
Optimal and Bounded-Suboptimal Multi-Agent Motion Planning

Liron Cohen, Tansel Uras, T. K. Satish Kumar and Sven Koenig
University of Southern California

{lironcoh, turas}@usc.edu, tkskwork@gmail.com, skoenig@usc.edu

Abstract

Multi-Agent Motion Planning (MAMP) is the task of find-
ing collision-free kinodynamically feasible plans for agents
from start to goal states. While MAMP is of significant prac-
tical importance, existing solvers are either incomplete, in-
efficient or rely on simplifying assumptions. For example,
Multi-Agent Path Finding (MAPF) solvers conventionally as-
sume discrete timesteps and rectilinear movement of agents
between neighboring vertices of a graph. In this paper, we
develop MAMP solvers that obviate these simplifying as-
sumptions and yet generalize the core ideas of state-of-the-
art MAPF solvers. Specifically, since different motions may
take arbitrarily different durations, MAMP solvers need to ef-
ficiently reason with continuous time and arbitrary wait dura-
tions. To do so, we adapt (Enhanced) Conflict-Based Search
to continuous time and develop a novel bounded-suboptimal
extension of Safe Interval Path Planning, called Soft Colli-
sion Interval Path Planning. On the theoretical side, we justify
the completeness, optimality and bounded-suboptimality of
our MAMP solvers. On the experimental side, we show that
our MAMP solvers are more efficient with increasing subop-
timality bounds.

Introduction
Multi-Agent Motion Planning (MAMP) is the task of find-
ing collision-free kinodynamically feasible plans for agents
in a shared environment. Each agent has a unique start and
a unique goal state. Real-world applications of MAMP in-
clude autonomous aircraft towing vehicles (Morris et al.
2016), autonomous non-holonomic vehicles (such as fork-
lifts) in industrial applications (Cirillo et al. 2014) and traf-
fic management systems for unmanned drones (Prevot et al.
2016).

While MAMP is of significant practical importance, ex-
isting formulations rely on simplifying assumptions. For ex-
ample, the Multi-Agent Path Finding (MAPF) problem uses
a formulation in which: (1) the environment is captured by a
graph with vertices representing locations and edges repre-
senting straight-line movements between vertices; and (2)
time is discretized into synchronized timesteps. Although
MAPF problems are motivated by real-world applications,

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

their solutions may not be kinodynamically feasible for real
agents, such as cars or drones, for two major reasons. First,
rectilinear movement cannot be executed on agents with
non-holonomic constraints. Second, different agents may
have different motions of arbitrarily different durations and
thus cannot be easily synchronized. To partially alleviate
this problem, it is possible to post-process a MAPF solution
using simple temporal networks and continuous refinement
of trajectories (Hoenig et al. 2016; 2018). However, these
methods may produce arbitrarily suboptimal plans even if
they post-process optimal MAPF solutions.

One way to address the limitations of the post-processing
strategy is to work with an enriched formulation of the
MAMP problem. A first step in this direction is the formu-
lation of the MAPFR problem (Walker et al. 2018), which
is identical to the MAPF problem but allows positive non-
uniform edge weights to represent different action durations.
However, in MAPFR, vertices still represent locations in
metric space and movements are still rectilinear with uni-
form velocities.

In this paper, we formulate a richer MAMP problem in
which vertices represent states and directed edges repre-
sent kinodynamically feasible motions. A state corresponds
to a point in the configuration space of an agent. For ex-
ample, it may include the (x, y, z)-coordinates, orientation,
steering angle, velocity or other features that characterize
it. An edge from one state to another corresponds to a fea-
sible motion between them. The weight of the edge repre-
sents the duration of the motion. The environment is dis-
cretized into cells. Each edge specifies a list of swept cells,
each cell with an associated timeinterval during which the
agent executing the motion occupies it. As a consequence,
in our formulation, an agent is allowed to be of any geomet-
ric shape. This formulation naturally lends itself to reason-
ing over state lattices (Pivtoraiko et al. 2009), probabilistic
roadmaps (PRMs) (Kavraki et al. 1996) and rapidly explor-
ing random trees (RRTs) (Kuffner and LaValle 2000).

Computationally, the richer formulation of the MAMP
problem is more challenging, and all current solvers for
it are either incomplete or inefficient (Cirillo et al. 2014;
Salvado et al. 2018; Saha et al. 2016). In this paper, we de-
velop a significantly more efficient and provably effective



MAMP solver by drawing inspiration from the success of a
state-of-the-art MAPF solver, called Conflict-Based Search
(CBS) (Sharon et al. 2015). While CBS is not directly ap-
plicable to the MAMP problem, we successfully extend its
core ideas to the richer MAMP domain. To do so, (1) we
adapt (Enhanced) CBS (Barer et al. 2014) to efficiently rea-
son with continuous time and arbitrary wait durations; (2)
we introduce an efficient implementation of reservation ta-
bles using interval maps (Cormen et al. 2009); and (3) we
develop a novel bounded-suboptimal extension of Safe In-
terval Path Planning (SIPP) (Phillips and Likhachev 2011),
called Soft Collision Interval Path Planning (SCIPP). On the
theoretical side, we justify the completeness, optimality and
bounded-suboptimality of our MAMP solvers on state lat-
tices. On the experimental side, we show that our MAMP
solvers scale well with increasing suboptimality bounds.

