters, as indicated by the dotted purple boxes and losses.

Figure 8 (top) shows the average reconstruction losses per map category m used for
training the VAULT. According to the loss values, our VAE can easily reconstruct Random
and Room maps with very low loss values. Figure 8 (bottom) shows a two-dimensional t-SNE
embedding of the learned latent representation for each training map G ∈ X , as a non-linear
2D projection of 128-dimensional z vectors, visualizing how the training data is aligned in
the latent space. The VAE neatly clusters Random and Room maps (blue and black points,
respectively), while all other map categories are mixed together in a larger and less cohesive
structure. This alignment suggests that some map categories may be redundant and thus
can be pruned for better generalization and efficiency (Sorscher et al., 2022; Toneva et al.,
2019; Yang et al., 2023), which we will explore in the next section.
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4.1.3 CoreVAULT Training via Data Pruning

In the machine learning community, a common viewpoint is that “training bigger models
on bigger datasets with larger computational resources is the sole key” to progress in AI
research (Sachdeva & McAuley, 2023). In contrast to this viewpoint, data pruning or core
set construction techniques have been proposed to extract subsets X̂ ⊆ X of high-quality
data from the original dataset (Bachem et al., 2017; Sorscher et al., 2022; Toneva et al.,
2019; Yang et al., 2023). Training on such a pruned dataset X̂ should not lead to reduced
performance, e.g., prediction accuracy, but avoid tight coupling with irrelevant data, thus
improving generalization and training efficiency by reducing the computational demand,
e.g., for loss calculations (Sachdeva & McAuley, 2023; Sorscher et al., 2022).

Based on our VAULT evaluation in Figure 6, we propose a simple category-based method
of constructing X̂ ⊆ X . We define X̂ =

⋃
b

Gb via clusters Gb obtained through the

VAE f(·) = dec(enc(·))3 of the original VAULT in Section 4.1.2. The clusters are de-
fined by a user-defined loss threshold δrec and the average reconstruction loss LAE

m =
1
|X |

∑
G∈X diffVAULT(G, f(G)) of each map category m. All maps Gm of a category m

with LAE
m < δrec are assigned to a separate cluster Gb. Otherwise, they are assigned to a

default cluster Gdefault. The pruned dataset X̂ is constructed by joining all clusters Gb and
a subset G′default ⊆ Gdefault, representing a single map category of the default cluster Gdefault
as the default representative. Thus, we can discard all remaining maps in Gdefault \ G′default.

Our data pruning method is formulated in Algorithm 2, where f represents our original
VAE trained earlier in Section 4.1.2, X is our original dataset of Section 4.1.1, and δrec is a
user-defined loss threshold. The resulting dataset X̂ can be used to train the CoreVAULT.

Algorithm 2 Data Pruning for the CoreVAULT (Stage I)

1: procedure DataPruning(f,X , δrec)
2: X̂ ← ∅ and b← 1
3: Mdefault ← ∅ ▷ Map categories representing the default cluster Gdefault
4: for map category m in {City, ..., Maze} do ▷ Maps for VAULT training (Table 2)
5: Gb ← {G ∈ X |G belongs to category m} ▷ Cluster candidate
6: LAE

m = 1
|Gb|

∑
G∈Gb

diffVAULT(G, f(G)) ▷ Average reconstruction loss, Equation 8

7: if LAE
m < δrec then

8: X̂ ← X̂ ∪ Gb and b← b+ 1 ▷ Add cluster candidate to the pruned dataset
9: else

10: Mdefault ←Mdefault ∪ {m}
11: Define a default representative G′default via a random category m ∈Mdefault

12: X̂ ← X̂ ∪ G′default
13: return X̂ ▷ The pruned dataset for training the CoreVAULT

Applying Algorithm 2 to our original dataset X with δrec = 10−2 leads to the Random

and Room clusters, as shown in Figure 8. All remaining points represent the default cluster
Gdefault. Thus, X̂ consists of three map categories, namely Random, Room, and any other

3. In this case, we treat our VAE as a deterministic AE (Section 2.5.1) by using z = µ(G) for reconstruction.
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Random

GameCity Warehouse Maze

Room

with Default Representative

Figure 9: t-SNE embeddings of the learned latent representations of four CoreVAULT mod-
els trained with different default representatives, i.e., Game, City, Warehouse, or Maze maps.
While Random and Room maps are always separated from each other, the default represen-
tatives tend to “connect” both categories by intercepting or surrounding their clusters.

City as the Default Representative Game as the Default Representative

Warehouse as the Default Representative Maze as the Default Representative

Figure 10: Average reconstruction losses of different CoreVAULT models with a default
representative from Gdefault, according to Algorithm 2 and Figure 8. Note the logarithmic
scale on the y-axis. The purple dotted lines indicate the loss threshold δrec = 0.02, i.e., the
average reconstruction loss of our original VAULT, to determine the clusters in Figure 8.

category as the default representative. With X̂ we can further reduce bias in our generative
model, i.e., the CoreVAULT, toward the test maps G∗ ∈ X ∗ and improve generalization.

Including a default representative G′default ⊆ Gdefault in X̂ can help to avoid bias toward
Random and Room maps which can be easily replicated by the VAULT. While Random and
Room are always separated from each other in the latent space, according to Figures 8 and 9,
the default representatives tend to “connect” both categories by intercepting or surrounding
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Figure 11: Overview of our basic curriculum scheme using the VAULT (or CoreVAULT).
An optimization algorithm is used to search the latent space. Before each training cycle
of Eepoch ≥ 1 epochs, i.e., agent policy updates, a population of B artificial maps G′ with
1 ≤ B ≤ Eepoch is generated, using a parametrized distribution Cη(z

′). The agent policies
π̂ are trained on these maps using some RL algorithm (Phan et al., 2024b; Sartoretti et al.,
2019; Skrynnik et al., 2024b). After Eepoch epochs of RL training, the agent policies π̂
are evaluated in test maps G∗

m of different categories m, listed in Table 2, to determine
the completion rate ρmH per test map. The median completion rate ρ∗ of all ρmH is used to
update the parameters η to refine the map generation for future training cycles.

their clusters, thus enabling a smooth transition between them. As shown in Figure 6, the
maps of Gdefault are often morphed with other maps in generated versions, thus offering the
potential to improve generalization to unseen maps that are substantially different from
Random and Room maps. Our experimental results in Sections 6.3 and 6.4 suggest that
omitting the default representative can affect the sample efficiency of RL training.

In principle, the pruned dataset X̂ can be refined further via fixed-point iteration by
alternately running Algorithms 1 and 2 until X̂ does not change. Since the reconstruction
losses of all CoreVAULT models in Figure 10 suggest that the fixed-point is already reached
with our clustering in Figure 8, we defer any further investigation to future work.

Training a CoreVAULT model, in addition to our original VAULT, adds roughly 50%
(200% if we train all four variants of Figures 9 and 10) of extra computational effort to our
Stage I. However, this is only a one-time effort since the CoreVAULT can be reused in the
subsequent Stage II without further updates or adjustments, as explained above.

4.2 Stage II: VAULT Curriculum

We can now use the fully trained VAULT (or CoreVAULT) for learning-based MAPF to
generate curricula via artificial maps G′ or instances I ′. We will first propose a basic
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curriculum scheme solely based on map generation for any learning-based MAPF method
using latent space optimization, and then introduce a bi-level curriculum scheme to generate
whole instances by combining our VAULT curriculum with CACTUS (Phan et al., 2024b).

4.2.1 Basic Curriculum Scheme

Figure 11 provides a general overview of our basic curriculum scheme. An optimization
algorithm is used to search the latent space of the VAULT. RL training of agent policies π̂
is conducted in epochs of Eepisode ≥ 1 episodes, i.e., instance trials of a maximum of H time
steps before the instance is reset. After each epoch e, the agent policies π̂ are updated using
some RL algorithm (Phan et al., 2024b; Sartoretti et al., 2019; Skrynnik et al., 2024b).

