
On Merging Agents in Multi-Agent Pathfinding Algorithms

Eli Boyarski,1 Shao-Hung Chan,2 Dor Atzmon,1 Ariel Felner,1 Sven Koenig2

1 Ben-Gurion University of the Negev,
2 University of Southern California

boyarske@post.bgu.ac.il, shaohung@usc.edu, dorat@post.bgu.ac.il, felner@bgu.ac.il, skoenig@usc.edu

Abstract

In Multi-Agent Pathfinding (MAPF), the task is to find
non-colliding paths for a set of agents. This paper focuses
on search-based MAPF algorithms from the Conflict-Based
Framework, which is introduced here. A common technique
in such algorithms is to merge a group of dependent agents
into a meta-agent and plan non-colliding paths for the meta-
agent using a low-level MAPF sub-solver. We analyze the
patterns that emerge when agents are merged in an arbi-
trary order. We then introduce policies for choosing which
agents or meta-agents to merge to achieve improved effi-
ciency in three algorithms: Independence Detection (ID) and
Improved Conflict-Based Search (ICBS), which are optimal,
and Priority-Based Search (PBS), which is a fast suboptimal
algorithm. Experimental results show a significant improve-
ment in efficiency.

Introduction and Overview
The task in a Multi-Agent Pathfinding (MAPF) problem is to
find a set of collision-free paths for a set of agents, each from
its start location to its designated goal location, often while
minimizing a cost function. The most common cost func-
tion is the sum-of-costs of the paths of the agents. MAPF
is a well-known and well-studied topic with numerous real-
world applications. For example, MAPF is a core challenge
in automated warehouse logistics (Wurman, D’Andrea, and
Mountz 2008), automated parcel sortation (Kou et al. 2020),
automated valet parking (Okoso, Otaki, and Nishi 2019),
computer games (Silver 2006) and a variety of other con-
texts (Ma et al. 2016). A survey on the difffrent variants of
MAPF appeares in Stern et al. (2019). Many optimal and
suboptimal approaches to solving MAPF are search-based;
a summary is given by Felner et al. (2017).

While Conflict-Based Search (CBS) (Sharon et al. 2012a)
is a specific search-based MAPF algorithm, in this paper
we provide a general description of a framework for MAPF
algorithms which we call the Conflict-Based Framework
(CBF). CBF received its name because CBS is a commonly
used algorithm that is a special case of it, but, as we will
show, many other search-based MAPF algorithms fit the
Conflict-Based Framework. CBF has two levels of search.
High-level nodes contain a set of agents (or meta-agents)

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

coupled with a set of constraints on the agents (with the con-
straints of CBS being a special case). A low-level sub-solver
is then called to find paths for the agents that satisfy the
constraints. Finally, the paths are validated. If conflicts are
found, an operator is applied on the high-level node to cre-
ate child nodes. Operators resolve the conflict by imposing
more constraints. MAPF algorithms of the Conflict-Based
Framework differ mainly in the operators that resolve con-
flicts and in the constraints they employ. CBS, as a special
case of CBF, uses a split operator that generates two child
nodes, where each child node imposes a constraint on one
of the conflicting agents that forces it to avoid the location
in conflict.

Another operator is the merge operator, which resolves
conflicts by coupling two or more agents into a meta-agent.
Agents in a meta-agent are solved as a coupled sub-problem
from that point onward. Therefore, the paths of agents in-
side the same meta-agent never conflict. The merge opera-
tor was directly used in Independence Detection (ID) (Stan-
dley 2010), Meta-Agent Conflict-Based Search (MA-CBS)
(Sharon et al. 2012b), and Improved Conflict-Based Search
(Boyarski et al. 2015), all optimal MAPF algorithms. But,
as we will show, a different type of merge operator is also
used in Priority-Based Search (Ma et al. 2019), a subopti-
mal MAPF algorithm.

This paper focuses on search-based MAPF algorithms
that employ a merge operator on agents and studies poli-
cies for merging. The merge operator was first suggested
over a decade ago but, despite its strength, remained less
researched than other MAPF techniques. The MAPF algo-
rithms that use the merge operator only use simple policies
for deciding when conflicting agents. However, no attention
has been paid to the question of which agents to merge,
given that multiple pairs of conflicting agents may fit the
merge criterion. Usually, the first two agents that are found
to conflict and fit the merge criterion are merged (Sharon
et al. 2015; Standley 2010).

In this paper, we delve into this question. We suggest gen-
eral policies for deciding which agents to merge. Our poli-
cies can be applied to any MAPF algorithm that uses a merge
operator. The policy we recommend for optimal MAPF al-
gorithms is to merge meta-agents with fewer agents be-
fore meta-agents with more agents, and among meta-agents
with the same number of agents, to merge meta-agents that

have more conflicts with other agents before meta-agents
that have fewer conflicts with other agents. For suboptimal
MAPF solvers, in which the low-level sub-solver is very
fast, our policy suggests that meta-agents with more agents
should be merged before meta-agents with fewer agents. We
analyze the advantages of our policies. We then experimen-
tally show the generality of these policies and the speedups
they provide over the previous policy on three MAPF algo-
rithms that fit CBF, namely ICBS, ID, and PBS. Our new
policies reduced the search effort by up to a factor of 6 and
allowed the MAPF algorithms to solve many more instances
within the time limit.