Background and Related Work
The MAPF Problem
The MAPF problem is defined on a graph G = (V,E) with
agents 1, . . . ,K. Each agent j has unique start and goal ver-
tices sj , gj ∈ V . At each discrete timestep, each agent can
either move to a neighboring vertex or wait at its current
vertex, both with unit cost. A solution is a set of feasible
paths, one path {sj0, . . . , s

j
Tj
, sjTj+1, . . .} for each agent j,

such that no two paths collide. A path for agent j is feasible
iff sj0 = sj , there exists a smallest Tj such that sjt = gj for
t ≥ Tj , and, for all t ∈ {0, 1, . . . , Tj − 1}, 〈sjt , s

j
t+1〉 ∈ E

or sjt = sjt+1. A collision between agents j and k is ei-
ther a vertex collision (j, k, s, t) with s = sjt = skt , or an
edge collision (j, k, s1, s2, t) with s1 = sjt = skt+1 and
s2 = sjt+1 = skt . The travel time of agent j is Tj . For
the commonly used objective of minimizing

∑K
j=1 Tj , the

MAPF problem is NP-hard (Yu and LaValle 2013b).

MAPF and Related Solvers
Numerous optimal MAPF solvers have been developed in
recent years, including reduction-based solvers (Yu and
LaValle 2013a; Surynek et al. 2016), A*-based solvers
(Standley 2010) and dynamically coupled search-based
solvers, like M* (Wagner and Choset 2015) and CBS
(Sharon et al. 2015). See (Felner et al. 2017) for a survey.

Various generalizations of the MAPF problem have also
been studied. In Any-Angle MAPF (Yakovlev and Andr-
eychuk 2017), agents can move in arbitrary directions but
along straight lines. In (Walker et al. 2018), a solver based
on ICTS (Sharon et al. 2013) is presented for the MAPFR

problem. While it can successfully handle arbitrary action
durations, it produces rectilinear motions of agents and re-
lies on geometry-based collision checking that is often com-
putationally expensive. In CBS with Constraint Layering
(CBS+CL) (Walker et al. 2017), a hierarchy of edge sub-
graphs is used with CBS to plan curvilinear paths for agents.
However, CBS+CL sacrifices optimality and does not effi-
ciently reason about arbitrary wait durations.

CBS and ECBS
We now describe CBS and ECBS in more detail since our
MAMP solvers generalize them.

CBS is an optimal MAPF solver. It performs high-level
and low-level searches. Each high-level node contains a set
of constraints and, for each agent, a feasible path that re-
spects the constraints. The high-level root node has no con-
straints. The high-level search of CBS is a best-first search
that uses the costs of the high-level nodes as their f -values.
The cost of a high-level node is the sum of the travel times
along the agents’ paths it contains. When CBS expands a
high-level nodeN , it checks whether the node is a goal node.
A high-level node is a goal node iff none of its paths col-
lide. If N is a goal node, then CBS terminates successfully
and outputs the paths in N as solution. Otherwise, at least
two paths collide. CBS chooses a collision to resolve and
generates two high-level children of N , called N1 and N2.
Both N1 and N2 inherit the constraints of N . If the cho-
sen collision is a vertex collision (j, k, s, t), then CBS adds
the vertex constraint (j, s, t) to N1 (that prohibits agent j
from occupying vertex s at timestep t) and the vertex con-
straint (k, s, t) to N2. If the chosen collision is an edge
collision (j, k, s1, s2, t), then CBS adds the edge constraint
(j, s1, s2, t) to N1 (that prohibits agent j from moving from
vertex s1 to vertex s2 between timesteps t and t+1) and the
edge constraint (k, s2, s1, t) to N2. During the generation of
a high-level node N , CBS performs a low-level search for
the agent i affected by the newly added constraint. The low-
level search for agent i is a (best-first) A* search that ignores
all other agents and finds a minimum-cost path from the start
vertex of agent i to its goal vertex that is both feasible and
respects the constraints of N that involve agent i.

ECBS(w) is a w-suboptimal variant of CBS whose high-
level and low-level searches are focal searches rather than
best-first searches. A focal search (Pearl and Kim 1982), like
A*, uses an OPEN list whose nodes n are sorted in increas-
ing order of their f -values f(n) = g(n)+h(n). Unlike A*, a
focal search with suboptimality factor w also uses a FOCAL
list of all nodes currently in OPEN whose f -values are no
larger than w times fmin, the currently smallest f -value of
any node in OPEN. The nodes in FOCAL are sorted in in-
creasing order according to secondary heuristic values. A*
expands a node in OPEN with the smallest f -value, but a fo-
cal search instead expands a node in FOCAL with the small-
est secondary heuristic value. If h(n) is admissible, then fo-
cal search is guaranteed to be w-suboptimal. The secondary
heuristic values do not have to be consistent (or admissible).
The high-level and low-level searches of ECBS(w) are fo-
cal searches. During the generation of a high-level node N ,
ECBS(w) performs a low-level focal search with OPEN list
OPENi(N) and FOCAL list FOCALi(N) for the agent i
affected by the newly added constraint. The high-level and
low-level focal searches of ECBS(w) use measures related
to the number of collisions as secondary heuristic values.

State Lattices
State lattices (Pivtoraiko et al. 2009) are extensions of grids
that are able to model kinodynamic motion constraints and



are therefore well suited to planning for agents with limited
maneuverability (such as non-holonomic mobile robots). A
state lattice is constructed by discretizing the configuration
space into a high-dimensional grid and connecting the cells
of the grid with motion primitives. A motion primitive mod-
els kinodynamically feasible motions of the agent. A state in
a state lattice is a tuple of the form (x, y, z, θ, v, . . .), where
x, y and z are the coordinates of the agent’s center, θ is the
agent’s orientation, v is the agent’s velocity, etc. An edge
in a state lattice represents a motion primitive and is associ-
ated with a duration and a list of cells that are swept by the
agent when the motion is executed. Motion primitives have
successfully been used for autonomous cars in DARPA’s ur-
ban challenge (Ferguson et al. 2008) and quadrotors (Liu et
al. 2018). A state lattice facilitates the application of heuris-
tic search algorithms to find optimal or bounded suboptimal
trajectories1.