Algorithm 3 Basic Curriculum Scheme with the VAULT or CoreVAULT (Stage II)

1: procedure VAULTCurriculum(VAULT,Θ,Φ,X ∗)
2: Initialize the parameters η, θ, ω of Cη, π̂, Q̂, respectively
3: ρ+ ← 0 ▷ Highest median completion rate so far
4: while time budget not exceeded do
5: Bpopulation ← ∅ and Gtrain ← ∅ ▷ Population of latent vectors and maps
6: for counter b in 1, ..., B do
7: z′ ∼ Cη(·)
8: Bpopulation ← Bpopulation ∪ {z′} and Gtrain ← Gtrain ∪ {VAULT(z′)}
9: for epoch e in 1, ..., Eepoch do

10: Randomly select a map G′ from Gtrain
11: Run Eepisode episodes with random instances on G′

12: Use RL algorithm Θ to update θ, ω for agent policies π̂ and value function Q̂

13: for test map category m in {Empty, ..., Maze} do ▷ See Table 2
14: Run Eepisode episodes with predefined test instances on G∗

m ∈ X ∗

15: Record the completion rate ρmH for the map category m represented by G∗
m

16: ρ∗ ← medianm{ρmH}
17: if ρ∗ > ρ+ then
18: Use optimization algorithm Φ to update η for Cη using Bpopulation and ρ∗

19: ρ+ ← ρ∗

20: return π̂ ▷ Fully trained agent policies for decentralized MAPF

Before each training cycle of Eepoch ≥ 1 epochs, a population of B artificial maps G′

with 1 ≤ B ≤ Eepoch is generated, using a parametrized distribution Cη(z
′). The agent

policies π̂ are trained on these maps via Eepisode episodes. After Eepoch epochs of RL
training, the agent policies π̂ are evaluated in test maps G∗

m ∈ X ∗ of different categories
m, listed in Table 2, to determine the completion rate ρmH , i.e., the fraction of agents that
reached their goal locations, per test map G∗

m. Unlike MAPF-specific objective measures,
such as the travel time, flowtime, or makespan, whose magnitudes depend on the maps and
instances, the completion rate ρmH ∈ [0, 1] is a normalized measure that can be aggregated
straightforwardly over all map categories. We use the median completion rate ρ∗ of all ρmH
to update the parameters η of Cη to refine the map generation for future training cycles.
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Training Cycle 1 Training Cycle 2 Training Cycle 3

Figure 12: Illustration of the Cross-Entropy (CE) method for a one-dimensional Gaussian
distribution, inspired by (Belzner, 2016). The dashed blue line represents the unknown
target distribution of the optimal latent value. The solid red line represents an adaptive
Gaussian distribution that is updated iteratively via maximum likelihood estimation based
on previously generated yellow samples for map generation (examples at the bottom).

Alternative test measures for updating η would be the average and the worst-case com-
pletion rate. The former induces bias toward easy maps, whose high completion rates can
skew the overall generalization assessment, while the latter induces bias towards difficult
maps, where progress is slow and thus leads to a stagnating curriculum. The median offers
a tradeoff between both extremes and is, therefore, our preferred test measure.

The complete formulation of our basic curriculum scheme is provided in Algorithm 3,
where the VAULT is a generative model, e.g., represented by a VAE decoder, that can
create maps G′ from latent vectors z′, Θ is an RL algorithm to train agent policies π̂, Φ
is an optimization algorithm to search the latent space of the VAULT via a distribution
Cη, and X ∗ is the test map set to periodically evaluate the agent policies π̂ (Lines 13–15 in
Algorithm 3) and update the distribution parameters η (Line 18 in Algorithm 3).

In the following, we briefly discuss two simple optimization algorithms for Φ and Cη:

Random Sampling The easiest way of implementing Cη is random uniform sampling of
latent vectors z′ with η = ∅. In this case, we generate random maps G′ via the VAULT (or
CoreVAULT) similar to the ones shown in Figure 6 without any adaptation, according to
Line 18 of Algorithm 3. Therefore, the RL training and generalization progress completely
depend on the underlying RL algorithm Θ and the quality of the generated maps G′.

Cross-Entropy (CE) Method The Cross-Entropy (CE) method offers an adaptive and
black-box approach to find promising regions in the latent space to improve sample efficiency
and generalization (Rubinstein, 1997). These regions are approximated with a parametrized
distribution Cη, which is initialized as a flat distribution of high variance. The parameters
η are continuously updated via maximum likelihood estimation, according to the median
completion rate ρ∗, to gradually move the probability mass of Cη toward promising regions in
the latent space. We consider a simplified CE variant by modeling Cη as a spherical Gaussian
N (µ,Σ) with a mean vector µ and a covariance Σ = σ2

max1, representing a diagonal matrix
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Figure 13: Illustration of our bi-level curriculum scheme combining our VAULT curriculum
(Section 4.2.1) and CACTUS (Phan et al., 2024b) to generate whole instances I ′ for sample-
efficient and generalizing RL training of agent policies π̂. The formulation of CACTUS is
provided in Appendix A.2.4 and Algorithm 4.

with each diagonal entry having the maximum variance σ2
max of Cη, w.r.t., all c = 128

dimensions of the latent space. Thus, we can efficiently sample and update N (µ,Σ) by
treating each dimension as a separate one-dimensional Gaussian with variance σ2

max, as
illustrated in Figure 12. More sophisticated alternatives, such as ES, CMA-ES, CMA-MAE,
that come with various additional hyperparameters, e.g., adaptive mutation and learning
rates (Beyer & Schwefel, 2002; Fontaine & Nikolaidis, 2023; Fontaine et al., 2020; Hansen,
2016; Schwefel, 1993) are left for future work.

4.2.2 Bi-Level Curriculum Scheme

Algorithm 3 represents amap-based approach to generate curricula for learning-based MAPF
via the VAULT (or CoreVAULT) and can be used with any available RL algorithm (Phan
et al., 2024b; Sartoretti et al., 2019; Skrynnik et al., 2024b). However, we can improve
sample efficiency further by enabling instance-based curricula using a suitable RL algorithm.

CACTUS offers a simple but elegant way of generating instances I ′ based on given maps
G′, as illustrated in Figure 4, by placing each agent i randomly on the map for its start
location vstart,i (Phan et al., 2024b). The corresponding goal locations vgoal,i are randomly
placed around vstart,i inside an allocation area, which increases gradually based on the RL
training progress of all agents. CACTUS solves the exploration problem in MAPF at the
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instance level, offering high sample efficiency. However, its generalization potential depends
on the training maps G′, which is a limiting factor, as discussed in Section 3.4.3.

Given our VAULT curriculum and CACTUS, we can now formulate a bi-level curriculum
scheme based on Algorithm 3 to generate whole training instances I ′ for sample-efficient
and generalizing RL training, as shown in Figure 13. Our scheme benefits from the high
sample efficiency of CACTUS and the generalization potential of our VAULT curriculum:

• The high-level curriculum is represented by our VAULT curriculum using an opti-
mization algorithm Φ (Algorithm 3). It generates artificial maps G′ for RL training to
support the generalization across all test (and previously unseen) maps by optimizing
the median completion rate ρ∗, according to Algorithm 3 and Figure 11.

• The low-level curriculum is represented by CACTUS as the RL method Θ (Algo-
rithm 3). CACTUS uses the generated maps G′ of the VAULT curriculum to create
instances I ′ by allocating start and goal locations to train effective agent policies π̂
that optimize the travel time l(pi) per agent i via Q̂ ≈ Qtot, according to Equation 1.

4.3 Conceptual Discussion

Our approach represents a modular framework for learning-based MAPF, where each pro-
posed component operates in a black-box manner with limited dependencies between each
other and without considering specific micro-aspects of the underlying problem.

The key component of our framework is the VAULT, which serves as a map generator
to improve sample efficiency and generalization of learning-based MAPF methods. The
VAULT is trained via unsupervised learning on available maps and does not depend on
any labels regarding map categories, RL algorithms, or previously trained agent policies,
in contrast to (Bolland et al., 2022; Dennis et al., 2020). Thus, we can flexibly use our
trained VAULT model for various purposes, e.g., RL training of different agent policies or
tasks, and unbiased testing. The dependence on available maps can be further reduced by
training the CoreVAULT on a pruned dataset X̂ ⊆ X . However, we cannot reduce our
dataset arbitrarily, as our experimental results in Sections 6.3 and 6.4 suggest that some
maps, e.g., Room maps, are crucial for sample efficiency and generalization.

Our VAULT curriculum in Algorithm 3 can be used with any available optimization
and RL algorithm without specific assumptions about micro-aspects. For simplicity, we use
random sampling and the CE method for optimization, which fully operate in a black-box
manner. In contrast to prior work, which operates on the vertex space V under domain-
specific constraints, our optimization algorithms do not require explicit structural informa-
tion of the generated maps but only the dimensionality c of the VAULT latent space. They
are efficient because random sampling does not require any update, and our CE variant
adapts its Gaussian for each dimension independently via incremental updates to the mean
and variance. For further improvement, we can easily employ more advanced optimization
algorithms without affecting the VAULT (or CoreVAULT).