Definitions
The Multi-Agent Pathfinding (MAPF) problem (Stern et al.
2019) receives as input a graph G = (V,E) and a set of n
agents A = {a1, . . . , an}, where each agent ai ∈ A has a
unique start vertex si ∈ V and a unique goal vertex gi ∈ V .
A solution to MAPF is a set of paths Π = {π1, . . . , πn}
for the agents, such that path πi ∈ Π for agent ai starts
in start vertex si and ends in its corresponding goal vertex
gi. A solution is valid iff it is conflict-free. There are two
commonly considered types of conflicts: vertex conflicts and
swapping conflicts (Stern et al. 2019). Let πi(t) denote the
location of agent ai on path πi at timestep t. There is a vertex
conflict ⟨πi, πj , v, t⟩ between two paths πi and πj iff both
paths occupy vertex v at timestep t (i.e., πi(t) = πj(t) =
v). There is a swapping conflict ⟨πi, πj , e, t⟩ between two
paths πi and πj iff both paths traverse edge e in opposite
directions between timesteps t and t+1 (i.e. πi(t) = πj(t+
1)ANDπi(t+1) = πj(t)). The cost C(π) of path π is |π|−1.
The cost C(Π) of a solution Π is the sum of the costs of its
paths:

∑
π∈Π C(π) (also known as sum-of-costs). A solution

is optimal iff it is valid and has the lowest cost among all
valid solutions.

The Conflict-Based Framework (CBF)
Conflict-Based Search (CBS) (Sharon et al. 2012a) is a
prominent algorithm for optimally solving MAPF. In this
section, we show that CBS can be generalized and describe a
framework called the Conflict-Based Framework (CBF). We
show that many existing MAPF algorithms are special cases
of this framework.

The Conflict-Based Framework has two search levels: the
high level and the low level. The high level builds a high-
level tree (also known as the Constraint Tree (CT) (Sharon
et al. 2012a)) of high-level nodes. Each high-level node N
contains a set of constraints (N.constraints) on the agents
and a set of paths (N.Π) for the agents that must satisfy the
constraints of that node. The cost of node N is the cost of its
paths (C(N.Π)). The high-level search begins at a root node
with an empty set of constraints. Given a high-level node N ,
a low-level search is called to find paths that satisfy the set
of constraints of N . After the low level returns paths that
satisfy the constraints, the paths are checked for conflicts.
If the paths are conflict-free, the node is declared as a goal
node and the search halts. Otherwise, let ⟨πi, πj , x, t⟩ (x is
either a vertex or an edge) be a conflict in node N . To re-

solve this conflict, MAPF algorithms that fit CBF apply an
operator on N and generate children for N in the CT.

Algorithms in CBF differ in two aspects: (1) in the op-
erators they apply (e.g., split or merge) to resolve conflicts
(where each operator is associated with its own type of
constraints), and (2) in the way they search the high-level
tree (Best-first search or Depth-first search). We next cover
MAPF algorithms that are special cases of CBF.

Conflict-Based Search
The operator used by Conflict-Based Search (CBS) algo-
rithm (Sharon et al. 2012a) is called split. When a conflict
⟨πi, πj , x, t⟩ is found in a high-level node N , the split op-
erator creates two high-level child nodes Ni and Nj . The
classical version of CBS imposes the constraint ⟨πi, x, t⟩
on Ni and the constraint ⟨πj , x, t⟩ on Nj , where the con-
straint ⟨πi, x, t⟩ prohibits agent ai (analogously for agent
aj) from occupying vertex x at timestep t (or edge x be-
tween timesteps t and t+1). This retains optimality, since the
two child nodes together allow any solution that their par-
ent node N allowed. Improved CBS (ICBS) (Boyarski et al.
2015) specifies which conflict should be resolved. ICBS
finds all conflicts among the paths in a node. It prioritizes
resolveing the first cardinal conflict that it encounters over
semi-cardinal conflicts over non-cardinal conflicts.

As in classical search, the high-level tree must be explored
in a best-first search manner, according to the costs of the
nodes to attain optimality. Felner et al. (2018) provided an
admissible heuristic function for high-level nodes and per-
formed an A*-like search on the high-level tree while pre-
serving optimality. This heuristic function was further im-
proved by Li et al. (2019a) and later by Boyarski et al.
(2021). Similarly to IDA* (Korf 1985), it is also possible to
find optimal solutions by performing an iterative-deepening
search on the high-level tree (Boyarski et al. 2020).

Li et al. (2019c) showed that, on grids, constraints can be
enlarged. This can be done by, first, identifying a rectangle
of cells in which two agents conflict on any pair of their
shortest paths. Then, to prevent the conflict on all cells of the
rectangle, a barrier constraint is set on each of the agents. A
barrier constraint contains a set of cells that prohibits either
of the agents from occupying the rectangle.

Instead of prohibiting one of the two agents from occu-
pying a contested vertex (or traversing an edge), Li et al.
(2019b) showed that it is possible to resolve a conflict by
creating two new high-level nodes in which one node pro-
hibits an agent from occupying a vertex and the other node
prohibits all other agents from occupying it. Thus, no solu-
tion is allowed by both child nodes, which avoids duplicate
work in handling invalid solutions.

Independence Detection
The Independence Detection algorithm (ID) (Standley 2010)
predated CBS by a few years but, in fact, is also a spe-
cial case of CBF. ID does not use the split operator to re-
solve conflicts; it only uses a merge operator. In the root
node, the low level finds individual optimal paths for the
agents. When a conflict is found in node N between agents
ai and aj , a merge operator is applied on the conflicting

agents and the merge constraint ⟨ai, aj ,∪⟩ is added. Logi-
cally, the merge operator creates a new high-level child node
N ′ with this new constraint. The merge constraint prevents
agents ai and aj from having any conflicts. Given a set
of merge constraints, all agents are divided into groups of
agents {a1, . . . , am} such that any two agents that have a
merge constraint between them belong to the same group.
Each such group is called meta-agent. The agents in each
meta-agent are coupled together and the low-level search
must find optimal paths for these agents without any con-
flicts (and thus the conflict that was found for N is resolved).
It is common to apply a variant of A* for the low-level solver
to find an optimal solution for the meta-agent. Each state in
the search space in the low-level search contains the loca-
tion of every agent in the MAPF problem instance at a cer-
tain timestep, and states may contain only non-conflicting
configurations of agents.