SIPP
SIPP (Phillips and Likhachev 2011) is a search-based single-
agent path planner designed to handle dynamic obstacles ef-
ficiently. In SIPP, each state is associated with a fixed list of
safe timeintervals during which an agent in that state does
not collide with any dynamic obstacles. Timeintervals al-
low SIPP to reason about wait durations “in bulk,” making it
more efficient than A* in the presence of arbitrary wait du-
rations. SIPP has already been successfully used for Multi-
Agent Any-Angle Path Finding (Yakovlev and Andreychuk
2017) and Multi-Agent Pickup and Delivery problems (Ma
et al. 2019).

Problem Formulation
We define the MAMP problem to be a generalization of
the MAPF problem. Thus, the objective of minimizing the
sum of travel times in the MAMP problem, as defined be-
low, is also NP-hard. Unlike MAPF, the MAMP problem is
posed on states instead of locations. A state specifies dis-
cretized values of an agent’s location, orientation, velocity,
etc. An edge represents a kinodynamically feasible motion
of a given arbitrary duration. The sequence of motions in a
feasible plan leads an agent from its start state to its goal
state. An agent is allowed to be of any geometric shape, im-
plicitly specified by a set of occupied cells.

We formally define the MAMP problem as follows. We
are given an environment represented by a set of cells C. We
are given agents 1, . . . ,K, each with an associated graph
Gj = (V j , Ej) and start and goal vertices, sj , gj ∈ V j .
Each vertex s ∈ V j represents a state and is associated with
a list of cells {cs1, . . . , csm(s)} ⊆ C occupied by the agent
while at s. Each edge e ∈ Ej represents a motion and has an
associated weight w(e) > 0, that represents its duration. e is
also associated with a multiset of cells {ce1, . . . , cem(e)} ⊆ C.
Each cell cei is associated with a timeinterval [lbei , ub

e
i ] dur-

ing which it is swept by agent j after the start of execution
of the motion represented by e. Thus min1≤i≤m(e) lb

e
i = 0

and max1≤i≤m(e) ub
e
i = w(e).

1optimality with respect to the state lattice discretization

A sequence πj = {〈ej1, t
j
1〉, . . . , 〈e

j
Tj
, tjTj
〉} is a plan for

agent j, where eji = (sji−1, s
j
i ) ∈ Ej and tji ≥ 0 is the begin-

ning time of the execution of eji . πj is feasible iff ej1 . . . , e
j
Tj

is a path from sj to gj in Gj and, for all i ∈ {2, . . . , Tj},
tji ≥ tji−1 + w(eji−1). This means that agent j waits at
state sji−1 and therefore occupies cells {cs1, . . . , csm(s)} for

s = sji−1 during the timeinterval [tji−1 + w(eji−1), t
j
i ].

2 We
assume that agent j occupies {cs1, . . . , csm(s)} for s = gj

during the timeinterval [tjTj
+ w(ejTj

),∞]. The travel time

of agent j in πj is given by tjTj
+ w(ejTj

). A collision be-
tween two agents occurs iff the timeintervals in which they
sweep or occupy the same cell overlap and has a duration
larger than 0. A solution to the MAMP problem is a set of
feasible plans such that no two agents collide. We focus on
minimizing the sum of travel times of all agents.

In this paper, we consider a state lattice representation of
the MAMP problem, even though one could also consider a
PRM or RRT representation.

ECBS for MAMP
In this section, we present ECBS-CT,3 a generalization of
ECBS for the MAMP problem. Algorithm 1 shows the pseu-
docode for the high-level search of ECBS-CT. It takes as in-
put an MAMP instance and a suboptimality bound w ≥ 1.
ECBS-CT generates a solution that has a cost of no more
than w times the optimal cost. Thus, for w = 1, ECBS-CT
is optimal and essentially generalizes CBS for the MAMP
problem.

On lines 1-2, the high-level root node is initialized us-
ing a low-level search for each agent. In ECBS-CT, the low-
level search uses SCIPP. The main loop on lines 3-12 per-
forms a focal search. On lines 11-12, FOCAL is appropri-
ately maintained to include all relevant nodes from OPEN if
fmin changes. The secondary heuristic value of a generated
high-level node is defined to be the total duration in which
two or more agents collide. As discussed in the next sub-
section, it can be efficiently computed while the reservation
table is updated on line 10.

On line 6, a collision at cell c starting at time lb and ending
at time ub, (c, [lb, ub]), between two agents j and k is iden-
tified. We focus on resolving the earliest collision among all
agents in high-level node N . As discussed in the next sub-
section, this earliest collision can be efficiently identified us-
ing the reservation table. Resolving the earliest collision is
known to be beneficial in the CBS framework (Sharon et al.
2015). The collision is resolved on line 8 by posting a con-
straint on cell c at a timepoint τ ∈ [lb, ub]. This constraint
(c, τ) prohibits the corresponding agent from being at cell c
at timepoint τ . Two questions that arise in this context are:
(1) “Why is a timepoint used instead of a timeinterval?” and
(2) “What should the value of τ be?”

The answer to the first question relates to the requirements
of CBS (ECBS) to guarantee optimality (w-suboptimality).

2Waiting can be conditioned on the velocity being zero.
3CT stands for continuous time.



Algorithm 1: ECBS-CT (High-Level Search)
Input: MAMP instance, w ≥ 1.
Output: A w-suboptimal solution.

