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Abstract

Multi-Agent Path Finding (MAPF) is an NP-hard prob-
lem that has been well studied in artificial intelligence and
robotics. Recently, randomized MAPF solvers have been
shown to exhibit heavy-tailed distributions of runtimes,
which can be exploited to boost their success rates for given
runtime limits. In this paper, we discuss different ways of ran-
domizing MAPF solvers and evaluate simple rapid random-
ized restart strategies for state-of-the-art MAPF solvers such
as iECBS, M* and CBS-CL.

Introduction and Background
Given a graph and a set of agents with unique start and goal
vertices each, the Multi-Agent Path Finding (MAPF) prob-
lem is to find collision-free paths for all agents from their
respective start vertices to their respective goal vertices. The
agents traverse edges in discrete time steps with the possibil-
ity of waiting at vertices. Minimizing the solution cost given
by the sum of the travel times of the agents along their paths
is NP-hard (Yu and LaValle 2013b).

Different techniques have been used to develop a vari-
ety of MAPF solvers. These include reductions to problems
from satisfiability (Surynek 2012), integer linear program-
ming (Yu and LaValle 2013a) and answer set programming
(Erdem et al. 2013).1 In this paper, we focus on state-of-the-
art MAPF solvers that are based on graph search. Search-
based MAPF solvers exploit opportunities for decoupling
agents when no coordination between them is required (for
example, when they operate in different regions). We focus
on two families of search-based MAPF solvers, namely, M*
(Wagner 2015) and CBS (Sharon et al. 2015).

M* uses subdimensional expansion to initially create a
one-dimensional search space embedded in the joint config-
uration space of the multi-agent system. When the search
reaches a dead-end due to an agent-agent collision, the di-
mensionality of the search space is locally increased to en-
sure that an alternative path can be found. Like M*, CBS
also tries to avoid operating in the joint configuration space.
However, it does so using a two-level search. On the high
level, it performs a search on a conflict tree that represents
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1The reader can find a list of references in Felner et al. 2017.

conflicts2 between agents. Each high-level node represents a
set of constraints imposed on the paths of agents. On the low
level, it performs single-agent searches that generate paths
for the agents that respect the constraints imposed by the rel-
evant high-level nodes. The basic versions of both M* and
CBS generate optimal solutions.

Since the MAPF problem is NP-hard, even M* and CBS
fail to solve MAPF instances in which many agents inter-
fere with each other in a small region. However, subopti-
mal versions of M* and CBS are capable of solving harder
MAPF instances by trading off runtime with solution cost.
w-suboptimal MAPF solvers generate solutions whose costs
are at most a factor of w larger than the minimal solution
costs, where w is a user-specified suboptimality bound. Sub-
optimal MAPF solvers, on the other hand, provide no such
guarantees.

CBS with highways (CBS+HWY(w)) (Cohen, Uras, and
Koenig 2015) is a w-suboptimal variant of CBS. Its subopti-
mality stems from inflating heuristic values non-uniformly
using highways. Highways are a set of “useful” directed
edges in the graph that are either human-generated or au-
tomatically generated (Cohen et al. 2016), first used in the
context of Experience Graphs (Phillips et al. 2012). Given
highways, CBS+HWY(w) inflates the costs of move actions
along edges that do not belong to the highways by a fac-
tor of w. This biases the low-level searches to find paths
that use the highways edges, which reduces the number of
head-on conflicts between agents. M* can also use high-
ways with a similar inflation mechanism and suboptimality
guarantee. Enhanced CBS (ECBS(w)) (Barer et al. 2014)
is also a w-suboptimal variant of CBS. Its suboptimality
stems from its use of focal search (Pearl and Kim 1982)
with parameter w. A focal search, like A*, uses an OPEN
list whose nodes n are sorted in increasing order of their
f -values f(n) = g(n) + h(n). Unlike A*, a focal search
also uses a FOCAL list of all nodes currently in the OPEN
list whose f -values are no larger than w times the current
smallest f -value in the OPEN list. The nodes in the FOCAL
list are sorted in increasing order according to (possibly in-
admissible) secondary heuristic values. A* expands a node

2We say that a conflict between two agents occurs if, at any
discrete time step, both agents are at the same vertex or traverse the
same edge in opposite directions.



in the OPEN list with the smallest f -value, but a focal search
instead expands a node in the FOCAL list with the small-
est secondary heuristic value. The high-level and low-level
searches of ECBS(w) are focal searches, which use mea-
sures related to the number of conflicts as secondary heuris-
tic values. Improved ECBS(w) (iECBS(w)) (Cohen et al.
2016) is a variant of ECBS(w) that uses the highways heuris-
tic values to break ties among nodes with the same num-
ber of conflicts in its secondary heuristic. Finally, CBS with
Constraint Layering (CBS-CL) (Walker, Chan, and Sturte-
vant 2017) is a suboptimal variant of CBS that plans in a
hierarchy of graphs with different granularities of abstrac-
tion. Conflicts between agents are resolved by both introduc-
ing constraints (as in CBS) as well as changing the abstract
graph in which an agent searches. This changes the length of
the shortest path for each agent in the conflict and reduces
the likelihood that the conflict will occur upon re-planning.