Our bi-level curriculum scheme represents a neat combination of our VAULT curriculum
and CACTUS, which are both general methods, according to Section 3.4 and Table 1, and
do not consider specific micro-aspects. Both methods complement each other, where our
VAULT curriculum optimizes the generation of maps by maximizing the completion rate,
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Figure 14: Example of an individual observation ot,i of the red agent i in a 2D grid world
(Phan et al., 2024b). Agents are represented as colored circles, their goals as squares of the
same color, and obstacles as black squares. The observation is encoded by five channels:
The locations of obstacles, other agents’ goals, nearby agents, the location of the goal vgoal,i,
and the geodesic distance and direction of agent i to its goal vgoal,i.

while CACTUS creates instances based on the generated maps by minimizing the agent
travel times. Thus, our bi-level curriculum scheme can optimize the MAPF objective of
Equation 1 in a sample-efficient and generalizing way, as we will demonstrate in Section 6.

While each component could be explicitly engineered toward even better performance,
e.g., by integrating domain knowledge, shaping objective and reward functions, or choosing
a different distribution for optimization, we explicitly focus on a simple setup to avoid
distraction from our main concepts and goal. The rest is up to future work.

5. Experimental Setup

In our experiments, we focus on 2D grid worlds, where each vertex v ∈ V represents a cell
with a maximum degree of four. Each agent i observes the environment through a 7 × 7
field of view encoded as a multi-channel image ot,i, as illustrated in Figure 14, which is
independent of the actual map size (Phan et al., 2024b; Sartoretti et al., 2019).

5.1 Maps

Training Maps We employ different map generators, i.e., the VAULT and ablations
without Random or Room maps, the CoreVAULT, MAP-Elites, PRIMAL maps, and the
Original Maps G ∈ X . Unless stated otherwise, the VAULT generator is always used
together with the CE method, as described in Section 4.2.1. MAP-Elites is inspired by
(Zhang et al., 2023b) and optimizes maps using QD and the median completion rate ρ∗

(Lehman & Stanley, 2011; Mouret & Clune, 2015). The QD-optimized maps are stored in
an archive, according to their similarity to the test maps G∗ ∈ X ∗ and their obstacle density
relative to the most similar test map. PRIMAL maps are generated with random obstacles,
according to a density ratio sampled from a triangular distribution between 0 and 0.5 with
a peak at 0.33 (Sartoretti et al., 2019). The Original Maps serve as a proxy method for
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the NCA generator (Zhang et al., 2023a), which replicates known structures to larger map
sizes without altering them. More details are provided in Appendix A.2.2.

Test Maps We evaluate our VAULT curriculum on 25 predefined scenarios for all test
maps G∗ ∈ X ∗ from the public MAPF benchmark set (Stern et al., 2019), as listed in
Table 2, as well as artificial maps randomly generated with the VAULT-B, representing
another separate VAULT model, which is trained on all training maps G ∈ X from Section
4.1.1 using Algorithm 1. We use the VAULT-B to provide 25 pre-generated test maps and
scenarios, denoted as Generated, independent of the first VAULT model, which is used for
RL training. According to Table 2, the test map sizes can differ from the 64 × 64 format
of the VAULT and MAP-Elites maps. However, this is not an issue for our agent policies π̂
which make decisions based on a 7×7 field of view, as illustrated in Figure 14, regardless of
the actual map size (Sartoretti et al., 2019; Phan et al., 2024b). For conciseness, our main
paper focuses on the results of the map categories Random, Game, City, Warehouse, and
Generated, but we provide additional results regarding the other test maps in Appendix B.

5.2 Algorithms

Our base RL algorithm is CACTUS due to its simplicity and high sample efficiency com-
pared to other methods (Phan et al., 2024b). The original CACTUS formulation used the
Chebyshev distance, as depicted in Figure 4b, for measuring the allocation radius Ralloc.
This can be detrimental to structured maps, as some locations inside the goal allocation
area may require long detours and, consequently, more exploration. To mitigate this prob-
lem, we use the geodesic distance, as depicted in Figure 4c, for ensure reachability of all
locations inside the goal allocation area, as recommended in (Phan et al., 2024a).

We also provide the pure RL variants of PRIMAL, PRIMAL2, and CostTracer, i.e.,
without imitation learning, integrated path finding, and communication channels, according
to Table 1, to compare with CACTUS. To distinguish between PRIMAL and PRIMAL2, we
include convention learning by pre-training PRIMAL2 on handcrafted corridor scenarios,
as suggested in (Damani et al., 2021). For a fair and computationally efficient comparison,
we trained all RL methods using the same number of training episodes, the same map
generators, and the same neural network architectures, as suggested in (Phan et al., 2024b)
to avoid any overparameterization bias. More details are provided in Appendix A.2.3.

We also compare our VAULT curriculum with traditional centralized MAPF solvers,
namely CBSH, MAPF-LNS, and LaCAM*. CBSH is an optimal solver with completeness
guarantees, meaning that it will find an existing solution with a sufficient time budget
(Felner et al., 2018). Due to its optimality, CBSH serves as an absolute lower bound
baseline regarding the (normalized) flowtime. CBSH uses CG, DG, and WDG as high-level
admissible heuristics (Felner et al., 2018; Li et al., 2019a), as well as symmetry breaking
techniques (Li et al., 2019b). MAPF-LNS is an anytime algorithm without any optimality or
completeness guarantees (Li et al., 2021). LaCAM* is an anytime algorithm that guarantees
completeness and eventual optimality, i.e., given a sufficient time budget (Okumura, 2023).
In our work, LaCAM* optimizes the makespan, which we also use to ensure that all test
instances are solvable within H = 256 steps.
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5.3 Computing Infrastructure

All experiments were run on a high-performance computing cluster with CentOS Linux,
Intel Xeon 2640v4 CPUs, and 64 GB RAM.

6. Experimental Results

In this section, we run RL experiments with our VAULT curriculum, i.e., Stage II of our
approach, as explained in Section 4 and illustrated in Figure 5. Therefore, we only update
the agent policies π̂ and value functions Q̂ without training the VAEs of the VAULT (and
CoreVAULT) further. All RL training runs are conducted with N = 32 agents.

For each experiment, all learning-based MAPF approaches are run 20 times over 4, 000
epochs to report the average progress and the 95% confidence interval. A training cycle
consists of Eepoch = 50 epochs with Eepisode = 10 episodes each. Thus, each learning-based
MAPF approach is trained with 40, 000 = 4, 000 · Eepisode episodes in total. PRIMAL2 is
additionally pre-trained with 20, 000 randomly generated corridor observations for conven-
tion learning before the first RL training epoch. An episode is terminated after H = 256
time steps or when a completion rate of ρt = 1 is achieved at some time step t < H. We
use the following measures to assess the effectiveness of all approaches:

• Completion Rate: The average rate of agents reaching their goals. We use it to
assess the high-level curriculum and the suitability of the map generators for RL
training.

• Average Travel Time or normalized flowtime: The average path length of all agents.
We use it to assess the low-level curriculum of CACTUS based on the map generator.
It serves as a proxy measure of the flowtime for better comparability since not all
approaches are able to fully complete all instances, especially of challenging maps.

We report the RL training progress of each approach to assess its sample efficiency,
i.e., the improvement speed w.r.t. the number of epochs. After each training cycle, we
extract the current agent policies and evaluate them in the predefined instances of the test
maps G∗ ∈ X ∗ listed in Table 2 to measure the completion rate and average travel time,
according to Lines 13–15 in Algorithm 3. To assess generalization, we evaluate the fully
trained agent policies with different numbers of agents N = {25, 50, 100, 200, 400, 800} in
the test maps. Furthermore, we evaluate the generalization of the agent policies to artificial
maps randomly generated with the VAULT-B.

Since the completion rate and the average travel time are highly correlated in our results,
we primarily focus on the completion rate in the paper to assess our VAULT curriculum,
according to Figures 11 and 13, and only compare our achieved travel times with traditional
MAPF solvers in Section 6.5. Additional comparisons regarding the average travel time and
other test maps are provided in Appendix B.