1 Initialize root node with a plan for each agent using SCIPP.
2 Insert the root node into OPEN and FOCAL.
3 while FOCAL 6= ∅ do
4 N ← Pop(FOCAL).
5 if N is a solution then return N .
6 Identify a collision (c, [lb, ub]) between agents j and k

at cell c ∈ C during timeinterval [lb, ub].
7 Identify a timepoint τ ∈ [lb, ub].
8 Generate two successor nodes, N j and Nk for agents j

and k, each imposing the additional constraint (c, τ).
9 Replan using SCIPP for agents j and k in N j and Nk.

10 Update the reservation tables in N j and Nk.
11 Insert N j and Nk into OPEN and conditionally to

FOCAL.
12 Update FOCAL if necessary.

13 return no solution.

The proof of optimality (w-suboptimality) relies on the
property that any solution which obeys the constraints of a
high-level node N also obeys the constraints of at least one
of its high-level successor nodes N j or Nk. This is directly
analogous to the proofs of Lemma 2 in (Sharon et al. 2015)
and Theorem 1 in (Barer et al. 2014). However, if the con-
straint specifies a timeinterval [lb′, ub′] ⊆ [lb, ub] instead of
a timepoint, this property no longer holds. In particular, if an
optimal solution includes agent j being at c during timeinter-
val [lb′, (lb′ + ub′)/2) and agent k being at c during timein-
terval ((lb′ + ub′)/2, ub′], it is spuriously eliminated.

The answer to the second question relates to Zeno behav-
iors (Zhang et al. 2001). Zeno behavior is a phenomenon in
hybrid (discrete-continuous) systems, where the system un-
dergoes an infinite number of discrete transitions in a finite
duration of time. Specifically in our case, if τ < ub, agents j
and k can satisfy their respective constraints by waiting for
τ − lb time units before colliding again at c during the non-
singleton timeinterval (τ, ub]. Similarly, in a future iteration,
they may collide yet again during the non-singleton timein-
terval (τ ′, ub] for some ub > τ ′ > τ . Therefore, any strategy
for choosing the value of τ other than setting it to the upper
bound of the timeinterval (ub) results in Zeno behavior.

Reservation Table
In ECBS, a reservation table is simply a set of discrete
timesteps specified for each cell in the environment during
which this cell is occupied by some agent. In ECBS-CT, the
discrete timesteps are replaced by timeintervals. A timein-
terval [lb, ub] in the reservation table for a cell c has an asso-
ciated value v that indicates the number of agents occupying
c during [lb, ub]. Figure 1 illustrates the reservation table for
a cell occupied by three agents during overlapping timein-
tervals.

The reservation table we propose maintains an interval
map (Cormen et al. 2009) for each cell c in the environ-
ment. An interval map is a data structure that can efficiently

1 2 3 1

Figure 1: Shows three agents, red, blue and green, sweep-
ing the encircled cell during overlapping timeintervals. The
aggregate-on-overlap operation produces 4 timeintervals,
each with an associated number of collisions, as indicated
in black.

manage intervals. It supports efficient insertion, deletion,
search and aggregate-on-overlap operations. The insertion
(deletion) operation can be done in logarithmic time unless
the query interval overlaps with all existing intervals. For-
tunately, this rarely happens in MAMP problems due to the
locality of motion primitives. The aggregate-on-overlap op-
eration combines (separates) the associated values of inter-
secting intervals on insertion (deletion) with the same com-
plexity as the insertion (deletion) operation. Figure 1 also
illustrates the aggregate-on-overlap operation.

In addition to insertion, deletion, search and aggregate-
on-overlap, the usage of interval maps for the reservation
table may also facilitate an efficient detection of the earli-
est collision in the high-level search. Given the reservation
table, one can simply iterate over all cells and extract the
earliest collision (which is linear in the number of cells in
the environment). This may be significantly faster than iter-
ating over all pairs of plans (which is square of the number
of agents times the maximal number of swept cells in any
plan). Moreover, the usage of interval maps for the reser-
vation table also facilitates an efficient computation of sec-
ondary heuristic values for focal search in the high-level
search. Generating a high-level node involves replanning for
one agent. The reservation table of the generated child node
can be simply copied from its parent node and updated by: 1)
deleting the timeintervals from the relevant cells according
to the agent’s previous plan; and 2) inserting the timeinter-
vals to the relevant cells according to the agent’s new plan.
While updating the reservation table, we can also update the
total duration in which two or more agents collide, which
is used as the secondary heuristic value in the high-level
search. Finally, the usage of interval maps for the reservation
table also facilitates an efficient computation of secondary
heuristic values for focal search in the low-level search. Gen-
erating a low-level node involves looking at all swept cells
associated with the motion primitive that generated it and
checking the number of collisions during different timein-
tervals. This process is explained in more detail in the next
section.



A B C D
1

2

3

4

5

6

7

8

9

Constraints:

Cell (2, B), t = 80

Cell (6, C), t = 20

Collisions:

Cell (2, B), I = [45, 50]

Cell (5, B), I = [104, 110]

From state s = (8, C, 90◦)
To state s′ = (2, B, 90◦)
Duration of (s, s′) = 16

(a)

10 20 30 40 50 60 70 80 90 100 110 120

s′
State

ts

S
C
IP
P

S
IP
P

10 20 30 40 50 60 70 80 90 100 110 120

s′
State

ts

10 0 0

(b)

Figure 2: (a) shows a motion primitive (s, s′) in blue. (b) illustrates the difference between SIPP and SCIPP for (a).

Algorithm 2: SCIPP
Input: Start and goal states (sj and gj), constraints,

reservation table, w ≥ 1.
Output: A w-suboptimal feasible plan from sj to gj .

1 root nodes← InitializeNodes(sj).
2 Insert root nodes into OPEN and conditionally to

FOCAL.
3 while FOCAL 6= ∅ do
4 n← Pop(FOCAL).
5 if n is a goal node then return plan.
6 for each n′ ∈ GenerateSuccessorNodes(n) do
7 N ←Merge n′ into GENERATEDLIST.
8 Insert/Update OPEN and FOCAL according to

N .
9 Update FOCAL if necessary.

