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Abstract. Given an undirected edge-weighted graph G and a subset
of vertices S in it, the graph convex hull CHG

S of S in G is the set
of vertices obtained by the process of initializing CHG

S to S and iter-
atively adding until convergence all vertices on all shortest paths be-
tween all pairs of vertices in CHG

S of one iteration to constitute CHG
S of

the next iteration. Computing the graph convex hull has applications in
shortest-path computations, active learning, and in identifying geodesic
cores in social networks, among others. Unfortunately, computing it ex-
actly is prohibitively expensive on large graphs. In this paper, we present
a FastMap-based algorithm for efficiently computing approximate graph
convex hulls. FastMap is a graph embedding algorithm that embeds a
given undirected edge-weighted graph into a Euclidean space in near-
linear time such that the pairwise Euclidean distances between vertices
approximate the shortest-path distances between them. Using FastMap’s
ability to facilitate geometric interpretations, our approach invokes the
power of well-studied algorithms in Computational Geometry that effi-
ciently compute the convex hull of a set of points in Euclidean space.
Through experimental studies, we show that our approach not only is
several orders of magnitude faster than the exact brute-force algorithm
but also outperforms the state-of-the-art approximation algorithm, both
in terms of generality and the quality of the solutions produced.

Keywords: Graph Convex Hull · FastMap · Graph Embedding.

1 Introduction

In Computational Geometry, the convex hull of a finite set of points in Euclidean
space is defined as the smallest convex polygon in that space that contains all of
them. The problem of computing the convex hull of a given finite set of points is
a cornerstone problem with numerous applications: In discrete Geometry, several
results rely on convex hulls [14]. In Mathematics, convex hulls are used to study
polynomials [13] and matrix eigenvalues [7]. In Statistics, they are used to define
risk sets [6]. They also play a key role in polyhedral combinatorics [8].
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(a) geometric environment (b) graph environment

Fig. 1: Illustrates a graph convex hull. (a) shows a geometric environment with obsta-
cles (black regions) that is discretized as a grid-world. (b) shows a graph representation
G of the environment in (a), with vertices representing the top-left corners of the free
cells (non-black regions) and edges, weighted by their Euclidean lengths, connecting
pairs of vertices on the boundary of the same free cell. In both (a) and (b), the red
dots indicate S and the union of the red and orange dots indicates CHG

S .

While convex hulls have been traditionally studied in geometric spaces, they
can also be defined on graphs. In particular, given an undirected edge-weighted
graph G = (V,E,w), where V is the set of vertices, E is the set of edges, and for
any edge e ∈ E, w(e) is the non-negative weight on it, and a subset of vertices
S ⊆ V , the graph convex hull of S in G is the smallest set of vertices CHG

S

that contains S and all vertices that appear on any shortest path between any
pair of vertices in CHG

S . Procedurally, CHG
S can be obtained by the process of

initializing it to S and iteratively adding until convergence all vertices on all
shortest paths between all pairs of vertices in CHG

S of one iteration to constitute
CHG

S of the next iteration.
Modulo discretization, graphs are capable of representing complex manifolds

and geometric spaces. Hence, graph convex hulls “generalize” geometric convex
hulls. For example, Figure 1 shows a graph convex hull computed on a graph that
represents a 2-dimensional Euclidean space with obstacles. Graph convex hulls
have many important properties and applications that are analogous to those of
geometric convex hulls. Figure 2 shows one such important analogous property:
Every shortest path between any two query vertices on the graph intersects a
graph convex hull in a single continuum. Moreover, graph convex hulls have
many other applications in active learning [17] and identifying geodesic cores in
social networks [15], among others.