Two meta-agents that have a conflict between any pair of
their individual agents can also be merged. So, in ID, one
can recognize the high-level tree as a chain of nodes, each
of them merges more agents until a conflict-free solution is
found for all (meta-) agents.

Meta-Agent Conflict-Based Search
Meta-Agent Conflict-Based Search (MA-CBS) (Sharon
et al. 2012b) is an optimal algorithm that combines the split
and merge operators. When a conflict is found between two
agents, MA-CBS employs a policy that decides whether to
use the merge or the split operators. The typical policy used
is to apply the merge operation if the number of conflicts be-
tween the two (meta-) agents exceeds a given threshold B.
Otherwise, a split operator is applied, as in CBS. Different
values for B were used by Sharon et al. (2012b). In fact,
ID can be seen as a special case of MA-CBS with B = 1;
that is, merge is applied as soon as a conflict is found and
split is never used. At the other extreme, CBS uses B = ∞;
it always uses the split operator and never uses merge. It is
important to note that merge is permanent. Once agents are
merged they are never separated. Improved CBS (ICBS) (Bo-
yarski et al. 2015) is an enhanced version of MA-CBS. Its
authors showed that it is beneficial to restart the high-level
search when agents are merged, with the merged agents as
meta-agents at the root node, since restarting the high-level
search guarantees that a pair of agents would not be merged
multiple times at different places in the CT.

Other A*-Based Algorithms
A*-based algorithms, such as A*+OD (Standley 2010) and
EPEA* (Goldenberg et al. 2014), can also be seen as degen-
erate members of CBF. We set B = 0 and all agents are
merged already in the root node into a single meta-agent,
which is solved in a coupled manner by an A*-based search.

Non-CBF MAPF Algorithms
The M* algorithm (Wagner and Choset 2015) uses a differ-
ent framework for merging agents, called subdimensional
expansion, which only merges agents locally when a con-
flict is found. The subdimensional expansion locally merges

agents in specific map locations. Similarly to the merge op-
erator described above, once agents are locally merged in
M*, they are never unmerged. M* and its variants (rM*,
ODrM*) are not covered in this paper, but can also benefit
from our guidelines.

Other search-based algorithms, such as Increasing Cost
Tree Search (ICTS) (Sharon et al. 2013) are not members
of the Conflict-Based Framework. At its high level, ICTS
searches the increasing cost tree (ICT). Every node in the
ICT consists of a k-ary vector [C1, . . . , Ck] which represents
all possible solutions in which the path cost of agent ai is Ci.
The root node of the ICT is [opt1, . . . , optk], where opti is
the cost of the shortest individual path for agent ai. A child
node in the ICT is generated by increasing the path cost of
one of the agents by 1. The ICT is searched in breadth-first
order until a goal node is found. An ICT node is a goal node
if there is a non-conflicting solution with matching costs.
The low level of ICT performs this goal test.

Priority-Based Search and Confict-Based Search
With Priorities
Priority-Based Search (PBS) (Ma et al. 2019) is a new sub-
optimal member of CBF. Recently, an application for PBS
for multi-arm assembly systems has been suggested (Chen
et al. 2022). PBS employs a prioritized merge operator.
When two agents ai and aj have a conflict in a high-level
node N they are prioritized-merged: Two new high-level
nodes N ′ and N ′′ are created, one with the prioritized-merge
constraint ⟨ai, aj ,≺⟩ and the other one with ⟨aj , ai,≺⟩. The
meaning of this constraint is that these two conflicting agents
have a priority order (≺) between them; ai ≺ aj denotes
that agent ai has higher priority than agent aj . The prior-
ity is effected in the low-level, when the path of agent aj is
planned under the constraint that it may not collide with the
paths of higher-priority agents, including that of ai.

This planning task at the low level of PBS is a type of
a Prioritized Planning (PrP) task (Erdmann and Lozano-
Perez 1986), where plans are planned sequentially in de-
creasing order of priorities of the agents, and each must
avoid conflicts with the plans of agents of a higher priority.
The sub-solver that PBS uses is Cooperative A* (CA∗) (Sil-
ver 2005), which receives the order in which to plan paths
for agents from the high level. CA∗is a CBF algorithm which
uses PrP. In CA*, all agents are prioritized merged at the
root node, such that each two agents receive a priority order
between them. Thus, a total priority order on all agents is
created. Obviously, such conflict resolution is not optimal,
however CA* is commonly used in practice because it is
easy to understand and implement.

PBS performs a depth-first search on the high-level tree.
Out of the two new high-level nodes, PBS first explores the
child node with the lower cost.

A meta-agent in PBS can be seen as a weakly connected
component in a priority graph. A priority graph is a directed
acyclic graph (DAG), in which the vertices are agents and
a directed edge denotes the agent at its source has prior-
ity over the agent at its end. Every time a priority order
between two different meta-agents is defined (a new edge

connects two previously-separate weakly connected compo-
nents), their meta-agents are merged.

Differently from ICBS and from ID, not all of the paths of
the meta-agent are necessarily replanned when it is created.
In PBS, CA∗only replans the paths of agents from the lower-
priority meta-agent that have a conflict with a higher-priority
agent. Another distinction is that a single merge operation in
PBS might not leave a meta-agent fully conflict-free. Some-
times, some internal conflicts remain between agents in the
same meta-agent. Such conflicts are resolved in later branch
operations of PBS.