10 return no solution.

SCIPP

Since focal search with discrete timesteps is vital for
bounded-suboptimal MAPF solvers, an efficient generaliza-
tion of it to continuous time is required for ECBS-CT. While
SIPP can be used to efficiently reason about continuous time
and the constraints specified by a high-level node, it unfor-
tunately cannot be used to reason about the collisions speci-
fied in the reservation table of the high-level node. There-
fore, SIPP is unsuitable for focal search. Instead, we de-
velop SCIPP for the low-level focal search of ECBS-CT.
SCIPP not only efficiently reasons about continuous time
and constraints but also about collisions and derives sec-
ondary heuristic values from them.

Given a start state sj , a goal state gj and a list of con-
straints for each cell c, SIPP finds a feasible plan from sj

to gj with minimum arrival time at gj . This plan also guar-
antees that no cell is swept outside of its safe timeintervals.
Here, the dynamic obstacles are simply the constraints, that
is, the safe timeintervals associated with c are all timeinter-
vals other than the specified timepoints of the constraints for
c. In SIPP, a node n represents an (s, [lb, ub]) pair, where
s is a state and [lb, ub] is a safe timeinterval of s. The suc-
cessor n′ of n represents a transition from s to s′ via a le-

gal motion.4 g(n) represents the earliest arrival time to s
within [lb, ub]. Thus, when generating n′, g(n′) is updated
to g(n) + d if g(n′) > g(n) + d, where d is the duration of
the legal motion.

The example in Figure 2(a) shows an environment with
36 cells (grey squares) and a motion primitive (s, s′) in blue
from s to s′. While waiting at s and s′, the agent occupies
cells (8, C) and (2, B), respectively. Black circles depict the
swept cells of (s, s′). For the sake of simplicity, let us as-
sume that the agent occupies all of the swept cells during
the entire execution of (s, s′). The upper part of Figure 2(b)
illustrates how SIPP works when generating safe timeinter-
vals for (s, s′). The x-axis represents time, and the y-axis
represents different states. A red dot between s and s′ rep-
resents a constraint at the time of its x-coordinate at an in-
termediate swept cell of (s, s′), and a red dot on the hor-
izontal line for s′ represents a constraint at the time of its
x-coordinate at a destination cell of (s, s′). The red regions
indicate execution times of (s, s′) that violate a constraint;
and the slope of the parallelograms indicate the duration of
(s, s′). The safe timeinterval for s is [0,∞] and, due to the
constraint on s′ at timepoint 80, the safe timeintervals for s′
are [0, 79] and [81,∞]. The black arrows indicate the ear-
liest arrival times within these timeintervals, serving as g-
values. Note that the agent can arrive to s′ as early as 16 and
thus avoid violating the constraint on the intermediate cell at
timepoint 20.

Algorithm 2 presents SCIPP, a generalized version of
SIPP suitable for focal search. It takes as input a start state
sj , a goal state gj , a list of constraints for each cell c and
a reservation table, as specified in the high-level node. It
outputs a w-suboptimal feasible plan from sj to gj for the
specified value of w without violating any constraint. As in
SIPP, each node represents an (s, [lb, ub]) pair. GENERAT-
EDLIST is a hash table of all generated nodes. It maps a state
s to a list L(s) of all generated nodes having s as their state.
The timeintervals of all nodes in L(s) are maintained to be
disjoint. For each timeinterval [lb, ub] of a node n ∈ L(s),
lb represents the earliest possible arrival time to n via n’s
predecessor without violating any constraint and with a con-

4A motion is legal iff it sweeps each of its associated cells only
during their safe timeintervals.



stant number of collisions. Thus, g(n) = lb. ub − lb rep-
resents the maximum wait duration at n while retaining the
same number of collisions and without violating any con-
straint. The secondary heuristic value of n is its number of
collisions, defined to be the number of cells in which the
plan from sj to s collides with any other agent’s plan, as
specified in the reservation table.

The main loop on lines 3-9 performs a focal search
after the initialization on lines 1-2. InitializeNodes(sj)
on line 1 generates a list of nodes corresponding to dis-
joint timeintervals between 0 and the earliest constraint
imposed on any cell associated with sj . Each timein-
terval in this list has a constant number of collisions.
GenerateSuccessorNodes(n) on line 6 generates all suc-
cessors of n. Like in SIPP, n′ represents a transition from s
to s′ via a legal motion. In SCIPP, the timeinterval of n′ may
have to be split into disjoint timeintervals so that the num-
ber of collisions associated with each timeinterval remains
constant. Thus, more nodes may have to be created, one for
each disjoint timeinterval. The disjoint timeintervals are cre-
ated by first generating “arrival” timeintervals with respect
to the constraints and collisions on the swept cells of the
motion, and then extending these arrival timeintervals with
respect to the constraints and collisions on the cells associ-
ated with s′ in order to reason about possibly waiting at s′.
The upper part of Figure 2(b) illustrates how SCIPP works
when generating disjoint timeintervals for (s, s′). Like in
SIPP, constraints are represented in red. In addition, a yel-
low horizontal line between s and s′ represents a collision
during the timeinterval between its end-point x-coordinates
at an intermediate swept cell of (s, s′), and a yellow hori-
zontal line on the horizontal line for s′ represents a collision
during the timeinterval between its end-point x-coordinates
at a destination cell of (s, s′). Note that the disjoint timein-
tervals of s′ has a constant number of collisions, depicted
with blue labels.