While geometric convex hulls can be computed efficiently, little is known
about efficient algorithms for computing graph convex hulls. In particular, it
is well known that geometric convex hulls can be computed with the following
complexities: Given input points S, Qhull [1] can compute the geometric convex
hull with corners C in O(|S| log |C|) time in 2-dimensional and 3-dimensional
Euclidean spaces and in O(|S|f(|C|)/|C|) time in higher-dimensional Euclidean
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(a) geometric convex hulls (b) graph convex hulls

Fig. 2: Illustrates an important property of graph convex hulls analogous to geometric
convex hulls. (a) shows that the straight line (shown in green) joining two points in
Euclidean space intersects a geometric convex hull (one shown in red and one shown in
blue) in exactly one continuum (shown in orange). Here, the red and blue dots indicate
the set of points for which the red and blue geometric convex hulls are computed,
respectively. (b) shows that any shortest path (shown in green) between two vertices
intersects a graph convex hull (one shown in red and one shown in blue) in exactly one
continuum (shown in orange). Here, the larger red and blue dots indicate the set of
vertices for which the red and blue graph convex hulls are computed, respectively.

spaces. Here, f(|C|) returns the maximum number of faces of a convex polytope
with |C| corners and is O(|C|⌊κ/2⌋/⌊κ/2⌋!) for a κ-dimensional Euclidean space.
In contrast, computing graph convex hulls may not be that efficient. In fact, it
is folklore that computing graph convex hulls on a general graph G = (V,E,w)
takes at least O(|V ||E|) time [12]. Hence, brute-force approaches for computing
graph convex hulls exactly are prohibitively expensive on large graphs.

In this paper, we present a novel algorithm for efficiently computing ap-
proximate graph convex hulls based on FastMap. FastMap [2, 11] is a graph
embedding algorithm that embeds a given undirected edge-weighted graph into
a Euclidean space in near-linear time such that the pairwise Euclidean distances
between vertices approximate the shortest-path distances between them. Since
FastMap facilitates geometric interpretations of graph-theoretic problems, our
proposed approach utilizes the efficient algorithms mentioned above for comput-
ing the geometric convex hull of a set of points in Euclidean space, particularly
in 2-dimensional and 3-dimensional Euclidean spaces.

Although our FastMap-based transformation of the graph convex hull prob-
lem to the geometric convex hull problem is promising, it does not guarantee
exactness. Thus, as a further contribution of this paper, we advance this approach
using an iterative refinement procedure. This procedure significantly improves
the recall without compromising the precision. Hence, our iterative FastMap-
based algorithm has much better Jaccard scores compared to the naive FastMap-
based algorithm. It also runs several orders of magnitude faster than the exact
brute-force algorithm. Moreover, we compare our iterative FastMap-based al-
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(b) projection onto a hyperplane
that is perpendicular to OaOb

Fig. 3: Illustrates how coordinates are computed and recursion is carried out in
FastMap, borrowed from [2].

gorithm against the state-of-the-art approximation algorithm and demonstrate
two advantages over it. First, our approach is applicable to undirected edge-
weighted graphs while the competing approach is applicable only to undirected
unweighted graphs. Second, even on undirected unweighted graphs, our approach
experimentally produces higher-quality solutions and is faster on large graphs.

2 Background: FastMap

FastMap [3] was introduced in the Data Mining community for automatically
generating Euclidean embeddings of abstract objects. For many real-world ob-
jects such as long DNA strings, multi-media datasets like voice excerpts or im-
ages, or medical datasets like ECGs or MRIs, there is no geometric space in
which they can be naturally visualized. However, there is often a well-defined
distance function between every pair of objects in the problem domain. For ex-
ample, the edit distance4 between two DNA strings is well defined although an
individual DNA string cannot be conceptualized in geometric space.

FastMap embeds a collection of abstract objects in an artificially created
Euclidean space to enable geometric interpretations, algebraic manipulations,
and downstream Machine Learning algorithms. It gets as input a collection of
abstract objects O, where D(Oi, Oj) represents the domain-specific distance
between objects Oi, Oj ∈ O. A Euclidean embedding assigns a κ-dimensional
point pi ∈ Rκ to each object Oi. A good Euclidean embedding is one in which
the Euclidean distance χij between any two points pi and pj closely approxi-
mates D(Oi, Oj). For pi = ([pi]1, [pi]2 . . . [pi]κ) and pj = ([pj ]1, [pj ]2 . . . [pj ]κ),
χij =

√∑κ
r=1([pj ]r − [pi]r)2.