6.1 Comparison of Different Reinforcement Learning Methods

Setting In this preliminary experiment, we compare CACTUS, CostTracer, PRIMAL,
and PRIMAL2, using the VAULT and the Original Maps for RL training to assess their
sample efficiency and suitability as our base RL algorithm for further experiments with our

2499



Phan, Phan, & Koenig

VAULT Maps
Random

Warehouse

trained with
Original Maps

Figure 15: Completion rate progress of CACTUS, CostTracer, PRIMAL, and PRIMAL2
w.r.t. the training epochs in Random and Warehouse maps. The training maps are randomly
generated with the VAULT (left) or randomly chosen from the Original Maps, according
to Table 2. Before the first RL training epoch 0, PRIMAL2 is pre-trained on 20, 000
handcrafted corridor observations. Shaded areas show the 95% confidence interval.

basic VAULT curriculum scheme (Section 4.2.1). For a fair comparison of the training map
quality, we use random sampling for both map generators instead of the CE method.

Results The results for the Random and Warehouse maps are shown in Figure 15. All
methods progress faster when trained with the VAULT. CACTUS progresses fastest in all
cases with CostTracer being the second fastest method. PRIMAL makes slight progress
and PRIMAL2 only improves visibly when trained with the VAULT maps.

Discussion The VAULT can generate training maps that improve sample efficiency of
any RL algorithm compared to the Original Maps. The results also confirm that exten-
sive engineering and specialization in micro-aspects are not beneficial for sample efficiency
and generalization, as the simplest methods, according to Table 1, namely CACTUS and
CostTracer, perform best in all settings. As discussed in Sections 3.4.2 and 4.2.2, CACTUS
progresses fastest due to effectively addressing the credit assignment and exploration prob-
lem. CostTracer explores completely randomly without the support of Monte-Carlo tree
search, while PRIMAL and PRIMAL2 rely on shaped rewards, which induce bias toward
specific micro-aspects that are not transferable to arbitrary maps in general. PRIMAL2
performs worst, confirming that specializing in handcrafted scenarios is detrimental to RL
training when the neural networks are not large enough to memorize them. We continue
using CACTUS as our base RL algorithm in the following due to its high sample efficiency.

6.2 Curriculum Learning with the VAULT

Setting We now assess our VAULT curriculum with CACTUS. We evaluate the sample
efficiency and generalization capabilities of our bi-level curriculum scheme (Section 4.2.2)
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CACTUS trained with

Figure 16: Completion rate progress of CACTUS trained with the VAULT, MAP-Elites,
PRIMAL maps, or the Original Maps over Random, City, Game, and Warehouse test maps
w.r.t. the training epochs. Shaded areas show the 95% confidence interval.

CACTUS trained with

Figure 17: Test completion rate of CACTUS trained with the VAULT, MAP-Elites, PRI-
MAL maps, or the Original Maps over City, Game, Warehouse, and Generated (i.e., created
by the VAULT-B) test maps w.r.t. the number of agents after 40, 000 episodes of RL train-
ing. Shaded areas show the 95% confidence interval.

by employing the CE method. The quality of the generated maps is assessed by employing
random sampling in the latent space of the VAULT. Both approaches are compared with
alternative map generators, such as MAP-Elites and PRIMAL Maps. The Original Maps
serve as an alternative provider for training maps. For simplicity, we denote the resulting
agent policies according to their respective map generators, e.g., VAULT policies.

Results The training results are shown in Figure 16. Our VAULT policies progress fastest
when using the CE method. Our VAULT policies using random sampling progress second
fastest. MAP-Elites policies progress slightly faster than Original Map policies. PRIMAL
Map policies progress the worst, never achieving a completion rate of over 50%.

The test results for City, Game, Warehouse, and Generated (i.e., created by the VAULT-
B) maps, are shown in Figure 17. Our VAULT policies perform best, while MAP-Elites
policies slightly outperform Original Map policies in settings with fewer agents, e.g., N ≤ 50.
PRIMAL Map policies generalize worst in all test maps. In the Generated maps, the
completion rate of all policies deteriorates fastest with an increasing number of agents.
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CACTUS trained with

Figure 18: Completion rate progress of CACTUS trained with the VAULT and different
variants of the CoreVAULT over Random, City, Game, and Warehouse test maps w.r.t. the
training epochs. Shaded areas show the 95% confidence interval.

CACTUS trained with

Figure 19: Test completion rate of CACTUS trained with the VAULT and different vari-
ants of the CoreVAULT over City, Game, Warehouse, and Generated (i.e., created by the
VAULT-B) test maps w.r.t. the number of agents after 40, 000 episodes of RL training.
Shaded areas show the 95% confidence interval.

Discussion The results confirm the effectiveness of our bi-level curriculum scheme, pro-
posed in Section 4.2.2. The combination of the VAULT, the CE method, and CACTUS
leads to significant improvements in sample efficiency and generalization, compared to all
non-VAULT alternatives. The random sampling variant of our VAULT curriculum confirms
the usefulness of the generated VAULT maps for RL training since it leads to better sample
efficiency and generalization than alternative map generators, such as MAP-Elites and PRI-
MAL maps. Training with the Original Maps can be viewed as a specialization on “edge
cases” inducing bias toward specific maps (Figure 2a). In contrast, the VAULT manages
to “smooth” these edge cases via latent representations, as illustrated in Figure 8, result-
ing in morphed maps (Figure 6). This latent smoothing eases RL training substantially
and improves generalization due to the reduced “edge case” bias. The Generated maps in
Figure 17 lead to a steeper performance decrease than Game, City, and Warehouse maps,
indicating that the VAULT-B can generate sufficiently challenging maps for testing.
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Figure 20: The evolution of maps generated with the original VAULT, the CoreVAULT
with City and Warehouse as default representatives, and MAP-Elites over the first 1,000
epochs of RL training.

6.3 Curriculum Learning with the CoreVAULT

Setting Next, we evaluate the effect of data pruning by assessing our VAULT curriculum
with different CoreVAULT models, specified in Section 4.1.3 and Figures 9 and 10. We also
provide a CoreVAULT model trained without any default representative.

Results The training results of the CoreVAULT policies are shown in Figure 18. Training
with the original VAULT progresses fastest, while all CoreVAULT policies with a default
representative progress second fastest without significant differences between each other.
Omitting the default representative affects the sample efficiency notably, thus requiring
more epochs to keep up with the other CoreVAULT policies eventually.

The test results for City, Game, Warehouse, and Generated (i.e., created by the VAULT-
B) maps, are shown in Figure 19. After 40, 000 episodes of RL training, all policies achieve
similar performance, regardless of which VAULT or CoreVAULT model was used.

Figure 20 visualizes the evolution of maps generated with the original VAULT, the Core-
VAULT with City and Warehouse as default representatives, and MAP-Elites over the first
1,000 epochs of RL training. The original VAULT starts generating very randomly dis-
tributed and morphed maps with structures of different map categories before converging
to a map that resembles an artificial Game map. The CoreVAULT models start generating
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CACTUS trained with

Figure 21: Completion rate progress of CACTUS trained with the VAULT and its ablations
(without Random and Room maps, respectively), the CoreVAULT, or the Original Maps
(pruned or not) over Random, City, Game, and Warehouse test maps w.r.t. the training
epochs. Shaded areas show the 95% confidence interval.

elements of Random and Room maps before converging to maps that resemble their respec-
tive default representatives partially morphed with Random elements. MAP-Elites creates
seemingly unstructured maps with varying obstacles, known from (Zhang et al., 2023b).

Discussion The results confirm the generalization potential of using data pruning for
training the CoreVAULT. Despite being trained on only half of the training maps at most,
our CoreVAULT policies can generalize at least as well as the original VAULT policies.
Our experiments also confirm the necessity of including default representatives in the Core-
VAULT to improve sample efficiency. According to the evolution of maps, as shown in
Figure 20, the CoreVAULT models first generate elements of Random and Room maps, in-
dicating their importance in the early stages of RL training. Later on, the maps adopt
elements from the default representatives which smooth the latent spaces as “connectors”
(Figure 9) and ease optimization via the CE method. This is further supported by the
reduced sample efficiency when omitting the default representative. In this case, the CE
method requires more time to explore the latent space before eventually converging to a
promising region, i.e., some unstructured Random map. Due to the similar sample efficiency
and generalization, we report the aggregated results of all CoreVAULT policies (with a
default representative) in the following experiments.