The mechanism of duplicate detection in focal search is
implemented using Merge on lines 7-8. The subtlety for
continuous time is the possibility of a generated node n′ hav-
ing the same state s′ as a different node n′′ already in GEN-
ERATEDLIST such that their timeintervals overlap. Regard-
less of the different ways in which the two timeintervals may
overlap, the Merge process restores the invariant that all
nodes in L(s′) are disjoint and each has a constant num-
ber of collisions. The Merge process can either: (1) add
the newly created nodes from GenerateSuccessorNodes
to GENERATEDLIST and insert them into OPEN and con-
ditionally into FOCAL; or (2) update the timeinterval of
the existing nodes in GENERATEDLIST and thus also up-
date their priorities in OPEN and FOCAL. An example of
this process is illustrated in Figure 3. Suppose that n′′ is
already in L(S′) with timeinterval [lb′′, ub′′] and a colli-
sions (shown in Figure 3(a)), and we now generate n′ with
timeinterval [lb′, ub′] and b < a collisions (shown in Fig-
ure 3(b)). Suppose that, lb′′ ∈ [lb′, ub′] and ub′ ∈ [lb′′, ub′′]
((shown in Figure 3(c))). After Merge, GENERATEDLIST
has nodes n1 and n2 with state s′ and timeintervals [lb′, ub′]
and [ub′, ub′′], respectively. The number of collisions for n1
and n2 is b and a, respectively (shown in Figure 3(d)). Fi-

nally, n1 is a new node inserted into OPEN and condition-
ally into FOCAL, while n2 is the updated n′′ with a larger
g-value of ub′.

We now show that ECBS-CT using SCIPP for the low-
level search is w-suboptimal.
Lemma 1. Whenever a node n is exapnded by focal search,
its g-value is bounded byw(g∗(n)+w−1

w h(n)), where g∗(n)
is the optimal g-value of n.

Proof. Denote by:

1. n, the node being expanded (that is, n is the head of
FOCAL).

2. nstart, the start node.
3. nmin, the head of OPEN (that is, the node with minimal
f -value in the open list).

4. n′, the first (/shallowest) node on an optimal plan from
nstart to n which is in OPEN and has optimal g-value
(that is, g(n′) = g∗(n′)). Such n′ always exist (can be
shown inductively).

From FOCAL’s definition,

f(n) ≤ wf(nmin) (1)

By definition of nmin,

f(nmin) ≤ f(n′) (2)

Since f(n′) = g∗(n′) + h(n′) and f(n) = g(n) + h(n),

g(n) + h(n) ≤ w(g∗(n′) + h(n′)) (3)

Since h is consistent, f is monotonically non-decreasing
along an optimal plan to the goal (that is, g∗(n′) + h(n′) ≤
g∗(n) + h(n)). Thus,

g(n) ≤ w(g∗(n) + h(n))− h(n)
≤ wg∗(n) + (w − 1)h(n)

≤ w(g∗(n) + w − 1

w
h(n))

(4)

Assumption 1. There exist an ε > 0 for which any action
(that is, motion or wait) duration is an integer multiple of ε.

Assumption 1 simply states that an action duration is a
contiguous period of time (that is, a timeinterval) repre-
sented with some finite-precision.
Theorem 2. When assumption 1 holds, ECBS returns a w-
suboptimal plan if one exists.

Proof. This is the original proof of ECBS.

Theorem 3. Let ECBS’ be an algorithm similar to ECBS
except for the following differences in the low-level search:

1. Before expanding the start node n0 = (s0, t = 0), recur-
sively generate (s0, t + 1) as long as being in s0 at time
t+ 1 does not violate any constraint.

2. For any generated node n = (s, t), recursively generate
(s, t+1) with parent n as long as being in s at time t+1
does not violate any constraint.



L(s′) :

n′′

s′

[lb′′, ub′′]
a

(a)

n′

s′

[lb′, ub′]
b

(b)

lb′ ub′lb′′ ub′′
t

b

a

(c)

n1

s′

[lb′, ub′]
b

n2

s′

[ub′, ub′′]
a

L(s′) :

(d)

Figure 3: Duplicate detection example.

3. For any node n = (s, t) selected for expansion, recur-
sively expand (s, t + 1) if the node (s, t + 1) is in OPEN
(and have the same hFOCAL).

ECBS’ returns a w-suboptimal plan if one exists.

Proof. The high-level of ECBS relies on the low-level focal
search to return:

a) A w-suboptimal plan w.r.t. the constraints.
b) An fmin that is a lower bound on the optimal plan cost

w.r.t. the constraints.

Focal search achieves (a) and (b) by maintaining the fol-
lowing invariant. For any node n, at least one of the follow-
ing holds:

i) There is no plan from the start state s0 to n.
ii) n has already been expanded with g(n) ≤ w(g∗(n) +

w−1
w h(n)).

iii) There exists n′ with optimal g-value in OPEN that is on
an optimal plan to n.

We now show that ECBS’ does not violate the invariant. (1)
and (2) do not violate the invariant because (1) and (2) do
not remove nodes from open. (3) do not violate the invariant
because, if it removes n′, a successor of n′ must be generated
with an optimal g-value, be in OPEN and on an optimal plan
to n.

Since the low-level of ECBS’ also maintains this invari-
ant, ECBS’ returns a w-suboptimal plan if one exists.

SCIPP is equivalent to the low-level search of ECBS’ but,
instead of generating separate nodes recursively, it generates
them “in bulk” by using timeintervals. Thus, ECBS-CT us-
ing SCIPP for the low-level search is w-suboptimal.