FastMap creates a κ-dimensional Euclidean embedding of the abstract ob-
jects in O, for a user-specified value of κ. In the very first iteration, FastMap

4 The edit distance between two strings is the minimum number of insertions, dele-
tions, or substitutions that are needed to transform one to the other.
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heuristically identifies the farthest pair of objects Oa and Ob in linear time. Once
Oa and Ob are determined, every other object Oi defines a triangle with sides
of lengths dai = D(Oa, Oi), dab = D(Oa, Ob) and dib = D(Oi, Ob), as shown in
Figure 3a. The sides of the triangle define its entire geometry, and the projection
of Oi onto the line OaOb is given by

xi = (d2ai + d2ab − d2ib)/(2dab). (1)

FastMap sets the first coordinate of pi, the embedding of Oi, to xi. In the
subsequent κ − 1 iterations, the same procedure is followed for computing the
remaining κ − 1 coordinates of each object. However, the distance function is
adapted for different iterations. For example, for the first iteration, the coordi-
nates of Oa and Ob are 0 and dab, respectively. Because these coordinates fully
explain the true domain-specific distance between these two objects, from the
second iteration onward, the rest of pa and pb’s coordinates should be identical.
Intuitively, this means that the second iteration should mimic the first one on
a hyperplane that is perpendicular to the line OaOb, as shown in Figure 3b.
Although the hyperplane is never constructed explicitly, its conceptualization
implies that the distance function for the second iteration should be changed for
all i and j in the following way:

Dnew(O
′
i, O

′
j)

2 = D(Oi, Oj)
2 − (xi − xj)

2. (2)

Here, O′
i and O′

j are the projections of Oi and Oj , respectively, onto this hyper-
plane, and Dnew(·, ·) is the new distance function.

FastMap can also be used to embed the vertices of a graph in a Euclidean
space to preserve the pairwise shortest-path distances between them. The idea
is to view the vertices of a given graph G = (V,E,w) as the objects to be
embedded. As such, the Data Mining FastMap algorithm cannot be directly
used for generating an embedding in linear time. This is because it assumes
that the distance dij between any two objects Oi and Oj can be computed in
constant time, independent of the number of objects. However, computing the
shortest-path distance between two vertices depends on the size of the graph.

The issue of having to retain (near-)linear time complexity can be addressed
as follows: In each iteration, after we heuristically identify the farthest pair of
vertices Oa and Ob, the distances dai and dib need to be computed for all other
vertices Oi. Computing dai and dib for any single vertex Oi can no longer be done
in constant time but requires O(|E|+|V | log |V |) time instead [4]. However, since
we need to compute these distances for all vertices, computing two shortest-path
trees rooted at each of the vertices Oa and Ob yields all necessary shortest-path
distances in one shot. The complexity of doing so is also O(|E| + |V | log |V |),
which is only linear in the size of the graph.5

The foregoing observations are used in [11] to build a graph-based version of
FastMap that embeds the vertices of a given undirected graph in a Euclidean
5 unless |E| is O(|V |), in which case the complexity is near-linear in the size of the

input because of the log |V | factor
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space in near-linear time. The Euclidean distances approximate the pairwise
shortest-path distances between vertices. Algorithm 1 in [10] presents the pseu-
docode for this algorithm: κ is user-specified, but a threshold parameter ϵ is
introduced to detect large values of κ that have diminishing returns on the ac-
curacy of approximating pairwise shortest-path distances.

3 FastMap-Based Algorithms for Graph Convex Hull

In this section, we first introduce a naive version of our FastMap-based algo-
rithm. We then improve it to an iterative version using certain geometric in-
tuitions, which, in turn, are also enabled by FastMap. This iterative version of
our FastMap-based algorithm is the final product we use in our experimental
comparisons against the state-of-the-art competing approach.