Suboptimal or w-suboptimal MAPF solvers based on M*
and CBS are capable of solving harder MAPF instances
than optimal MAPF solvers. However, their runtimes still
increase exponentially with increased coupling among the
agents. In part, the MAPF solvers’ inability to cope with
such MAPF instances comes from the deterministic nature
of their searches. This weakness of deterministic search has
also been observed for other combinatorial tasks in search
(Valenzano et al. 2010), satisfiability and constraint satisfac-
tion (Gomes et al. 2000). Given an instance, deterministic
search builds the same search tree in every run. This means
that “bad” decisions, especially higher up in the search tree,
are not only expensive but also cannot be avoided in subse-
quent runs.

Recently, deterministic search-based MAPF solvers have
been enhanced with randomization, and their runtimes have
been observed to exhibit heavy-tailed distributions (Cohen
et al. 2018). Heavy-tailed distributions in runtimes can be
exploited with rapid randomized restart (RRR) strategies
(Gomes et al. 2000) because multiple short runs have a bet-
ter chance of solving an instance than one long run. In this
paper, we provide a more detailed experimental evaluation
of the efficiency of parallel runs and RRR strategies for
randomized search-based MAPF solvers, such as iECBS(w)
with and without highways, M* with and without highways,
and CBS-CL.

Randomized MAPF Solvers
In this section, we describe ways in which we can incorpo-
rate randomness into the M* and CBS frameworks.

In the M* framework, randomization can be incorporated
into the neighbor-generation process. Both Operator De-
composition M* (ODM*) and Enhanced Partial Expansion
M* (EPEM*) (Wagner 2015) construct the possible neigh-
bors of a vertex in an agent-by-agent fashion. M* takes each
partial neighbor specifying the action of the first N − 1
agents and creates a separate copy of it. M* appends to this
copy each of the actions of agent N in the collision set of the
vertex being expanded. Otherwise, it generates a single copy
of the partial neighbor by appending the action dictated by
the individual policy. The neighbors are then inserted into
the OPEN list by a deterministic process that orders them by

their g-values. As a result, the relative orders of neighbors
with equal g-values depends on the order that they appear
in the neighbor list, and thus on the labeling of the agents.
Randomizing the labeling of the agents effectively changes
how tie-breaking is done.

In the CBS framework, applicable to ECBS(w),
iECBS(w) and CBS-CL, randomization can be incorporated
in multiple ways. First, each run can use a random permu-
tation of the labels of the agents. Given such a permutation,
the solver performs a low-level focal search for each agent
in that order to determine the paths of all agents in the high-
level root node. Because the low-level focal search tries to
avoid conflicts with the paths found for agents earlier in the
order, the order has a significant effect not only on the paths
found in the high-level root node but also on which conflicts
will be resolved as the search proceeds.

Second, randomization can be used for choosing which
high-level node to expand next. The deterministic version of
iECBS(w) uses a FOCAL list for the high-level search that
contains all high-level nodes with f -values of up to w times
the current smallest f -value in the OPEN list. It then picks a
high-level node for expansion from this list based on a de-
terministic secondary heuristic, namely, the number of con-
flicts among the paths represented by this high-level node.
This choice can be randomized. Since the secondary heuris-
tic provides useful information, the probability of expanding
a high-level node with K̂ conflicts can thus be proportional
to 1/(K̂ + 1).

Third, randomization can be used for choosing which
high-level nodes to generate next. Generating a pair of high-
level nodes in iECBS(w) is the process of identifying a con-
flict and adding two successor high-level nodes that resolve
it. The deterministic version of iECBS(w) chooses the ear-
liest conflict. This choice can be randomized. We have ob-
served that choosing the earliest conflict works well in prac-
tice. The probability of choosing a conflict that occurs at
time step T̂ can thus be proportional to 1/T̂ .

Fourth, randomization can be used for choosing which
low-level node to expand next. The deterministic version of
iECBS(w) uses a FOCAL list for the low-level search that
maintains all low-level nodes with f -values of up to w times
the current smallest f -value in the OPEN list. It then picks
a low-level node for expansion from this list based on a de-
terministic secondary heuristic, namely, the number of con-
flicts of the partial path (from the start vertex to the vertex
represented in this node) with the paths of all other agents.
This choice can be randomized. Since the secondary heuris-
tic provides useful information, the probability of expanding
a low-level node with K̂ conflicts can thus be proportional
to 1/(K̂ + 1).