Ma et al. (2019) also proposed CBS with Priorities
(CBSw/P). CBSw/P behaves more similarly to CBS than
PBS, with the addition of maintaining a partial priority order
in every node. Each time a conflict ⟨ai, aj , v, t⟩ is resolved
in high-level node N , the child node N ′ that receives the ad-
ditional constraint ⟨ai, v, t⟩ also receives the additional pri-
ority order aj ≺ ai. High-level nodes below N ′ are only
generated if their accumulated partial priority order contains
no contradiction. Unlike in PBS, conflicts between the same
two individual agents may still occur after the first conflict
between them is resolved.

We next study the merge operator and suggest our policies
for merging.

The Merge Operator
Merging agents into a meta-agent has its tradeoffs. It reduces
complexity in the high level because the high level now deals
with fewer agents. Once (meta-)agents are merged, their
paths will never conflict again; this reduces the number of
future high-level conflicts to resolve, thus reducing the size
of the high-level tree. However, the low level has to deal with
more agents so its complexity increases, and replanning their
joint paths in the future would necessarily be more costly
than planning them individually. Given a meta-agent with k
agents, there are now O(|V |k) states in the low-level search
problem. Given two conflicting meta-agents with k1 and k2
agents, resolving the conflict with a split operator results
in solving two search problems of O(|V |k1) and O(|V |k2)
states. Resolving the same conflict with the merge opera-
tor results in a single search problem of O(|V |k1+k2) states.
However, the merge operator resolves all conflicts between
the two meta-agents, while the split operator may leave other
unresolved conflicts between the two meta-agents.

As mentioned, the merge operation has hardly been re-
searched in the past. Merge should be applied thoughtfully
by addressing two questions: (1) whether to apply the merge
operator, and, (2) given a set of candidate agent-pairs to
merge, which pair to merge. The first question has been re-
searched in MA-CBS and further work on it is beyond the
scope of this paper. We next introduce a number of policies
for answering the second question.

First Policy
The authors of ID, MA-CBS, and PBS did not provide
guidelines regarding which agents-pair to merge (or which
conflict to address). These algorithms originally assumed
that the first conflict encountered in the high-level node (dur-
ing a simulation of the execution of the plans of the agents)

Figure 1: Average size of the largest meta-agent at the end of
the search as a function of the number of merge operations
that were performed by baseline ID+EPEA∗

(a) Average size of the largest
meta-agent at the end of the
search for baseline PBS as a
function of the number of agents
in random-32-32-20 MAPF in-
stances

(b) Average number of paths that
were replanned in each high-
level non-root node of PBS as a
function of the number of agents
in a random-32-32-20 MAPF in-
stance

Figure 2: Two figures for PBS

is the one to be resolved. MA-CBS resolved the conflict with
a merge operation if the number of previously-seen conflicts
between the two agents is larger than the threshold B, and
with a split operation otherwise. Denote this the First policy.

The arbitrary choice to resolve the first encountered con-
flict causes an undesirable behavior when merging agents.
Large meta-agents occupy more locations, thus tend to have
more conflicts than small meta-agents which occupy fewer
locations. Consequently, large meta-agents are more likely
to be chosen to be merged, producing an even larger meta-
agent. Eventually, there will be a few large meta-agents,
while the rest of the meta-agents are of size 1 or 2. Figure 1
shows the average size of the largest meta-agent at the end
of the search as a function of the number of merge opera-
tions that were performed during the search when running
ID+EPEA∗on 56,254 standard MAPF benchmark instances
(see the Experimental Results section for details). The first
15 merge operations are quite likely to increase the size of
the largest meta-agent. After 28 merges, the largest meta-
agent isn’t likely to grow larger under a 1-minute time limit,
either because there are no more meta-agents that can col-
lide with the largest meta-agents and have not already been
merged with it, or simply because the solver times out.

This tendency to create large meta-agents delegates a
large part of the MAPF problem to the low-level solver.
Thus, it burdens optimal CBF algorithms because their low

level solves a hard task - solving a MAPF sub-problem op-
timally. In contrast, in suboptimal CBF algorithms, the low-
level solver is very fast, so as much of the work as possible
should be delegated to it.

To demonstrate how efficient the low level of PBS is, we
present two figures. Figure 2a shows the average size of the
largest meta-agent at the end of the search as a function of
the number of agents in problem instances using the random-
32-32-20 map. Despite the fact that the largest meta-agent
includes almost all the agents in this problem instance, Fig-
ure 2b indicates that the average number of individual paths
that were replanned in each non-root high-level PBS node
does not grow much above 1. The CA∗ sub-solver rarely
needs to replan more than one individual path, even for very
large meta-agents.

We next introduce new policies for selecting which pair
of agents to merge (among candidate pairs). The candidate
pairs for this selection remain the same, namely each pair
of conflicting meta-agents in ID or in PBS, and each pair
of meta-agents that have had at least B previous conflicts in
ICBS. Later, we experimentally demonstrate that our poli-
cies indeed improve the efficiency of the algorithms.

Most-Conflicting Smallest (MCS) Policy
For optimal CBF algorithms, we suggest the following
policy, which we denote as the Most-Conflicting Smallest
(MCS) policy.

First, find all the pairs of conflicting meta-agents that
should be merged according to the merge criterion of the
algorithm. For example, in ICBS a pair of conflicting agents
should be merged if, given the merging threshold B, at least
B separate conflicts between them have been encountered
during the high-level search. Then, among these pairs find
the pairs whose combined size is smallest (it may be a sin-
gle pair, or several pairs of the same combined size). This
‘myopic’ choice does not guarantee minimizing the maxi-
mum size of a meta-agent at the end of the search, but it is
simple and effective.