The naive version of our FastMap-based algorithm computes an approxima-
tion of the graph convex hull as follows: (1) It embeds the vertices of the given
graph G = (V,E,w) in a Euclidean space with κ dimensions, typically for κ = 2,
3, or 4; (2) It computes the geometric convex hull of the points corresponding
to the vertices in S; and (3) It reports all the vertices that map to the interior6
of this geometric convex hull as the required approximation of the graph convex
hull. This algorithm is very efficient, especially if κ = 2 or 3: Step (1) runs in
O(|E|+ |V | log |V |) time; Step (2) runs in O(|S| log |C|) time; and Step (3) runs
in O(|V ||C|) time.7 In Steps (2) and (3), |C| is upper-bounded by |S| since the
computation is done in Euclidean space.

The foregoing algorithm is not guaranteed to return an under-approximation
or an over-approximation of the vertices in the graph convex hull. Hence, we
introduce the measures of precision, recall, and Jaccard score. Here, the precision
refers to the fraction of reported vertices that belong to the ground-truth graph
convex hull. The recall refers to the fraction of vertices in the ground-truth
graph convex hull that are reported. The Jaccard score refers to the ratio of the
number of reported vertices that are in the ground-truth graph convex hull to the
number of vertices that are either reported or in the ground-truth graph convex
hull. Empirically, we observe that even this naive version of our FastMap-based
algorithm generally yields very high precision values on a wide variety of graphs.
However, there is a leeway for improving its recall and, consequently, its Jaccard
score. Towards this end, we design an iterative version of our FastMap-based
algorithm drawing intuitions from the geometric convex hull.

The iterative version of our FastMap-based algorithm computes an approxi-
mation of the graph convex hull as follows: In the first iteration, it follows Steps
(1) and (2) mentioned above. However, it does not terminate by merely identi-
fying the vertices mapped to the interior of the geometric convex hull. Instead,
it identifies the vertices mapped to the corners of the geometric convex hull and
computes all shortest paths between all pairs of them directly on the input graph
6 The interior includes the boundaries and the corners of the geometric convex hull.
7 To check if a given point is inside a convex polytope, we have to check its relationship

to each of the convex polytope’s f(|C|) faces. f(|C|) = O(|C|) for κ = 2 or 3.
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G. Vertices on any of these shortest paths that are not already in S are consid-
ered in addition to S for the second iteration of computing the geometric convex
hull. The algorithm may not terminate by identifying the vertices mapped to
the interior of the new geometric convex hull produced in the second iteration,
either. In such a case, it identifies the vertices mapped to the corners of the new
geometric convex hull and aims to compute all shortest paths between all pairs
of them directly on the input graph G. In doing so, it avoids any redundant com-
putations for pairs of vertices with cached results from the first iteration8. The
algorithm continues this process until convergence, that is, no new vertices are
added to S for the next iteration. Upon convergence, it reports all the vertices
mapped to the interior of the geometric convex hull from the last iteration as
the required approximation of the graph convex hull. Moreover, the algorithm
is guaranteed to converge since: (a) The set of vertices inducted into the graph
convex hull in any iteration subsumes that of the previous iteration; and (b) G
has a finite number of vertices. Before convergence, the algorithm can also be
terminated after a user-specified number of iterations.

Overall, our iterative FastMap-based algorithm hybridizes the exact brute-
force algorithm and the naive FastMap-based algorithm. While the exact brute-
force algorithm performs all its convex hull-related computations directly on
the input graph G, the naive FastMap-based algorithm performs all its con-
vex hull-related computations on the Euclidean embedding of G. The iterative
FastMap-based algorithm hybridizes them and performs its convex hull-related
computations partly on G and partly on its Euclidean embedding, interleaving
them intelligently so that the shortest paths on G are computed only between
pairs of vertices mapped to the corners of the geometric convex hull obtained
in the previous iteration. On the one hand, it is significantly more efficient than
the exact brute-force algorithm that computes all shortest paths between all
pairs of vertices in every iteration until convergence. On the other hand, it is
more informed than the naive FastMap-based algorithm, which may occasion-
ally miss qualifying vertices—and, consequently, their substantial downstream
effects—when they are placed even marginally outside the geometric convex hull
in the Euclidean embedding of G.