6.4 Curriculum Learning with VAULT Ablations

Setting Given the positive results of the CoreVAULT, we assess the importance of the
Random and Room maps, which are not part of the default cluster Gdefault but represent
separate clusters in the latent space of the original VAULT, according to Section 4.1.3 and
Figure 8. Therefore, we assess the VAULT ablations excluding Random and Room maps from
the dataset X with the original VAULT and CoreVAULT policies. As additional baselines,
we use the Original Maps and a pruned variant only consisting of the pruned dataset X̂ like
the corresponding CoreVAULT models, which we denote as Original Maps (Core).

Results The training results of the VAULT and its ablations without Random and Room

maps, respectively, and the CoreVAULT are shown in Figure 21. Training with the original
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CACTUS trained with

Figure 22: Test completion rate of CACTUS trained with the VAULT and its ablations
(without Random and Room maps, respectively), CoreVAULT, or the Original Maps (pruned
or not) over City, Game, Warehouse, and Generated (i.e., created by the VAULT-B) test
maps w.r.t. the number of agents after 40, 000 episodes of RL training. Shaded areas show
the 95% confidence interval.

VAULT progresses fastest, while our CoreVAULT policies progress second fastest. Omitting
Random maps affects the sample efficiency notably, thus requiring more epochs to keep up
with the original VAULT and CoreVAULT policies eventually. Omitting Room maps leads to
a slightly worse sample efficiency than the CoreVAULT policies. The Original Map (Core)
policies progress similarly to the Original Map policies without any degradation.

The test results of the VAULT and its ablations without Random and Room maps, re-
spectively, and the CoreVAULT for City, Game, Warehouse, and Generated (i.e., created
by the VAULT-B) maps are shown in Figure 19. After 40, 000 episodes of RL training, the
agent policies trained with the VAULT ablations underperform the original VAULT and
CoreVAULT policies with an increasing number of agents, while generally outperforming
the Original Map policies. Omitting Room maps leads to higher sensitivity toward the larger
maps, namely City and Game.

Discussion The results confirm the importance of Random and Room maps for training the
VAULT and CoreVAULT. Unlike the maps of the default cluster Gdefault, Random and Room

maps cannot be omitted from the (pruned) dataset X̂ without affecting sample efficiency
and generalization of the agent policies, despite the ablated VAULT being trained on more
maps than the CoreVAULT models. Room maps seem to be especially important regarding
the early stages of RL training, as indicated in Figure 20. In contrast to the default
representatives evaluated in Section 6.3, the CE method cannot compensate for the absence
of these categories, as shown in the test results. Training on the pruned dataset X̂ also
appears to be effective for the Original Maps, as the agent policies trained with Original
Maps (Core) progress similarly and generalize slightly better, except in the Warehouse map.

6.5 Comparison with Traditional MAPF Solvers

Setting Finally, we compare our VAULT and CoreVAULT policies with the traditional
MAPF solvers CBSH, MAPF-LNS, and LaCAM*. All traditional MAPF solvers are run
on all 25 test instances per map with a time budget of 60 seconds.
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CACTUS trained with Traditional MAPF Solver

Figure 23: Test completion rate of CACTUS trained with the VAULT or CoreVAULT
and the traditional MAPF solvers CBSH, MAPF-LNS, and LaCAM* over City, Game,
Warehouse, and Generated (i.e., created by the VAULT-B) test maps w.r.t. the number of
agents after 40, 000 episodes of RL training. Shaded areas show the 95% confidence interval.

Results The test results for City, Game, Warehouse, and Generated (i.e., created by the
VAULT-B) maps are shown in Figure 23. LaCAM* consistently achieves a completion rate
of 100% in all test maps. MAPF-LNS also achieves a completion rate of 100% except in
Generated maps when the number of agents exceeds N = 200. Our VAULT and Core-
VAULT policies consistently achieve completion rates of about 90% in City and Game maps
but their performance degrades in the smaller Warehouse and Generated maps with an
increasing number of agents. CBSH scales the worst in all test maps.

In Table 3, we provide the average travel times and iteration/trial counts for the test
maps with the largest number of agents, where our VAULT or CoreVAULT policies were
able to solve at least 80% of the test instances with a completion rate of 100%. The
iteration/trial counts in Table 3 indicate the computational effort required per instance and
serve as an estimate of the potential replanning cost that an environmental change would
incur, e.g., the required communication rounds for distributing new plans. CBSH is not
included due to its insufficient completion rates. In the larger test maps, namely City and
Game, our VAULT or CoreVAULT policies are more effective than MAPF-LNS and LaCAM*
by achieving a lower average travel time in most cases. However, MAPF-LNS and LaCAM*
outperform our policies in the smaller test maps, i.e., Warehouse and Generated. MAPF-
LNS consistently achieves shorter travel times than LaCAM* but requires at least thousands
of iterations. LaCAM* requires hundreds of iterations until convergence, while our VAULT
and CoreVAULT policies only require a single trial per test instance without global iterative
refinement or branching like heuristic search (Sartoretti et al., 2019).

Discussion The results indicate that our decentralized VAULT and CoreVAULT policies
can compete with traditional MAPF solvers in large maps with many agents, achieving
shorter travel times within a single trial per test instance being only trained with a one-time
effort of 40, 000 training episodes (and the training of the VAULT). A few instances could not
be solved completely because some scattered goal-reaching agents occasionally block other
agents, thus preventing a perfect completion rate of 1. In contrast, traditional MAPF solvers
must be run from scratch for every instance. According to the iteration/trial counts, MAPF-
LNS is the most expensive anytime solver for dynamically changing environments. Even
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Table 3: Average travel time and iteration/trial count of our VAULT and CoreVAULT poli-
cies, MAPF-LNS, and LaCAM* with the 95% confidence interval for the test maps of Figure
23. The best two (i.e., the smallest) values are highlighted in boldface. The iteration/trial
counts serve as an estimate of the potential replanning cost that an environmental change
would incur, e.g., the required communication rounds for distributing new plans.

VAULT
Policies

CoreVAULT
Policies

MAPF-LNS LaCAM*

Average Travel Time
City (N = 800) 109.6± 1.0 105.1± 1.4 192.2± 5.9 230.4± 7.8
Game (N = 400) 95.2± 1.3 95.9± 1.5 173.8± 8.4 205.7± 11.1
Warehouse (N = 200) 117.2± 1.6 121.1± 4.4 88.6± 4.1 110.2± 7.6
Generated (N = 100) 128.9± 4.2 127.9± 2.0 43.6± 4.8 55.8± 18.5

Average Iteration/Trial Count
City (N = 800) 1 1 3, 786± 569 519.0± 44.6
Game (N = 400) 1 1 3, 887± 585 400.8± 31.0
Warehouse (N = 200) 1 1 21, 328± 4, 168 212.1± 22.1
Generated (N = 100) 1 1 64, 414± 24, 578 106.5± 30.8

though LaCAM* needs considerably fewer iterations, its centralized design is prohibitive
for large-scale systems, where sufficient communication bandwidth and node availability
measures are needed, especially for replanning (Oliehoek & Amato, 2016; Tanenbaum &
Van Steen, 2007). The performance drop of MAPF-LNS in the Generated map indicates
that the VAULT-B is capable of generating challenging maps even for traditional state-of-
the-art MAPF solvers. According to Appendix B, MAPF-LNS tends to fail in maps that
resemble Room maps, which are known to be challenging (Li et al., 2022; Ren et al., 2024)
while easy to generate, according to Section 4.1.2 and Figures 6, 7, and 20.

7. Conclusion and Future Work

We presented a generative curriculum approach to learning-based MAPF using the VAULT.
Therefore, we introduced a two-stage framework to (I) train the VAULT and (II) use it to
generate curricula in order to improve sample efficiency and generalization of learning-based
MAPF methods. We proposed a bi-level curriculum scheme by combining the VAULT and
CACTUS to improve sample efficiency further.

Our framework is designed in a modular and general way, where each proposed com-
ponent serves its purpose in a black-box manner without considering specific micro-aspects
of the underlying problem. For example, the VAULT is trained via unsupervised learning
without any explicit labels at Stage I, data pruning for training the CoreVAULT is solely
based on the reconstruction loss, and the optimization algorithm at Stage II searches latent
spaces via Gaussian distributions without further information about the underlying maps
or the generative model. Therefore, we can keep our methods simple without extensive
engineering, which eases usability and reproducibility, and supports more cost-efficient and
sustainable research in the future.