Second, among the pairs of conflicting meta-agents that
were found, choose the pair that has the largest number of
conflicts with other meta-agents (most-conflicting). The ra-
tionale for this choice is that every time two meta-agents are
merged and a new path is computed for the resulting merged
meta-agent, ‘old’ conflicts with other meta-agents may dis-
appear for the new path (while other conflicts may emerge).
Such indirect conflict resolutions are desirable since they
dispense with the need for directly resolving the conflicts
(e.g., via another merge operation). So, as a secondary con-
sideration, MCS tries to maximize the potential for indirect
conflict resolutions.

Least-Conflicting Largest (LCL) Policy
For comparison, we also define the Least-Conflicting
Largest (LCL) policy, the opposite of the MCS policy, for
optimal CBF algorithms. Its rules for choosing the pair of
agents to merge are: (1) Find all pairs of conflicting agents
that have the maximum combined size. (2) Among them,
find all pairs that have the least conflicts with other agents.

With optimal algorithms, LCL is expected to perform worse
than the arbitrary choice of the First policy.

Balanced (BAL) Policy
Finally, we define the Balanced (BAL) policy for optimal
CBF algorithms. It attempts to balance between favoring
agent pairs that have more conflicts with other agents with
favouring agent pairs that result in smaller meta-agents.
BAL uses the formula

argmax
pair

#external–conflicts(pair)

2combined–size(pair)

to select the pair of agents to merge among all candidate
pairs. The formula assigns an exponential weight to the com-
bined size of the pair since the number of agents exponen-
tially affects the computation time of the sub-solver.

Optimization note: When meta-agents ax and ay , with
respective costs Cx and Cy , are merged to create meta-agent
az , some facts are known about its cost Cz even before its
path is computed. In az , the combined cost of the paths of the
agents originally from ax must still be at least Cx because
they are more constrained in az (they need to also avoid con-
flicts with the paths of the agents originally from ay). The
same holds for ay , of course (therefore Cz ≥ Cx+Cy). This
information can be used to speed up the low-level search
for meta-agent az , and subsequent paths of meta-agents it is
merged into. For example, for A∗-based MAPF algorithms,
it can be used to improve the heuristic estimate for some
search nodes. The heuristic value of a search node, where
the combined f-value for agents from ax is Cx − k, can be
increased by k. This optimization had already been in place
in the original implementation of MA-CBS (Sharon et al.
2015), but had not been reported previously. To be consis-
tent with experiments in prior work, we also used it in the
ID and ICBS solvers in our experiments.

Merge Policies For PBS
We now present merge policies for suboptimal CBF algo-
rithms. First, it can happen that after the last merge opera-
tion, the resulting meta-agent still contains internal conflicts
between its constituent agents. In this case, we call it ‘not
fully merged’. As an example, Figure 3 shows a priority
graph with six agents: D, E and F , which form one meta-
agent, and X , Y , and Z which form another meta-agent. E
has higher priority than D and F , and X and Z have higher
priorities than Y . Both meta-agents can contain an internal
conflict, shown with a curly line.

E

~~ ~~~~ �� ����

Y>> >>>> __ ____

D
? ?

F X
? ?

Z

Figure 3: A priority graph for a PBS node with two meta-
agents, each containing three agents and an internal conflict

In both merge policies below, if the last meta-agent that
was created is still not fully merged, one of its pairs of con-
flicting constituent agents should be chosen and its conflict
should be resolved by assigning an internal order between
them. This choice does not increase the size of the meta-
agent and ensures that the merge policies below can assume
that meta-agents are internally conflict-free.

With suboptimal solvers, delegating as much work as pos-
sible to the low level is desirable because the low level is
very fast. On the other hand, checking the plans of all pairs
of agents for conflicts takes a relatively large part of the run-
time. Therefore, we define the following policies for subop-
timal algorithms. The Largest policy selects the pair of con-
flicting meta-agents with the largest combined size for merg-
ing, unless there are still internal conflicts within the last
meta-agent that was created by merging. The Smallest pol-
icy selects a pair of conflicting meta-agents with the smallest
combined size for merging.

We briefly describe how the new policies are implemented
next.

Algorithm Modifications
Algorithm 1 shows the high-level of ICBS, with use of
heuristics for high-level nodes (Felner et al. 2018). Note the
only modifications required to enable choosing the agents to
merge are in line 6 and in lines 9 to 11, where instead of
resolving any conflict of the highest priority, all highest pri-
ority conflicts are found, and if any of them merit a merge, a
policy is explicitly used to choose one.

Modifying ID and PBS to explicitly choose the pair of
agents whose conflicts would be resolved via a merge is
simple. The necessary changes are similar to those made to
ICBS in Algorithm 1.

Experimental Results
Our experiments with ID and ICBS, implemented in C#,
were run on a Windows laptop with a 2.60GHz In-
tel® Core™ i7-6700HQ processor and 16GB of RAM. PBS
was implemented in C++, and its experiments were run on
CentOS Linux on an AMD EPYC 7302 16-Core Processor
with a memory limit of 16 GB of RAM.

In our experiments, we used the following tie-breaking
strategy: if all previous considerations still leave multiple
candidate pairs of agents,use the First policy to choose
among them. This tie-breaking strategy avoids arbitrary dif-
ferences between the policies.