Figure 4 shows the step-wise working of our iterative FastMap-based algo-
rithm on an example graph. Figure 4a shows the input graph G with the set S
indicated in red. Figure 4b indicates the geometric convex hull of the red points
from Figure 4a in the FastMap embedding of G. The corners of the geometric
convex hull are shown in the overriding color blue. Figure 4c shows the interior
points of the geometric convex hull from Figure 4b. The blue points are carried
over from Figure 4b and the orange points indicate the rest of the interior points.
Figure 4d shows the interior (blue and orange) points from Figure 4c identified
on G in orange. This set of orange vertices is the algorithm’s approximation of
CHG

S after the first iteration.
Figure 4e marks the blue points from Figure 4c as larger green vertices. It also

shows all vertices that appear on any of the shortest paths between any pair of

8 a previous iteration, in general
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(a) (e) (i)

(b) (f) (j)

(c) (g) (k)

(d) (h) (l)

Fig. 4: Shows the behavior of our iterative FastMap-based algorithm on the running
example from Figure 1. The individual panels are explained in the main text of the
paper. The precision, recall, and Jaccard score are reported after each iteration.
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these larger green vertices as regular green vertices. However, this set of regular
green vertices excludes the vertices in S, since we compute only the incremental
update to the set of vertices that are deemed to be in CHG

S . Figure 4f shows the
green vertices from Figure 4e and the red vertices from Figure 4a as the vertices
deemed to be in CHG

S at this stage. The corners of the geometric convex hull of
the points corresponding to these vertices are shown in the overriding color blue.
Figure 4g is similar to Figure 4c and carries over the blue points from Figure 4f.
However, the new internal points identified in this iteration, compared to the
previous one, are shown as larger points. Figure 4h is similar to Figure 4d and
is derived from Figure 4g. The new set of orange vertices is the approximation
of CHG

S after the second iteration, where the new orange vertices are larger.
Figure 4i marks the blue points from Figure 4g as larger green vertices. It

also shows all vertices that appear on any of the shortest paths between any
pair of these larger green vertices as regular green vertices. However, this set of
regular green vertices excludes the vertices in S (red vertices from Figure 4a)
and the green vertices computed in the previous iterations (green vertices from
Figure 4e), since we compute only the incremental update to the set of vertices
that are deemed to be in CHG

S . Figure 4j shows the green vertices from Figures 4i
and 4e and the red vertices from Figure 4a as the vertices deemed to be in CHG

S

at this stage. The corners of the geometric convex hull of the points corresponding
to these vertices are shown in the overriding color blue. Figure 4k is similar to
Figure 4g and carries over the blue points from Figure 4j. However, the new
internal points identified in this iteration, compared to the previous one, are
shown as larger points. Figure 4l is similar to Figure 4h and is derived from
Figure 4k. The new set of orange vertices is the approximation of CHG

S after
the third iteration, where the new orange vertices are larger. At this stage, the
algorithm converges; and, in general, would continue either until convergence or
for a user-specified number of iterations.

Algorithm 1 shows the pseudocode for our iterative FastMap-based algorithm
(FMGCH). It takes as input the graph G = (V,E,w) and a set of vertices S ⊆ V ,
for which the graph convex hull needs to be computed. The input parameters κ
and ϵ are pertinent to the FastMap embedding, as in Algorithm 1 in [10]. The
output CH

G

S is the required graph convex hull or an approximation of it. The
algorithm initializes and maintains S̃ to represent the set of vertices deemed
to be in CH

G

S . In addition, it initializes and maintains CHS̃ to represent the
corners of the geometric convex hull of S̃ in the FastMap embedding of G.