Experiments
We present experimental results for two environment maps
and two motion primitives.5 The environments are two
benchmark maps from the Grid-Based Path Planning Com-
petition (GPPC). The two maps, Arena and Den520d, as
shown in Figures 4(a)&(b), are representative of obstacle-
rich environments. The motion primitives are taken from the
Search-based Planning Laboratory (SBPL). The two primi-
tives, Unicycle and PR2, as shown in Figures 4(c)&(d), are
popularly studied. In the Unicycle (PR2) setup, there are 16
discrete orientations, each with 5 (13) primitives. Like in
ECBS, we precompute the perfect single-agent heuristic in

5taken from https://movingai.com/GPPC/ and http://sbpl.net/, respectively

the environment. This is used for single-agent planning in
SCIPP.

We generated MAMP problem instances with different
numbers of agents. The numbers of agents in each setup,
with increments of 2 (5) in the Arena (Den520d) map, are
indicated in Table 1. For each number of agents, the reported
results are averaged over 25 randomly generated instances.
Each run is given a time limit of 100 seconds; and the run-
time average uses 100 seconds for a timed-out run. We eval-
uated ECBS-CT with w = 1, 1.2, 1.5 and 2. All experiments
used an i7-7700 CPU with 16GB RAM.

For all combinations of maps and motion primitives, we
observe that the w-suboptimal MAMP solvers with w > 1
are significantly better than the optimal solver, both in terms
of runtime and success rate. This observation shows the
power of our bounded-suboptimality framework for MAMP.
The w-suboptimal solvers also exhibit the “diminishing re-
turns” property with increasing w. This means that ECBS-
CT with w = 1.2 or 1.5 is not only effective (since w is
small) but also efficient in finding solutions. Moreover, for
most instances, ECBS-CT with w > 1 produces a solu-
tion with an experimentally determined suboptimality6 that
is significantly smaller than the suboptimality bound w. For
example, when w = 2, the average experimentally deter-
mined suboptimality is 1.17 for 50 agents in the Arena map
with the PR2 motion primitives.

The Arena map is much smaller than the Den520d map.
Thus, single-agent plans in the Arena map tend to be shorter.
However, with an increasing number of agents, the num-
ber of collisions that ECBS-CT needs to resolve increases
more rapidly in the Arena map due to a higher density of
agents. The PR2 motion primitives are richer than the Uni-
cycle motion primitives since they include the possibility of
turning in place and moving sideways. Therefore, using the
PR2 motion primitives result in a larger branching factor but
also allow for more flexibility. In the smaller Arena map,
the flexibility in the PR2 motion primitives helps ECBS-CT
resolve more collisions, thereby increasing the success rate
for higher numbers of agents. In the larger Den520d map,
the smaller branching factor of the Unicycle motion prim-
itives helps SCIPP find longer plans more quickly, thereby
increasing the success rate for higher numbers of agents.

Our results show that ECBS-CT is viable for solving
realistic MAMP problems efficiently. Compared to other
solvers, ECBS-CT not only solves a richer problem than

6The experimentally determined suboptimality for each in-
stance is the ratio of the solution cost to fmin. This ratio is no larger
than w by design.



(a) (b) (c) (d)

Figure 4: (a) shows the Arena map with 49× 49 cells. (b) shows the Den520d map with 256× 257 cells. (c) and (d) show the
Unicycle and the PR2 motion primitives, respectively, for (x, y, θ) in 5 × 18 free cells for the start state depicted in blue. For
a motion primitive, a black line represents the trajectory of the center of the agent’s footprint and a red triangle at the end of it
represents the orientation at the destination state.

Unicycle PR2

Average Runtime [sec] Success Rate Average Runtime [sec] Success Rate

A
re

na

20 40 60
Number of agents

0

50

100

20 40 60
Number of agents

0.0

0.5

1.0

20 40 60
Number of agents

0

50

100

20 40 60
Number of agents

0.0

0.5

1.0

D
en

52
0d

50 100 150
Number of agents

0

50

100

50 100 150
Number of agents

0.0

0.5

1.0

25 50 75 100
Number of agents

0

50

100

25 50 75 100
Number of agents

0.0

0.5

1.0

Table 1: shows a matrix of experimental results for the two maps and the two motion primitives from Figure 4. Four values are
used for the suboptimality bound w, including w = 1 for the optimal MAMP solver.

MAPFR but also scales to larger numbers of agents in
obstacle-rich maps.

Conclusions and Future Work

We introduced the MAMP problem, a generalization of
the MAPF problem for kinodynamically constrained agents.
We presented ECBS-CT, a generalization of ECBS that ef-
ficiently reasons with continuous time. In the high-level
search, this requires a proper consideration of complete-
ness, w-suboptimality and Zeno behaviors. In the low-level
search, this requires efficient data structures for the reserva-
tion table and a generalization of SIPP to reason with col-
lisions and thereby enable the use of focal search. Exper-
imental results demonstrate the promise of our approach.
There are many avenues for future work, including de-
signing heuristic values for the high-level search, different
heuristic values for the low-level search and motion primi-
tives with velocity considerations, among others.

Acknowledgments
The research at the University of Southern California was
supported by the National Science Foundation (NSF) under
grant numbers 1409987, 1724392, 1817189 and 1837779 as
well as a gift from Amazon.