Results for ID
To evaluate the performance of ID with different merge
policies, we experimented on the standard MAPF bench-
marks (Stern et al. 2019), which contain 32 grids with dif-
ferent attributes (city maps, grids with random obstacles,
mazes, warehouse maps, etc.). With each grid, we used the
25 ‘even’ scenarios that specify the start and goal locations
for up to 7,000 agents. We formed the first problem instance
with the first two agents in the scenario, the second problem
instance from the first three, and continued solving prob-
lem instances with increasing numbers of agents until we

Algorithm 1: High-level of ICBS with heuristics and
choice of agents to merge

1 Main(MAPF problem instance)
2 Init node R, with initial paths for the (meta-)agents
3 insert R into OPEN
4 while OPEN not empty do
5 N ← node with lowerst f -value from OPEN
6 Simulate the paths in N and find all conflicts
7 if N has no conflict then
8 return N.solution

9 C ← AllHighestPriorityConflicts(N)
10 if ShouldMergeAny(C) then
11 ai, aj ← ChooseMetaAgentsToMerge(C)
12 aij = merge(ai,aj)
13 if MergeAndRestart enabled then
14 Restart high-level search with agents merged

15 Update N.constraints
16 Update N.solution by invoking low level(aij)
17 Update N.NC,N.g,N.h, andN.f
18 Insert N back into OPEN
19 continue // Go back to the while statement

20 C ← Conflict ⟨ai, aj , v/e, t⟩ from C
21 Children← ∅
22 foreach agent ai in C do
23 A← GenerateChild(N, ⟨ai, v/e, t⟩)
24 if (A.g = N.g) and (A.NC < N.NC) then
25 (N.solution,N.NC,N.h,N.f)←

(A.solution,A.NC,A.h,A.f)
26 Insert N back into OPEN
27 Children← ∅
28 break
29 else
30 Insert A into Children

31 Insert Children into OPEN

32 GenerateChild(Node N , Constraint C = ⟨ai, v/e, t⟩)
33 A.constraints← N.constraints+ ⟨ai, v/e, t⟩
34 A.solution← N.solution
35 Update A.solution by invoking low level(ai)
36 A.NC ← number of conflicts in A.solution
37 A.g ← C(A.solution)
38 A.h← h(A)
39 A.f ← A.g +A.h
40 return A

reached a problem instance the solver failed to solve un-
der the runtime limit of 60 seconds. For higher numbers of
agents, the solver was implicitly considered to have failed.
We refer to MAPF instances on which any solver ran for
more than half of the allotted time as hard instances.

Table 1 reports results for the following solvers:
ID+EPEA∗solvers with the following merge policies: First,
Least-Conflicting Largest, Most-Conflicting Smallest, and
Balanced (BAL). We report the number of MAPF instances
and the number of hard MAPF instances that were solved
successfully by each solver. In total, out of 56,254 problem
instances, 49,842 instances were solved by all solvers, and
55,462 instances were solved by at least one solver. As ex-

Group #instances First LCL MCS BAL

All 56,254 52.3 52.2 53.1 53.5
Hard 6,412 4.2 4.1 5.0 5.4

Table 1: Number (x 1000) of MAPF instances solved and
hard MAPF instances solved by ID+EPEA* with different
merge policies: First, LCL, MCS, and BAL.

Figure 4: Average size of the largest meta-agent at the end
of the search as a function of the number of agents in room
maps from the MAPF benchmark

pected, ID with the LCL policy performs worse than ID with
the original arbitrary First policy. Both the ID solvers with
the MCS and with the BAL policies performed better than
the ID solver with the First policy, especially on hard in-
stances. ID with the BAL policy performed best, solving al-
most 30% more hard instances than ID with the First policy.

Figure 4 shows the average size of the largest meta-agent
at the end of the search for every solver described above as
a function of the number of agents in the problem instances
using room maps from the MAPF benchmark. As could be
expected, the ID solvers with the MCS and BAL policies
created a smaller maximum size meta-agent on average than
the solvers with the FIRST and LCL policies. Interestingly,
the size of the largest meta-agent created by the ID solver
with the LCL policy is often smaller on average than that of
the ID solver with the First policy. It is also interesting to
note that the BAL policy sometimes has the smallest aver-
age, even though it does not optimize for smallest size di-
rectly. This shows that taking into account the number of
conflicts that can be indirectly resolved may eventually lead
to fewer conflicts and, as a result, smaller meta-agents.

On hard problem instances that were successfully solved
by all solvers described above, the average number of gen-
erated low-level nodes was generally similar for all solvers,
with BAL leading its solver to generate 20% fewer nodes
on average than the solver with the First policy on problem
instances with 260 agents.

Results for ICBS
Table 2 shows the average runtime in seconds for six ICBS
solvers: two with the merge threshold B set to 5, two with
B = 10, and two with B = 15. Each pair has one solver
with the First merge policy and one with the Most Con-

ICBS(5) ICBS(10) ICBS(15)

Scenario and # Agents First MCS First MCS First MCS

empty-16×16, 30 agents 26.7 20.4 12.7 7.7 8.6 4.8
empty-16×16, 40 agents 53.9 46.6 39.9 36 38.6 33
empty-16×16, 50 agents 60 58.2 55.7 54.9 57.5 52.6
random-32-32-10, 50 agents 38.7 35.3 26.8 30.6 24.5 26.1
random-32-32-10, 70 agents 60.0 58.2 58 52.4 57.6 55.4

Table 2: Average runtime (s) of ICBS solvers with the First
and MCS policies over various types of problem instances.

flicting Smallest policy. Failure to solve was counted as us-
ing the full 60 seconds time limit. ICBS restarts the search
after every merge, so the number of external conflicts that
the constituent agents of the chosen conflict have is of sec-
ondary concern, since all paths will be replanned at the new
root node. For this reason, we did not include a solver with
the BAL policy. Each row contains the average runtime for
‘even’ problem instances from the standard MAPF bench-
mark with a given number of agents. For almost all merge
thresholds, maps and numbers of agents, the solver with the
MCS policy ran faster on average, up to 45% in some cases.