Finally, CBS-CL can also incorporate randomization into
its abstraction hierarchy. For example, each run can use a
random permutation of the order of abstractions in the hier-
archy. Furthermore, randomization can be used when build-
ing an abstraction by randomizing the set of edges that are
removed from the initial graph.

Incorporating randomness into MAPF solvers has the ad-
ditional benefit of parallelizability. Different instantiations
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Figure 1: (a) shows the Kiva-like domain and the highways used to
guide agents in our experiments. (b) shows the horizontal (top) and
vertical (bottom) aircraft movements in the aviation domain.

of a randomized MAPF solver can run in parallel on the
same MAPF instance, with each run having the same run-
time limit. The first instantiation that solves the MAPF in-
stance terminates all other instantiations. Moreover, ran-
domized MAPF solvers have been shown to exhibit heavy-
tailed distributions of runtimes (Cohen et al. 2018). RRR
strategies can exploit the runtime variance of randomized
MAPF solvers because shorter runs are almost as likely to
solve a MAPF instance as longer runs. Therefore, multiple
short runs are more likely to solve a MAPF instance than
one long run of equivalent accumulated runtime. In the fol-
lowing section, we evaluate the efficiency of parallel runs
and RRR strategies for one way of randomizing the MAPF
solvers that is applicable to all of them, namely, by random-
izing the labeling of the agents.

Experimental Results and Analysis
We conduct experiments in two domains inspired by real-
world applications and show that parallel runs and our RRR
strategy are beneficial in both the M* and CBS frameworks.

The first domain, illustrated in Figure 1(a), is a Kiva3-like
domain. It is generally considered to be a hard domain for
search-based MAPF solvers because significant coordina-
tion among agents is required as many of them need to travel
through narrow passageways to reach the opposite sides of
the map (Cohen, Uras, and Koenig 2015). For each number
of agents in increments of 10, we use 100 randomly gen-
erated MAPF instances. Half of the agents are assigned a
random start vertex in the left open space and a random goal
vertex in the right open space, and vice-versa for the other
half of the agents.

The second domain, illustrated in Figure 1(b), is the
aviation domain in Walker et al. 2017. It is character-
ized by the following set of actions available at each
cell in a 3D grid world: The change in heading is one of
{no change,+45°,−45°,+90°,−90°, left shift, right shift},
the change in height is one of {no change, climb, descend}
and the change in speed is one of {no change, speed up,
slow down}. Hence, the branching factor is 63. The costs of
the actions are based on their fuel consumption.

The experiments for the Kiva-like domain were run on a
cluster of 38 Amazon EC2 c4.xlarge instances running on an

3now called Amazon Robotics

Intel Xeon E5-2666 processor with 4 vcpu (2 physical cores)
and 7.5GB RAM per instance. iECBS(w) used 2 workers
per MAPF instance with each run using w = 2 and a 10
minute runtime limit. M* used 1 worker per MAPF instance
with each run using a 1 minute runtime limit.4 All variants
with highways used an inflation factor of 2. The experiments
for the aviation domain were run in 16 parallel threads on
an Intel Xeon E5-2650 processor with 16 vcpu (8 physical
cores) and 132GB overall RAM.

Figures 2 and 3 show the general trend in the difficulty
of solving Kiva-like and aviation domain instances with in-
creasing numbers of agents. The difficulty is measured by
the success rate, i.e., the percentage of MAPF instances
solved within a given runtime limit. A sharp decline in the
success rate is characteristic of a phase transition. MAPF
instances on the left side of the phase transition do not re-
quire much coordination, which means that MAPF solvers
can easily recover from bad decisions in the search process
and likely solve them within the runtime limit. MAPF in-
stances on the right side of the phase transition require sig-
nificant coordination, which means that the MAPF solvers
can solve only a small fraction of them within the runtime
limit. MAPF instances near the phase transition require a
critical amount of coordination, and thus they can serve as
good test cases for distinguishing among MAPF solvers.