On Line 1, the algorithm calls Algorithm 1 in [10] and creates a κ-dimensional
Euclidean embedding of G, with vertex vi ∈ V mapped to point pi ∈ Rκ. On
Lines 3 and 4, the algorithm identifies the points corresponding to the speci-
fied vertices in S and computes their geometric convex hull. Here, the function
ConvexHull(·) returns only the corners of the geometric convex hull. The algo-
rithm then performs some initializations on Lines 5 and 6 and begins the iterative
process on Lines 7-26 until convergence is detected on Lines 7 or 21. In each it-
eration, the old value of CHS̃ , that is, CH ′

S̃
, is first replaced by CHS̃ on Line 8.

Subsequently, CHS̃ is updated on Lines 9-25. This update starts on Line 9 by
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Algorithm 1 FMGCH (FastMap-Based Graph Convex Hull): A FastMap-
based algorithm for computing graph convex hulls.
Input: G = (V,E,w) and S ⊆ V
Parameter: κ and ϵ
Output: CH

G
S

1: P ← FastMap(G, κ, ϵ).
2: S̃ ← S.
3: PS̃ ← {pi ∈ P : vi ∈ S̃}.
4: CHS̃ ← ConvexHull(PS̃).
5: CH ′

S̃
← {}.

6: Dicts← dictionary().
7: while CHS̃ ̸= CH ′

S̃
do

8: CH ′
S̃
← CHS̃ .

9: pairs← {(pi, pj) : pi, pj ∈ CH ′
S̃
, i < j, and (pi, pj) is not cached}.

10: S̃′ ← S̃.
11: for (pi, pj) ∈ pairs do
12: if vi ∈ Dicts then
13: SPDvi ← Dicts[vi].
14: else
15: SPDvi ← ShortestPathDictionary(G, vi).
16: Dicts[vi]← SPDvi .
17: end if
18: S∆ ← VerticesOnAllShortestPaths(SPDvi , vj).
19: S̃ ← S̃ ∪ S∆.
20: end for
21: if S̃ = S̃′ then
22: break
23: end if
24: PS̃ ← {pi ∈ P : vi ∈ S̃}.
25: CHS̃ ← ConvexHull(PS̃).
26: end while
27: CH

G
S ← {vi : pi ∈ PointsWithinHull(CHS̃ , P )}.

28: return CH
G
S .

identifying the necessary pairs of vertices between which all vertices on all short-
est paths need to be computed, while avoiding any redundant computations with
respect to the previous iterations. On Lines 12-17, the algorithm then computes
the shortest-path dictionary rooted at vi, for each necessary pair (pi, pj) with
i < j, if this dictionary is not already cached in the ‘Dicts’ data structure. The
function ShortestPathDictionary(·, ·) returns a list of predecessors of each ver-
tex that lead to the root vertex vi along a shortest path.9 On Lines 18 and 19,
the algorithm calls the function VerticesOnAllShortestPaths(·, ·) to gather all
vertices that appear on any of the shortest paths from vi to vj and adds them
incrementally to S̃. On Lines 21-23, the algorithm checks for convergence and
9 In Python3, this can be realized using the ‘dijkstra_predecessor_and_distance()’

function of NetworkX [5].
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breaks the iterative loop if necessary.10 On Lines 24 and 25, it updates the ge-
ometric convex hull in preparation for the next iteration. Upon termination of
the iterative loop, on Lines 27 and 28, the algorithm computes and returns the
entire interior of the geometric convex hull from the last iteration. The func-
tion PointsWithinHull(·, ·) determines which of the specified points belong to
the interior of a geometric convex hull specified by its corners.