Results for PBS
Figure 5 (top) shows the success rate and average runtime
in seconds for three PBS solvers with the First,1 Smallest
and Largest merge policies on the original problem instances
from (Ma et al. 2019)2. Those problem instances include
four maps: an empty 20 × 20 grid, a 20 × 20 grid with
10% randomly-placed obstacles, and two large video game
grids (brc202d and lak503d). A timeout failure was treated
as solving the problem instance exactly at the end of the
60-second time limit. In addition, Figure 5 (bottom) shows
results for the same solvers on problem instances from the
standard MAPF benchmark (Stern et al. 2019) on one maze
map (maze-32-32-2), one warehouse map (warehouse-20-
40-10-2-1), one room map (room-32-32-4) and one grid with
randomly-placed obstacles (random-32-32-20).

Despite PBS being incomplete in theory, PBS with the
Largest policy solved all of the original problem instances
successfully in practice, improving the success rate of PBS
with the Earliest policy by more than 40% on problems in-
stances with 100 agents on the grid with randomly-placed
obstacles map. Its success rate on problem instances from
the MAPF benchmark was very high, significantly improv-
ing on the success rate of PBS with the baseline Earliest
policy on problem instances from all maps except the ware-
house map. The PBS solver with the Largest policy is the
fastest on all small maps, achieving a speedup of up to about

1In our implementation, PBS with the First policy checked the
paths of the agents for conflicts by iteratively checking them at
every timestep, starting from timestep 1. For every high-level node,
it randomized the order in which we checked the pairs of agents
for conflicts at each timestep to avoid an unintended merge pattern
where agents with low indices tended to be merged before agents
with higher indices.

2Graciously provided by Hang Ma.

Figure 5: Success rate and average runtime in seconds as a function of the number of agents for PBS with the First, Smallest,
and Largest policies on the original PBS MAPF problem instances and on additional problem instances from four standard
scenarios: maze-32- 32-2, random-32-32-20, warehouse-10-20-10-2-1, and room-32-32-4

six times. On large maps, all solvers performed similarly.
The sum-of-costs of the solution found by each of the PBS
solvers for the same MAPF problem instance were always
equal or almost equal.

Summary and Future Work

In this paper, we suggested several policies to be used in
MAPF algorithms that use a merge operation. These poli-
cies choose the pair of agents to merge, among all eligi-
ble pairs of conflicting agents that fit the merging criterion.
We demonstrated the effectiveness of these policies on three
MAPF algorithms: ID, ICBS, and PBS. The significant im-
provement in the efficiency of PBS on small maps may al-
low PBS to replace prioritized planning in the initial stage
of the novel MAPF-LNS2 algorithm (Li et al. 2022) in the
future. Future research may also suggest combined policies
that suggest both when to merge agents and which agents to
merge.

Acknowledgments
This research was sponsored by the United States-Israel Bi-
national Science Foundation (BSF) under grant numbers
2017692 and 2021643, and by Israel Science Foundation
(ISF) under grant number 844/17. The research at the Uni-
versity of Southern California was supported by the National
Science Foundation (NSF) under grant numbers 1409987,
1724392, 1817189, 1935712, and 21112533 as well as a gift
from Amazon. The views and conclusions contained in this
document are those of the authors and should not be inter-
preted as representing the official policies, either expressed
or implied, of the sponsoring organizations, agencies, or the
U.S. government.

References
Boyarski, E.; Felner, A.; Harabor, D.; Stuckey, P. J.; Cohen,
L.; Li, J.; and Koenig, S. 2020. Iterative-Deepening Conflict-
Based Search. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI-2020), 4084–
4090.