References
Max Barer, Guni Sharon, Roni Stern, and Ariel Felner. Sub-
optimal variants of the conflict-based search algorithm for
the multi-agent pathfinding problem. In Proceedings of the
Annual Symposium on Combinatorial Search, 2014.
Marcello Cirillo, Tansel Uras, and Sven Koenig. A lattice-
based approach to multi-robot motion planning for non-
holonomic vehicles. In Proceedings of the International
Conference on Intelligent Robots and Systems, 2014.
Thomas Cormen, Charles Leiserson, Ronald Rivest, and
Clifford Stein. Introduction to Algorithms, Third Edition.
The MIT Press, 2009.
Ariel Felner, Roni Stern, Solomon Eyal Shimony, Eli Bo-



yarski, Meir Goldenberg, Guni Sharon, Nathan R. Sturte-
vant, Glenn Wagner, and Pavel Surynek. Search-based op-
timal solvers for the multi-agent pathfinding problem: Sum-
mary and challenges. In Proceedings of the International
Symposium on Combinatorial Search, 2017.
Dave Ferguson, Thomas Howard, and Maxim Likhachev.
Motion planning in urban environments. Journal of Field
Robotics, 25(11-12):939–960, 2008.
Wolfgang Hoenig, T. K. Satish Kumar, Liron Cohen, Hang
Ma, Hong Xu, Nora Ayanian, and Sven Koenig. Multi-agent
path finding with kinematic contraints. In Proceedings of
the International Conference on Automated Planning and
Scheduling, 2016.
Wolfgang Hoenig, James Preiss, T. K. Satish Kumar, Gau-
rav Sukhatme, and Nora Ayanian. Trajectory planning
for quadrotor swarms. IEEE Transactions on Robotics,
34(4):856–869, 2018.
Lydia Kavraki, Petr Svestka, Jean-Claude Latombe, and
Mark Overmars. Probabilistic roadmaps for path planning
in high-dimensional configuration spaces. IEEE Transac-
tions on Robotics and Automation, 12(4), 1996.
James Kuffner and Steven LaValle. RRT-Connect: An effi-
cient approach to single-query path planning. In Proceed-
ings of the International Conference on Robotics and Au-
tomation, 2000.
Sikang Liu, Kartik Mohta, Nikolay Atanasov, and Vijay Ku-
mar. Search-based motion planning for aggressive flight in
SE(3). IEEE Robotics and Automation Letters, 3(3):2439–
2446, 2018.
Hang Ma, Wolfgang Hoenig, T. K. Satish Kumar, Nora Aya-
nian, and Sven Koenig. Lifelong path planning with kine-
matic constraints for multi-agent pickup and delivery. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, 2019.
Robert Morris, Corina S. Pasareanu, Kasper Søe Luckow,
Waqar Malik, Hang Ma, T. K. Satish Kumar, and Sven
Koenig. Planning, scheduling and monitoring for airport
surface operations. In Proceedings of the AAAI Workshop
on Planning for Hybrid Systems, 2016.
Judea Pearl and Jin Kim. Studies in semi-admissible heuris-
tics. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 4:392 –399, 1982.
Mike Phillips and Maxim Likhachev. SIPP: Safe interval
path planning for dynamic environments. In Proceedings of
the International Conference on Robotics and Automation,
2011.
Mikhail Pivtoraiko, Ross Alan Knepper, and Alonzo Kelly.
Differentially constrained mobile robot motion planning in
state lattices. Journal of Field Robotics, 26(3):308–333,
2009.
Thomas Prevot, Joseph Rios, Parimal Kopardekar, John
Robinson III, Marcus Johnson, and Jaewoo Jung. UAS
traffic management (UTM) concept of operations to safely
enable low altitude flight operations. In Proceedings of
the AIAA Aviation Technology, Integration, and Operations
Conference, 2016.

Indranil Saha, Rattanachai Ramaithitima, Vijay Kumar,
George Pappas, and Sanjit Seshia. Implan: Scalable incre-
mental motion planning for multi-robot systems. In Pro-
ceedings of the International Conference on Cyber-Physical
Systems, 2016.
Joao Salvado, Robert Krug, Masoumeh Mansouri, and Fe-
dorico Pecora. Motion planning and goal assignment for
robot fleets using trajectory optimization. In Proceedings of
the International Conference on Intelligent Robots and Sys-
tems, 2018.
Guni Sharon, Roni Stern, Meir Goldenberg, and Ariel Fel-
ner. The increasing cost tree search for optimal multi-agent
pathfinding. Artificial Intelligence, 195:470 – 495, 2013.
Guni Sharon, Roni Stern, Ariel Felner, and Nathan R.
Sturtevant. Conflict-based search for optimal multi-agent
pathfinding. Artificial Intelligence, 219:40–66, 2015.
Trevor Standley. Finding optimal solutions to cooperative
pathfinding problems. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 2010.
Pavel Surynek, Ariel Felner, Roni Stern, and Eli Boyarski.
Efficient SAT approach to multi-agent path finding under the
sum of costs objective. In Proceedings of the European Con-
ference on Artificial Intelligence, 2016.
Glenn Wagner and Howie Choset. Subdimensional expan-
sion for multirobot path planning. Artificial Intelligence,
219:1–24, 2015.
Thayne T. Walker, David Chan, and Nathan R. Sturtevant.
Using hierarchical constraints to avoid conflicts in multi-
agent pathfinding. In Proceedings of the International Con-
ference on Automated Planning and Scheduling, 2017.
Thayne Walker, Nathan R. Sturtevant, and Ariel Felner. Ex-
tended increasing cost tree search for non-unit cost domains.
In Proceedings of the International Joint Conference on Ar-
tificial Intelligence, 2018.
Konstantin Yakovlev and Anton Andreychuk. Any-angle
pathfinding for multiple agents based on SIPP algorithm. In
Proceedings of the International Conference on Automated
Planning and Scheduling, 2017.
Jingjin Yu and Steven LaValle. Planning optimal paths for
multiple robots on graphs. In Proceedings of the Interna-
tional Conference on Robotics and Automation, 2013.
Jingjin Yu and Steven M. LaValle. Structure and intractabil-
ity of optimal multi-robot path planning on graphs. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
2013.
Jun Zhang, Karl Henrik Johansson, John Lygeros, and
Shankar Sastry. Zeno hybrid systems. International Journal
of Robust and Nonlinear Control: IFAC-Affiliated Journal,
11(5):435–451, 2001.