As analyzed before, the running time complexity of the naive FastMap-based
algorithm is superior to the folklore results for the exact computation of graph
convex hulls. Although it is much harder to analyze the running time complex-
ity of our iterative FastMap-based algorithm, we provide an analysis here under
certain realistic assumptions. Let CHG

S be the ground truth and κ = 2 or 3.11
We assume that the algorithm runs for τ iterations, for a small constant τ , has
a high precision in all iterations, with |CH

G

S | ⪅ |CHG
S |, and that CHS̃ has at

most c̄ corners in all iterations, with c̄ ≪ |CHG
S |. These assumptions have been

observed to be true in extensive experimental studies. Hence, in each iteration,
the algorithm computes the geometric convex hull in O(|S̃| log c̄) time, in which
|S̃| is upper-bounded by |CHG

S |. In addition, in each iteration, the algorithm
computes all vertices on the shortest paths between all pairs of vertices corre-
sponding to the points in CHS̃ . It does so in two phases. First, it computes the
shortest-path dictionaries rooted at each of the vertices corresponding to the
points in CHS̃ in O(c̄(|E| + |V | log |V |)) time. Second, it post-processes each
such dictionary with respect to each of the destination vertices corresponding
to the points in CHS̃ in time linear in the size of the dictionary. This takes
O(c̄2(|E| + |V |)) time. Finally, the algorithm computes the interior of the ge-
ometric convex hull in O(c̄|V |) time. Therefore, the overall time complexity is
O(τ(log c̄|CHG

S |+ c̄(|V | log |V |) + c̄2(|E|+ |V |))). This complexity is still better
than the folklore results for the exact computation of graph convex hulls. More-
over, the real benefits of the iterative FastMap-based algorithm become evident
in the experimental studies presented in the next section.

4 Experimental Results

In this section, we present experimental results that compare FMGCH, that is,
Algorithm 1, against the state-of-the-art algorithm for computing graph convex
hulls, which is encapsulated within GCoreApproximation (GCA) [15]12. How-
ever, GCA is also an approximation algorithm. Hence, to produce the ground
truth (GT), we implemented the brute-force algorithm with as many algorithmic,
data-structure, and code-level optimizations as possible.13 We do not include
10 In such a case, the convergence condition on Line 7 is also satisfied. However, the

work on Lines 24 and 25 can be avoided.
11 For higher values of κ, the analysis has to explicitly factor in the number of faces of

κ-dimensional convex polytopes.
12 https://github.com/fseiffarth/GCoreApproximation
13 Describing all of these optimizations is beyond the scope of this paper because of

limited space.
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our naive FastMap-based algorithm in the experiments due to limited space.
However, as expected, it is more efficient than FMGCH, our iterative FastMap-
based algorithm, but produces a lower recall and Jaccard score. We implemented
FMGCH in Python3. For computing the geometric convex hull of a collection
of points in Euclidean space, we used the ‘Qhull’ library [1]. We invoked GCA
using a simple Python wrapper function. We conducted all experiments on a
laptop with an Apple M2 Max chip and 96 GB memory.

While FMGCH is applicable to both unweighted and (edge-)weighted graphs,
GCA is applicable to only unweighted graphs [15]. That is, FMGCH already has
the advantage of being a more general algorithm compared to GCA. Hence, we
perform two kinds of experiments. First, we compare FMGCH against GCA on
unweighted graphs. Second, we study the performance of FMGCH on weighted
graphs. In both cases, the GT procedure is included as the baseline.

We used four datasets in our experiments from which both unweighted and
weighted graphs can be derived: the DIMACS, movingAI, SNAP, and the Wax-
man graphs. The DIMACS graphs14 are a standard benchmark collection of
unweighted graphs. They can be converted to weighted graphs by assigning an
integer weight chosen uniformly at random from the interval [1, 10] to each edge.
The movingAI graphs model grid-worlds with obstacles [16]. They can be used
as unweighted graphs if the grid-worlds are assumed to be four-connected (with
only horizontal and vertical connections) or as weighted graphs if the grid-worlds
are assumed to be eight-connected (with additional diagonal connections). The
SNAP dataset refers to the Stanford Large Network Dataset Collection [9], some
graphs from which were chosen as undirected unweighted graphs for experimen-
tation in [15]. We use the same graphs for a fair comparison with GCA. Moreover,
these graphs can be converted to weighted graphs by assigning an integer weight
chosen uniformly at random from the interval [1, 10] to each edge. Waxman
graphs are used to generate realistic communication networks [18]. Here, we gen-
erated Waxman graphs using NetworkX [5] with parameter values α = 100/|V |
and β = 0.1, within a rectangular domain of 100× 100, and with the weight on
each edge set to the Euclidean distance between its endpoints. These graphs are
naturally weighted but can be made unweighted by ignoring the weights.