Boyarski, E.; Felner, A.; Le Bodic, P.; Harabor, D.; Stuckey,
P. J.; and Koenig, S. 2021. f-Aware Conflict Prioritization
& Improved Heuristics For Conflict-Based Search. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence
(AAAI-2021), 12241–12248.
Boyarski, E.; Felner, A.; Stern, R.; Sharon, G.; Tolpin, D.;
Betzalel, O.; and Shimony, E. S. 2015. ICBS: Improved
Conflict-Based Search Algorithm for Multi-Agent Pathfind-
ing. In Proceedings of the International Joint Conference
on Artificial Intelligence (IJCAI-2015), 740–746. ISBN
9781577357384.
Chen, J.; Li, J.; Huang, Y.; Garrett, C.; Sun, D.; Fan, C.;
Hofmann, A.; Mueller, C.; Koenig, S.; and Williams, B. C.
2022. Cooperative Task and Motion Planning for Multi-Arm
Assembly Systems. arXiv preprint arXiv:2203.02475.
Erdmann, M. A.; and Lozano-Perez, T. 1986. On Multi-
ple Moving Objects. Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA-1986), 3:
1419–1424.
Felner, A.; Li, J.; Boyarski, E.; Ma, H.; Cohen, L.; Kumar, T.
K. S.; and Koenig, S. 2018. Adding Heuristics to Conflict-
Based Search for Multi-Agent Path Finding. In Proceedings
of the International Conference on Automated Planning and
Scheduling (ICAPS-2018), 83–87.
Felner, A.; Stern, R.; Shimony, S. E.; Boyarski, E.; Gold-
enberg, M.; Sharon, G.; Sturtevant, N.; Wagner, G.; and
Surynek, P. 2017. Search-Based Optimal Solvers for
the Multi-Agent Pathfinding Problem: Summary and Chal-
lenges. In Proceedings of the Annual Symposium on Combi-
natorial Search (SoCS-2017), 29–37.
Goldenberg, M.; Felner, A.; Stern, R.; Sharon, G.; Sturte-
vant, N.; Holte, R.; and Schaeffer, J. 2014. Enhanced Partial
Expansion A*. Journal of Artificial Intelligence Research
(JAIR), 50: 141–187.
Korf, R. 1985. Depth-First Iterative-Deepening: An Optimal
Admissible Tree Search. Artificial Intelligence, 27(1): 97–
109.
Kou, N. M.; Peng, C.; Ma, H.; Kumar, T. K. S.; and Koenig,
S. 2020. Idle Time Optimization for Target Assignment
and Path Finding in Sortation Centers. In Proceedings of
the AAAI Conference on Artificial Intelligence (AAAI-2020),
9925–9932.
Li, J.; Chen, Z.; Harabor, D.; Stuckey, P. J.; and Koenig,
S. 2022. MAPF-LNS2: Repairing Multi-Agent Path Find-
ing via Large Neighborhood Search. In To appear in Pro-
ceedings of the AAAI Conference on Artificial Intelligence
(AAAI-2022).
Li, J.; Felner, A.; Boyarski, E.; Ma, H.; and Koenig, S.
2019a. Improved Heuristics for Multi-Agent Path Finding
with Conflict-Based Search. In Proceedings of the Inter-
national Joint Conference on Artificial Intelligence (IJCAI-
2019), 442–449.
Li, J.; Harabor, D.; Stuckey, P. J.; Ma, H.; and Koenig,
S. 2019b. Disjoint Splitting for Multi-Agent Path Finding
with Conflict-Based Search. In Proceedings of the Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS-2019), 279–283.

Li, J.; Harabor, D.; Stuckey, P. J.; Ma, H.; and Koenig,
S. 2019c. Symmetry-Breaking Constraints for Grid-Based
Multi-Agent Path Finding. In Proceedings of the AAAI Con-
ference on Artificial Intelligence (AAAI-2019), 6087–6095.
Ma, H.; Harabor, D.; Stuckey, P. J.; Li, J.; and Koenig, S.
2019. Searching with Consistent Prioritization for Multi-
Agent Path Finding. In Proceedings of the AAAI Conference
on Artificial Intelligence (AAAI-2019), 7643–7650.
Ma, H.; Koenig, S.; Ayanian, N.; Cohen, L.; Hönig, W.;
Kumar, T. K. S.; Uras, T.; Xu, H.; Tovey, C.; and Sharon,
G. 2016. Overview: Generalizations of Multi-Agent Path
Finding to Real-World Scenarios. In IJCAI-16 Workshop on
Multi-Agent Path Finding.
Okoso, A.; Otaki, K.; and Nishi, T. 2019. Multi-Agent
Path Finding with Priority for Cooperative Automated Valet
Parking. In Proceedings of the IEEE Intelligent Transporta-
tion Systems Conference (ITSC-2019), 2135–2140.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. 2012a.
Conflict-Based Search for Optimal Multi-Agent Path Find-
ing. In Proceedings of the Conference on Artificial Intelli-
gence (AAAI-2012), 563–568.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N.
2012b. Meta-Agent Conflict-Based Search for Optimal
Multi-Agent Path Finding. In Proceedings of the Annual
Symposium on Combinatorial Search (SoCS-2012), 97–104.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-Based Search for Optimal Multi-Agent Pathfind-
ing. Artificial Intelligence, 219: 40–66.
Sharon, G.; Stern, R.; Goldenberg, M.; and Felner, A. 2013.
The Increasing Cost Tree Search for Optimal Multi-Agent
Pathfinding. Artificial Intelligence, 195(Supplement C):
470–495.
Silver, D. 2005. Cooperative Pathfinding. Proceedings of the
AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment (AIIDE-2005), 117–122.
Silver, D. 2006. Cooperative Pathfinding. In Rabin, S., ed.,
AI Game Programming Wisdom 3, 99–111. Charles River
Media.
Standley, T. 2010. Finding Optimal Solutions to Cooperative
Pathfinding Problems. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence (AAAI-2010), 173–178.
Stern, R.; Sturtevant, N. R.; Felner, A.; Koenig, S.; Ma, H.;
Walker, T. T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, T. K. S.;
Barták, R.; and Boyarski, E. 2019. Multi-Agent Pathfind-
ing: Definitions, Variants, and Benchmarks. In Proceedings
of the Annual Symposium on Combinatorial Search (SoCS-
2019), 151–159.
Wagner, G.; and Choset, H. 2015. Subdimensional Expan-
sion for Multirobot Path Planning. Artificial Intelligence,
219: 1–24.
Wurman, P. R.; D’Andrea, R.; and Mountz, M. 2008. Coor-
dinating Hundreds of Cooperative, Autonomous Vehicles in
Warehouses. AI Magazine, 29(1): 9–19.

	Introduction and Overview
	Definitions
	The Conflict-Based Framework (CBF)
	Conflict-Based Search
	Independence Detection
	Meta-Agent Conflict-Based Search
	Other A*-Based Algorithms
	Non-CBF MAPF Algorithms
	Priority-Based Search and Confict-Based Search With Priorities

	The Merge Operator
	First Policy
	Most-Conflicting Smallest (MCS) Policy
	Least-Conflicting Largest (LCL) Policy
	Balanced (BAL) Policy
	Merge Policies For PBS

	Algorithm Modifications
	Experimental Results
	Results for ID
	Results for ICBS
	Results for PBS

	Summary and Future Work