Our results demonstrate the potential of the VAULT as a powerful map generator for
learning-based MAPF despite not being incentivized to learn useful representations via ex-
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plicit labels or MAPF objectives. In contrast to RL training on the original maps, the
VAULT can smooth the map space with its latent representations that enable flexible mor-
phing of map features, which is beneficial for generalization beyond known maps. Optimiz-
ing over the latent space of the VAULT is easier than over the vertex space due to its low
dimensionality and smoothness, thus improving sample efficiency and generalization over
prior map generation approaches like MAP-Elites.

Our VAULT policies generalize better than other approaches regarding previously un-
seen maps, such as benchmark maps, novel artificial maps generated with another VAULT
model, as well as different numbers of agents and map sizes. Compared to training regimes
with other map generators, our VAULT policies consistently achieve higher completion rates
and average travel times in the test instances.

The generalization capabilities can be further improved by adequately pruning the map
dataset to train the CoreVAULT. Despite being trained on fewer maps than the original
VAULT, the CoreVAULT models can still generate effective curricula to train agent policies
that generalize similarly or even better than policies trained with the original VAULT. Our
insight on data pruning can be directly transferred to the original maps, whose pruned
counterpart does not affect the generalization of the resulting agent policies either, thus
being potentially useful for future research on alternative map embeddings.

Using a suitable optimization algorithm in the VAULT curriculum can substantially
improve the sample efficiency of RL training and even compensate for insufficiently trained
VAULT models to some extent, e.g., when excluding the default cluster for the CoreVAULT.

Based on the promising results of our approach, there are many potential directions that
we want to pursue in the future, as summarized below.

Generalization of the VAULT Training In this work, we focused on fixed-sized 2D
grid worlds. While our VAE can be easily extended to variable-sized maps by removing
the fully connected layers in the encoder and decoder, the VAULT curriculum will require
a more advanced optimization algorithm to search latent spaces of variable dimensionality.
Our VAE can be extended to encode whole instances by employing more advanced neural
networks, such as transformers (Kaduri et al., 2020; Ren et al., 2021). Furthermore, we can
extend the VAULT to general graphs by replacing the convolutional and deconvolutional
layers with graph neural networks (Kipf & Welling, 2016; Li et al., 2020; Scarselli et al.,
2008; Veličković et al., 2018).

Extensions to Training the VAULT To further reduce bias from the original MAPF
benchmark maps listed in Table 2, we can retrain the VAULT on data generated by itself.
This can be implemented as a fixed-point iteration by tracking the reconstruction loss of
samples from the previous VAE model and the reconstructions of the current VAE model.
Based on the insights on the empirical hardness of maps for traditional MAPF, we can train
VAEs that additionally condition on a difficulty variable, such as the map connectivity, i.e.,
the second smallest eigenvalue of the normalized Laplacian matrix of a map (Ren et al.,
2024). This would add one additional dimension to our (latent) search space and can regu-
larize our curriculum by increasing or decreasing difficulty when the median completion rate
exceeds or falls below a certain threshold. Another interesting direction is the generation
of guidance maps by creating real-valued matrices instead of binary ones, which can direct

2508



Generative Curricula for MAPF via Unsupervised and Reinforcement Learning

the search for traditional MAPF solvers (Chen et al., 2024; Cohen & Koenig, 2016; Zhang
et al., 2024).

Alternative Generative Models In recent years, diffusion models have become popular
due to their ability to generate higher-quality data than VAEs (Dhariwal & Nichol, 2021;
Xiao et al., 2022). Common diffusion models operate on the latent space of a pre-trained
VAE (Rombach et al., 2022), which can be directly applied to our VAULT generator. How-
ever, diffusion models employ complex architectures which are computationally demanding
for training and inference (Rombach et al., 2022; Wang et al., 2023b) and, thus, would slow
down our VAULT curriculum significantly. Diffusion models typically require millions of
data samples to capture the underlying data distribution (Wang et al., 2023b), which could
be useful for non-binary maps, e.g., with special locations for dispatching tasks, storage, or
safety-critical operations. Other alternatives are generative adversarial networks (Goodfel-
low et al., 2014) and inverse retrieval techniques (Zheng et al., 2025), which could improve
the data quality or interpretability of the map optimization procedure, respectively.

Alternatives to Data Pruning Data pruning for training the VAULT can be conducted
in a more fine-grained way by discarding redundant maps within map categories. For exam-
ple, the (sub)maps extracted from the warehouse maps always exhibited strong similarities,
indicating high redundancy within this specific map category. Data distillation offers an
alternative data reduction approach, where the dataset is compressed into a smaller set of
artificial data samples (Sachdeva & McAuley, 2023).

Extensions to the VAULT Curriculum In addition to our simple optimization algo-
rithms proposed in Section 4.2.1, we can employ more advanced methods, such as CMA-ES,
CMA-MAE, etc. (Beyer & Schwefel, 2002; Fontaine & Nikolaidis, 2023; Fontaine et al.,
2020; Hansen, 2016; Schwefel, 1993), to improve sample efficiency further. To improve
generalization, robustness, and testing, we can employ adversarial search techniques to
challenge our agent policies more (Gabor et al., 2019; Phan et al., 2020, 2021; Wang et al.,
2019). Adversarial search for robustness represents an orthogonal approach to the empirical
hardness regularization suggested above (Ren et al., 2024).
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Critic NCritic 1 ... Actor NActor 1 ...

Figure 24: Common actor-critic scheme as used in CACTUS (Phan et al., 2024b) and other
works on cooperative multi-agent RL (Peng et al., 2021; Phan et al., 2021; Su et al., 2021).

Figure 25: The 25 test maps generated with the VAULT-B, as described in Section 5.1.
Maps, where MAPF-LNS could not find any solution (Figure 23) are highlighted in red.
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Appendix A. Experimental Details

A.1. Neural Network Architectures

A.1.1. Variational Autoencoders for the VAULT and CoreVAULT

We use deep convolutional and deconvolutional networks to implement enc and dec.

The input layer of the encoder enc processes a map G as a binary 64× 64 matrix. The
first hidden layer convolves 32 filters of kernel size 3 × 3 with a convolutional layer of 32
filters with stride 1 with the input matrix and applies a ReLU activation. The result is
processed by five subsequent convolutional layers convolving 32 filters of kernel size 3 × 3
with alternatingly stride 1 and 2 with the previous hidden result followed by a ReLU
activation. Afterward, the result is flattened and processed by two separate fully connected
linear layers of c = 128 units, representing the mean µ(G) and the variance σ2(G) of the
input map G. µ(G) and σ2(G) represent the parameters ϕ of the latent distribution qϕ(z|x),
i.e., a Gaussian, and are used to sample a c-dimensional latent vector z ∼ qϕ(·|G).

The decoder processes the c-dimensional latent vector sample z with a fully connected
linear layer of c = 128 units, followed by a sequence of deconvolutional layers that process
the latent vector z analogously to the encoder layers (albeit in reverse order) to restore the
original map size of 64×64. The output of the decoder is processed by a sigmoid activation.

A.1.2. Policy and Value Networks

We use multilayer perceptrons (MLP) to implement π̂i and Q̂i for each agent i and the
factorization operator Ψ of QMIX, which are depicted in Figure 24.

Since all regarded maps are 2D grid worlds, the observations are encoded as multi-
channel image, as illustrated in Figure 14. We flatten the multi-channel images before
feeding them into the MLPs. π̂i and Q̂i have two hidden layers of 64 units with ELU
activation. The output of π̂i has |Ai| units with softmax activation. The output of Q̂i has
|Ai| linear units. The hypernetworks of QMIX have two hidden layers of 128 units with ELU
activation and one or |Ai| linear output units, respectively. For PRIMAL, PRIMAL2, and
CostTracer, we use the same architecture for a fair and computationally efficient comparison
w.r.t. data, compute, and model size. The policy and value network architectures are
identical to the MLPs used in (Phan et al., 2024b) with less than 5% of the model size
originally used for PRIMAL and PRIMAL2 (Damani et al., 2021; Sartoretti et al., 2019).

A.2. Training Details and Hyperparameters

A.2.1. Training the VAULT

All VAEs used in this work are trained for 12, 000 iterations via Algorithm 1, using ADAM
with a learning rate of 0.001, and a regularization factor of λ = 0.001. All hyperparameters
for training the VAULT and CoreVAULT, and the CE method for our VAULT curriculum,
are listed in Table 4.