Table 1 shows the performance results of FMGCH, GCA, and the GT pro-
cedure. FMGCH is shown with three subdivisions, for κ = 2, 3, and 4. In each
case, the table reports the precomputation time and the query time. The pre-
computation time is the time required by the FastMap component of FMGCH to
generate the κ-dimensional Euclidean embedding. This precomputation is done
only once per graph and can serve the purpose of answering many queries on
the same graph with different input S. Due to limited space, only representative
results are shown on selected graphs from each dataset. Queries were formulated
on a given graph by randomly choosing 10 vertices to constitute the input set
S. In most cases, FMGCH required ≤ 10 iterations for convergence.

In the first set of experiments (top half of Table 1), it is easy to observe
that both FMGCH and GCA are orders of magnitude faster than GT, with the

14 https://mat.tepper.cmu.edu/COLOR/instances.html
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efficiency gaps being more pronounced on large graphs. In fact, FMGCH is also
faster than GCA on large graphs. On the DIMACS dataset, both FMGCH and
GCA produce very high-quality solutions. On the movingAI dataset, GCA does
not produce high-quality solutions. While the same is true for FMGCH with κ =
2, the quality increases for κ = 3 and increases further for κ = 4. In fact, FMGCH
with κ = 4 produces very high-quality solutions. On the SNAP dataset, GCA
produces low-quality solutions and FMGCH produces better-quality solutions,
particularly on recall. However, this quality deterioration is not related to the
larger sizes of the SNAP graphs. In fact, on the Waxman graphs, which are also
large, both FMGCH and GCA produce very high-quality solutions.

In the second set of experiments (bottom half of Table 1), GCA is not ap-
plicable at all. In contrast, FMGCH is fully applicable and can be evaluated
using GT. Even here, it is easy to observe that FMGCH is orders of magnitude
faster than GT. The qualities of the solutions that it produces follow the same
patterns as in the unweighted case. On some weighted graphs, FMGCH and/or
GT may run faster than on their unweighted counterparts. This happens be-
cause the number of shortest paths between a pair of vertices is usually more on
unweighted graphs and, consequently, computing all of them is more expensive.

5 Conclusions

The graph convex hull problem is an important graph-theoretic problem that is
analogous to the geometric convex hull problem. The two problems also share
many important analogous properties and real-world applications. Yet, while the
geometric convex hull problem is very well studied, the graph convex hull prob-
lem has not received much attention thus far. Moreover, while geometric convex
hulls can be computed very efficiently in low-dimensional Euclidean spaces, folk-
lore results for algorithms that compute graph convex hulls exactly make them
prohibitively expensive on large graphs. In this paper, we presented a FastMap-
based algorithm for efficiently computing approximate graph convex hulls. Our
FastMap-based algorithm utilizes FastMap’s ability to facilitate geometric inter-
pretations. While the naive version of our algorithm uses a single shot of such a
geometric interpretation, the iterative version of our algorithm repeatedly inter-
leaves the graph and geometric interpretations to reinforce one with the other.
This iterative version was encapsulated in our solver, FMGCH, and experimen-
tally compared against the state-of-the-art solver, GCA. On a variety of graphs,
we showed that FMGCH not only runs several orders of magnitude faster than
a highly-optimized exact algorithm but also outperforms GCA, both in terms of
generality and the quality of the solutions produced. It is also faster than GCA
on large graphs.
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