In our experiments, M* could run for a maximum of 1
minute before exhausting the available memory. Figures 2(a)
and (b) report the success rates of M* with increasing num-
bers of parallel runs. Here, each run is given a runtime limit
of 1 minute. As expected, the success rate increases mono-
tonically with the number of parallel runs. For example, on
instances with 70 agents, one run of M* without highways
has a success rate of 16% compared to the 57% success rate
of 10 parallel runs. On instances with 100 agents, one run
of M* with highways has a success rate of 52% compared
to the 94% success rate of 10 parallel runs. Figures 2(c) and
(d) report the success rates of M* with our RRR strategy.
Here, the runtime limit of 1 minute is divided evenly among
the runs. For example, the red line represents 4 runs with
15 seconds allocated to each run. We notice that our RRR
strategy generally boosts the success rate of M* with and
without highways. For example, on instances with 60 agents,
M* has a success rate of 47% compared to the 80% success
rate of 10 runs. On instances with 90 agents, one run of M*
with highways has a success rate of 79% compared to the
95% success rate of 3 runs. However, we also notice that in-
creasing the number of runs (for example, to 10) does not
always yield a higher success rate because solutions cannot
be found arbitrarily quickly. The harder a MAPF instance is,
the higher the runtime limit of a run needs to be.

Figures 2(e) and (f) report the success rates of iECBS(2)
with increasing numbers of parallel runs. The MAPF in-
stances have higher numbers of agents compared to the ones
used for M*. Unlike M*, our implementation of iECBS(w)
is not memory-intensive and can therefore run for a longer
time. Thus, we set the runtime limit of each run to 10 min-

4This is due to the high memory consumption of our M* imple-
mentation.
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Figure 2: Illustrates the benefits of an RRR strategy in the M* and CBS frameworks for the Kiva-like domain, with and without highways.
Each colored curve corresponds to a different number of runs. The x-axis shows the number of agents. The y-axis shows the percentage of
MAPF instances solved within a certain runtime limit. For (a) and (b), the runtime limit of M* is 1 minute per run. For (c) and (d), the runtime
limit of M* is 1 minute divided by the number of runs. For (e) and (f), the runtime limit of iECBS(w) is 10 minutes per run. For (g) and (h),
the runtime limit of iECBS(w) is 10 minutes divided by the number of runs.

utes. As expected, the success rate of iECBS(2) increases
monotonically with the number of parallel runs. For ex-
ample, on instances with 170 agents, one run of iECBS(2)
without highways has a success rate of 38% compared to
the 100% success rate of 10 parallel runs. On instances
with 170 agents, one run of iECBS(2) with highways has
a success rate of 52% compared to the 100% success rate
of 10 parallel runs. Figures 2(g) and (h) report the success
rates of iECBS(2) with our RRR strategy. Here, the runtime
limit of 10 minutes is divided evenly among the runs. High-
ways have a less significant influence on the success rate
of iECBS(2) because they are used only in the secondary
heuristic to order nodes in the FOCAL list. In fact, even in
the secondary heuristic, highways are used only to break ties
among nodes with the same number of conflicts, see Figure
1 of (Cohen et al. 2016). Nevertheless, our RRR strategy
boosts the success rate of iECBS(w) with and without high-
ways. For example, on instances with 160 agents, iECBS(2)
without highways has a success rate of 60% compared to the
77% success rate of 3 runs. On instances with 160 agents,
one run of iECBS(2) with highways has a success rate of
73% compared to the 96% success rate of 6 runs. As in M*,
here too, we notice that simply increasing the number of runs
does not always yield a higher success rate. In fact, the op-
timal number of runs depends on the hardness of the MAPF
instance characterized by the number of agents. For exam-
ple, 2, 3 and 4 runs dominate the success rate for up to about
170 agents. Beyond this point, the MAPF instances are even
harder and require longer runs.

Figure 3(a) reports the success rates of CBS-CL with in-
creasing numbers of parallel runs. As expected, the suc-

cess rate increases monotonically with the number of par-
allel runs. For example, on instances with 60 agents, one
run of CBS-CL has a success rate of 21% compared to the
40% success rate of 10 parallel runs. Figure 3(b) reports the
success rates of CBS-CL with our RRR strategy. For exam-
ple, on instances with 40 agents, CBS-CL has a success rate
of 67% compared to the 76% success rate of 2 runs. Here,
the increase in success rate is not as significant as for M*
and iECBS(w). Our RRR strategy tends to be less benefi-
cial when the heuristic guidance is poor, intuitively because
short runs are less likely to solve a MAPF instance. While
the low-level searches of M* and iECBS(w) use informed
heuristic values (namely, the distances when ignoring other
agents), the heuristic values of CBS-CL are based on the oc-
tile distance and hence are far from perfect.

Conclusions
We presented different ways of randomizing deterministic
MAPF solvers in the M* and CBS frameworks. In our exper-
iments with these randomized MAPF solvers, we observed
a boost in their success rates when increasing the number of
parallel runs in two domains inspired by real-world appli-
cations. We also sometimes observed a boost in their suc-
cess rates when using a simple RRR strategy, although the
hardness of the MAPF instance, as reflected in our domains
by the number of agents, affects the number of restarts for
which this boost is most pronounced.
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