A.2.2. Map Generation

All map generators used to train CACTUS for the comparison in Section 6.2 are described
in this Section. To ensure connectivity of all generated maps, we iteratively connect random
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Table 4: Hyperparameters (HP) and their respective final values used for training the
VAULT and CoreVAULT, and the CE method for our VAULT curriculum. We also list the
numbers that have been tried during the development of our paper.

HP Final Value Numbers/Range Description

d
64× 64 =
4096

{32× 32,
64× 64,
128× 128}

Input dimension and map size.
d = 64× 64 offered the best tradeoff
between map diversity and
computational demand.

c 128 {64, 128, 256}

Latent space dimension. c = 128
offered the best tradeoff between
reconstruction capabilities and
computational demand.

λ 0.001
{0.1, 0.01,
0.001, 0.0001}

Regularization factor for the KL term
in the VAE loss of Equation 7.

αVAE 0.001 {0.001}
Learning rate. We used the default
value of ADAM in torch without
further tuning.

δrec 0.02 {0.02}

Loss threshold for dataset pruning. We
used the average reconstruction loss of
the original VAULT after 12, 000
iterations of training.

µ0 0 {0} Initial centroid for the Gaussian
distribution used in our CE method.

σ2
max,0 103 {102, 103, 104}

Initial variance for the CE method.
The higher the value the higher the
potential diversity of generated maps,
which may require more time to find
promising regions in the latent space.

B 25 {10, 25, 50}
Population size used for the CE
method. B cannot be greater than
Eepoch (Table 5).

pairs of disconnected regions via deletion of obstacles along random connecting paths until
no isolated region is left. The randomized connections avoid artificially straight corridors
between the regions thus reducing domain-specific bias, e.g., toward warehouses.

VAULT Maps are randomly sampled from the latent space of the VAULT or CoreVAULT.
We use a spherical Gaussian distribution N (µ0,Σ0) with a 128-dimensional zero vector as
the centroid µ0 and a diagonal matrix Σ0 = 1000 · 1 ∈ R128×128 as the covariance, which
serves as an initial distribution for the CE method in our VAULT curriculum. For random
sampling, we use N (µ0,Σ0) without further changes. Examples of random training maps
are shown in Figure 7 and examples of random test maps generated with the VAULT-B are
shown in Figure 25. Test maps, where MAPF-LNS could not find any solution, according
to Figure 23, are highlighted in red.
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...

...

Test Maps
Measure
Similarity

Assign cell w.r.t. obstacle density

New Map

Figure 26: Schematic illustration of our MAP-Elites archive structure. A new map G′ is
first matched with a test map G∗ ∈ X ∗, listed in Table 2, to select a row. G′ is then assigned
to a column w.r.t. its obstacle density relative to the obstacle density distribution of the
best-matching test map, e.g., if G′ has an obstacle density of 0.5 and the test map has an
average obstacle density of µ = 0.3 with a standard deviation of σ = 0.1 per cell, then G′

is assigned to the 4th column because µ+ σ < 0.5 ≤ µ+ 2σ.

MAP-Elites MAP-Elites optimizes a population of B = 25 maps using evolutionary
operations, as proposed in (Zhang et al., 2023b). We employ an archive, which assigns a
map G to an archive entry according to its similarity to the test maps G∗ ∈ X ∗, listed in
Table 2, and its obstacle density relative to the best-matching test map. The similarity is
assessed by the minimum mean squared error between G and the test maps G∗. The obstacle
density of G is classified, according to the density distribution of the best-matching test
map using a deviation interval σ, 2σ, and∞ in both directions (Figure 26). At every epoch,
a map G is sampled from the archive and modified by randomly changing k matrix entries,
where k is determined by a geometric distribution P(k) = (1− p)k−1p with p = 1

2 . Similar
to our VAULT curriculum, formulated in Algorithm 3, MAP-Elites is updated after each
training cycle of Eepoch = 50 epochs using the median completion rate ρ∗.

PRIMAL Maps PRIMAL maps are generated with random obstacles according to a
density ratio sampled from a triangular distribution between 0 and 0.5 with a peak at 0.33
(Sartoretti et al., 2019). As proposed in (Sartoretti et al., 2019), the map size is randomly
selected from a set {10 × 10, 40 × 40, 70 × 70} with map size 10 × 10 being chosen with a
chance of 50% while the other map sizes are chosen with a chance of 25%.

Original Maps The Original Maps are sampled uniformly from all training maps G ∈ X
used for training the VAULT. The creation of the map dataset is described in Section 4.1.1.

Test Instances For test maps of size 64× 64 or smaller, as listed in Table 2, we use the
predefined random scenarios of the public MAPF benchmark set (Stern et al., 2019). For
the larger maps, we ran LaCAM* on the predefined random scenarios and moved the goals
closer to the start locations such that the minimum makespan is 150 at most to ensure
feasibility for all learning-based MAPF approaches with a horizon of H = 256. For the test
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maps generated with the VAULT-B, we allocated the start and goal locations randomly and
verified the feasibility with LaCAM*.

Table 5: Hyperparameters (HP) and their respective final values used by CACTUS and all
other RL algorithms evaluated in the paper. We also list the numbers that have been tried
during the development of our paper.

HP Final Value Numbers/Range Description

H 256 {256} Maximum number of time steps per
episode.

Eepisode 10 {5, 10, 20} Number of episodes per epoch or batch.

Eepoch 50 {50}
Number of epochs per training cycle
before a new population of B training
maps is sampled (Table 4).

Total
epochs

4000
{1000, 2000,
4000, 8000}

Number of epochs. We gradually
increased it to assess the stability of
the learning progress until convergence.

DIST Manhattan
{Chebyshev,
Euclidean,
Manhattan}

The distance function to determine the
goal allocation area of CACTUS,
according to Section 3.4.2 and Figure 4.

δthreshold 0.75 {0.75} Curriculum threshold of CACTUS.
Recommended default value.

ηconf 2 {2}
Deviation factor for the confidence
assessment. Recommended default
value.

αRL 0.001 {0.001}
Learning rate. We used the default
value of ADAM in torch without
further tuning.

Clip
norm

1 {1,∞}
Gradient clipping parameter. Using a
clip norm of 1 leads to better
performance than disabling it with ∞.

|τt,i| 1 {1, 5, 10}

Local history length. It was set to 1 to
reduce computation because the other
values did not significantly improve
performance.

A.2.3. Reinforcement Learning (RL) Training

The policy and value networks are updated after every epoch, i.e., Eepisode = 10 episodes of
RL training, using ADAM with a learning rate of 0.001.

For each experiment, all learning-based MAPF approaches are run 20 times over 4, 000
epochs. A training cycle consists of Eepoch = 50 epochs with Eepisode = 10 episodes each.
Thus, each approach is trained with 40, 000 = 4, 000 · Eepisode training episodes in total.
PRIMAL2 is additionally pre-trained with 20, 000 randomly generated corridor observa-
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Algorithm 4 CACTUS Algorithm from (Phan et al., 2024b, 2024a)

1: procedure CACTUS(G,DIST, δthreshold, ηconf)

2: Initialize parameters of π̂i, Q̂i for each agent i ∈ D and Ψ
3: Set Ralloc ← 1 ▷ Initialize goal allocation radius
4: for epoch e in 1, ..., 4000 do ▷ Total epochs according to Table 5
5: for episode b in 1, ..., Eepisode do
6: Sample a map G′ from G and start locations vstart,i for all agents i ∈ D
7: for agent i ∈ D do ▷ Instance generation based on map G′, Figure 13
8: Set Vgoal,i ← {v ∈ V|DIST(v, vstart,i) ≤ Ralloc} ▷ Allocation area, Figure 4
9: Randomly select a goal location vgoal,i from Vgoal,i

10: for time step t in 0, ...,H − 1 do
11: at ∼ π̂(·|τt) ▷ Sample a joint action with the agent policies
12: Execute joint action at and record experience sample

13: ρbH ←
|{i∈D|vH,i=vgoal,i}|

N ▷ Completion rate of episode b

14: Update Ψ and π̂i, Q̂i for each agent i ∈ D with all experience samples of epoch e
15: Calculate the average µρ and standard deviation σρ of all completion rates ρbH
16: if µρ − ηconfσρ ≥ δthreshold then ▷ Confidence-based radius update
17: Ralloc ← Ralloc + 1

18: return π̂ = ⟨π̂1, ..., π̂N ⟩

tions for convention learning before the first RL training epoch. The hyperparameters for
CACTUS and all other RL algorithms evaluated in the paper are listed in Table 5.

A.2.4. CACTUS Algorithm

A formulation of CACTUS from (Phan et al., 2024b) is provided in Algorithm 4. G is a
set of training maps or a map generator, DIST : V × V → R is a vertex distance function,
δthreshold is the curriculum decision threshold, and ηconf is the deviation factor.

Appendix B. Additional Results

We report additional results regarding the test maps listed in Table 2 and performance
measures, i.e., the completion rate and average travel time, as defined in Sections 2.1 and
6. The results further support our claims and discussions in Section 6.

B.1. Comparison of Different Reinforcement Learning Methods

The results for the Empty, Game, Room, and Maze maps are shown in Figures 27 and 28. All
methods progress faster w.r.t. completion rate and average travel time when trained with
the VAULT. CACTUS progresses fastest in all cases achieving the highest completion rate
and the lowest average travel time. CostTracer progresses second fastest. PRIMAL makes
slight progress and PRIMAL2 only improves visibly when trained with the VAULT maps.

Due to the consistently poor performance of all approaches in the Maze map, a common
RL problem known from (Dennis et al., 2020), we omit it in the following results.
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VAULT Maps

Original Maps

Figure 27: Completion rate progress of CACTUS, CostTracer, PRIMAL, and PRIMAL2
w.r.t. the training epochs. The training maps are randomly generated with the VAULT
(top row) or randomly chosen from the Original Maps (bottom row), according to Table
2. Before the first RL training epoch 0, PRIMAL2 is pre-trained on 20, 000 handcrafted
corridor observations. Shaded areas show the 95% confidence interval.

Original Maps

VAULT Maps

Figure 28: Average travel time progress of CACTUS, CostTracer, PRIMAL, and PRIMAL2
w.r.t. the training epochs. The training maps are randomly generated with the VAULT
(top row) or randomly chosen from the Original Maps (bottom row), according to Table
2. Before the first RL training epoch 0, PRIMAL2 is pre-trained on 20, 000 handcrafted
corridor observations. Shaded areas show the 95% confidence interval.
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Figure 29: Completion rate progress of CACTUS trained with the VAULT, MAP-Elites,
PRIMAL maps, or the Original Maps w.r.t. the training epochs. Shaded areas show the
95% confidence interval.

B.2. Curriculum Learning with the VAULT

The training results w.r.t. completion rate and average travel time are shown in Figures 29
and 30. Our VAULT policies progress fastest when using the CE method. Our VAULT poli-
cies using random sampling progress second fastest. MAP-Elites policies progress slightly
faster than Original Map policies. PRIMAL Map policies progress the worst, never achiev-
ing a completion rate of over 50% except in the Empty map.

The test results w.r.t. completion rate and average travel time, are shown in Figures 31
and 32. Our VAULT policies perform best, while MAP-Elites policies slightly outperform
Original Map policies in settings with a smaller number of agents, e.g., N ≤ 50. PRIMAL
Map policies generalize worst in all test maps. In the Generated maps, the completion rate
of all policies deteriorates fastest with an increasing number of agents.

B.3. Curriculum Learning with the CoreVAULT

The training results of the CoreVAULT policies w.r.t. completion rate and average travel
time, are shown in Figures 33 and 34. Training with the original VAULT progresses fastest,
while all CoreVAULT policies with a default representative progress second fastest without
significant differences between each other. Omitting the default representative affects the
sample efficiency notably, thus requiring more epochs to keep up with the other CoreVAULT
policies eventually.

The test results w.r.t. completion rate and average travel time, are shown in Figures
35 and 36. After 40, 000 episodes of RL training, all policies achieve similar performance,
regardless of which VAULT or CoreVAULT model was used for RL training.
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Figure 30: Average travel time progress of CACTUS trained with the VAULT, MAP-Elites,
PRIMAL maps, or the Original Maps w.r.t. the training epochs. Shaded areas show the
95% confidence interval.

Figure 31: Test completion rate of CACTUS trained with the VAULT, MAP-Elites, PRI-
MAL maps, or the Original Maps w.r.t. the number of agents after 40, 000 episodes of RL
training. Shaded areas show the 95% confidence interval.
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CACTUS trained with

Figure 32: Test average travel time of CACTUS trained with the VAULT, MAP-Elites,
PRIMAL maps, or the Original Maps w.r.t. the number of agents after 40, 000 episodes of
RL training. Shaded areas show the 95% confidence interval.

CACTUS trained with

Figure 33: Completion rate progress of CACTUS trained with the VAULT and different
variants of the CoreVAULT w.r.t. the training epochs. Shaded areas show the 95% confi-
dence interval.

2519



Phan, Phan, & Koenig

CACTUS trained with

Figure 34: Average travel time progress of CACTUS trained with the VAULT and different
variants of the CoreVAULT w.r.t. the training epochs. Shaded areas show the 95% confi-
dence interval.

CACTUS trained with

Figure 35: Test completion rate of CACTUS trained with the VAULT and different variants
of the CoreVAULT w.r.t. the number of agents after 40, 000 episodes of RL training. Shaded
areas show the 95% confidence interval.
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CACTUS trained with

Figure 36: Test average travel time of CACTUS trained with the VAULT and different
variants of the CoreVAULT w.r.t. the number of agents after 40, 000 episodes of RL training.
Shaded areas show the 95% confidence interval.

B.4. Curriculum Learning with VAULT Ablations

The training results w.r.t. completion rate and average travel time of the VAULT and its
ablations without Random and Room maps, respectively, and the CoreVAULT, are shown
in Figures 37 and 38. Training with the original VAULT progresses fastest, while our
CoreVAULT policies progress second fastest. Omitting Random or Room maps affects the
sample efficiency notably, thus requiring more epochs to eventually keep up with the original
VAULT and CoreVAULT policies. The Original Map (Core) policies progress similarly to
the Original Map policies without any degradation in sample efficiency.

The test results w.r.t. completion rate and average travel time of the VAULT and its
ablations without Random and Room maps, respectively, and the CoreVAULT, are shown in
Figures 39 and 40. After 40, 000 episodes of RL training, the agent policies trained with
the VAULT ablations underperform the original VAULT and CoreVAULT policies with
an increasing number of agents, while generally outperforming the Original Map policies.
Omitting Room maps leads to higher sensitivity toward Empty, City, and Game.

B.5. Comparison with Traditional MAPF Solvers

The test results w.r.t. completion rate are shown in Figure 41. LaCAM* consistently
achieves a completion rate of 100% in all test maps. MAPF-LNS also achieves a completion
rate of 100% except in Room maps when the number of agents exceeds N = 400. Our
VAULT and CoreVAULT policies consistently achieve completion rates of about 90% in
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CACTUS trained with

Figure 37: Completion rate progress of CACTUS trained with the VAULT and its ablations
(without Random and Room maps, respectively), the CoreVAULT, or the Original Maps
(pruned or not) w.r.t. the training epochs. Shaded areas show the 95% confidence interval.

CACTUS trained with

Figure 38: Average travel time progress of CACTUS trained with the VAULT and its
ablations (without Random and Room maps, respectively), the CoreVAULT, or the Original
Maps (pruned or not) w.r.t. the training epochs. Shaded areas show the 95% confidence
interval.
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CACTUS trained with

Figure 39: Test completion rate of CACTUS trained with the VAULT and its ablations
(without Random and Room maps, respectively), CoreVAULT, or the Original Maps (pruned
or not) w.r.t. the number of agents after 40, 000 episodes of RL training. Shaded areas
show the 95% confidence interval.

CACTUS trained with

Figure 40: Average travel time of CACTUS trained with the VAULT and its ablations
(without Random and Room maps, respectively), CoreVAULT, or the Original Maps (pruned
or not) w.r.t. the number of agents after 40, 000 episodes of RL training. Shaded areas
show the 95% confidence interval.
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CACTUS trained with Traditional MAPF Solvers

Figure 41: Test completion rate of CACTUS trained with the VAULT or CoreVAULT
and the traditional MAPF solvers CBSH, MAPF-LNS, and LaCAM* w.r.t. the number of
agents after 40, 000 episodes of RL training. Shaded areas show the 95% confidence interval.

City and Game maps but their performance degrades in the smaller maps, namely Empty,
Random, Warehouse, and Room, with an increasing number of agents. CBSH scales worst in
all test maps.
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Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., & Bengio, Y. (2018). Graph
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