
Speeding Up Dominance Checks in Multi-Objective Search:
New Techniques and Data Structures

Han Zhang1, Oren Salzman2, Ariel Felner3, T. K. Satish Kumar1, Carlos Hernández Ulloa4,5,
Sven Koenig1

1 University of Southern California
2 Technion—Israel Institute of Technology

3 Ben-Gurion University
4 Universidad San Sebastián

5 Centro Ciencia & Vida
zhan645@usc.edu, osalzman@cs.technion.ac.il, felner@bgu.ac.il, tkskwork@gmail.com, carlos.hernandez@uss.cl,

skoenig@usc.edu

Abstract

In multi-objective search, given a directed graph where each
edge is annotated with multiple cost metrics, a start state, and
a goal state. We are interested in computing the Pareto fron-
tier, i.e., the set of all undominated paths from the start state
to the goal state. Almost all multi-objective search algorithms
use dominance checks to determine if a search node can be
pruned. Since dominance checks are performed in the inner
loop of the multi-objective search, they are the most time-
consuming part of it. In this paper, we propose (1) two novel
techniques to reduce duplicate dominance checks and (2) a
simple data structure that enables more efficient dominance
checks. Our experimental results show that combining our
proposed techniques and data structure speeds up LTMOA*, a
state-of-the-art multi-objective search algorithm, by up to an
order of magnitude on road network instances.

Introduction and Related Work
In multi-objective search (Ulungu and Teghem 1991; Salz-
man et al. 2023), we are given a directed graph, a start state,
and a goal state. Each edge in the graph is annotated with
a cost vector, where each component corresponds to a cost
metric to minimize, such as travel time, travel distance, or
economic cost. A solution is a path from the start state to the
goal state. A solution π dominates another solution π′ iff π
is not worse than π′ on any cost metric and is better than π′

on at least one cost metric. A typical task of multi-objective
search is to find the Pareto frontier, that is, all undomi-
nated solutions. Multi-objective search and the task of find-
ing Pareto frontiers are important in many real-world appli-
cation domains, including route planning for trucks, robots,
and power lines (Bachmann et al. 2018) as well as inspecting
regions of interest with robots (Fu et al. 2019; Fu, Salzman,
and Alterovitz 2021). For example, transporting hazardous
material requires one to consider trade-offs between the path
length and the number of residents exposed to the hazardous
material in case of a traffic accident (Bronfman et al. 2015).

Existing multi-objective search algorithms include
NAMOA*dr (Pulido, Mandow, and Pérez-de-la Cruz 2015),

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

EMOA* (Ren et al. 2022), and LTMOA* (Hernández et al.
2023). All these algorithms represent paths emanating from
the start state as search nodes, or simply called nodes,
and use dominance checks to determine if a path has the
potential to be extended to an undominated solution. Since
dominance checks are performed frequently, i.e., in the
inner loop of the search, they are the most time-consuming
part of it and need to be performed efficiently. However,
dominance checks intrinsically require iterating over sets
of vectors. For example, when generating a new path,
NAMOA*dr checks if (the cost vector of) this path is
dominated by (the cost vector of) any previously generated
path with the same last state. The difference in the runtime
performance of these algorithms stems from their difference
in how they implement dominance checks and interleave
dominance checks with the search. Among them, the most
recent LTMOA* has been shown to outperform EMOA* and
NAMOA*dr by up to an order of magnitude in terms of
runtime (Hernández et al. 2023). Hence, in this paper, we
focus on adding our proposed enhancements to LTMOA*,
although they can be added to any of these algorithms.

Our first contribution consists of two novel techniques
that speed up LTMOA* by eliminating duplicate dominance
checks between a node and its parent node. Our second con-
tribution is to adapt well-known bucket-based data structures
to our specific context of storing undominated vectors and
performing dominance checks. We call these bucket arrays:
vectors are slotted into different predefined buckets based
on their values. The search algorithm can often determine
if a bucket contains a vector that dominates a given vector
without iterating over all vectors in this bucket.

Although LTMOA* propounds the use of arrays in prac-
tice, it can conceivably be used with other data structures
that store undominated vectors for performing dominance
checks. Not all of these data structures have been investi-
gated so far. In this paper, we evaluated LTMOA* not only
with arrays but also with ND-trees (Jaszkiewicz and Lust
2018), a data structure that has been shown to generally out-
perform other data structures for maintaining sets of undom-
inated vectors with respect to runtime.

In our experimental study, we evaluated LTMOA* with



and without our proposed enhancements on road network
instances with three to five objectives. The results show that
our proposed enhancements are beneficial for most problem
instances. On problem instances with five objectives, they
yield up to an order of magnitude speed-up.

Terminology and Problem Definition
We use boldface font to denote vectors and vi to denote the
i-th component of a vector v. The addition of two vectors v
and v′ of the same length N is defined as v + v′ = [v1 +
v′1, v2+v′2 . . . vN+v′N ]. We say that v weakly dominates v′,
denoted as v ⪯ v′, iff vi ≤ v′i for all i = 1, 2 . . . N . We say
that v dominates v′, denoted as v ≺ v′, iff v ⪯ v′ and v ̸=
v′. The truncated vector of a vector v, denoted as Tr(v),
is v with its first component deleted, i.e., [v2, v3 . . . vN ].

A (multi-objective search) graph is a tuple ⟨S,E, c⟩,
where S is a finite set of states and E ⊆ S ×S is a finite set
of directed edges. succ(s) = {s′ ∈ S : ⟨s, s′⟩ ∈ E} denotes
the successors of state s. Cost function c : E → RN

≥0 maps
an edge to its cost, which is a vector with N non-negative
components. A (multi-objective search) problem instance is
a tuple P = ⟨S,E, c, sstart, sgoal⟩, where ⟨S,E, c⟩ is a graph,
sstart ∈ S is the start state, and sgoal ∈ S is the goal state.

A path from state s1 to state sl is a sequence of states π =
[s1, s2 . . . sl] with ⟨si, si+1⟩ ∈ E for all i = 1, 2 . . . l − 1.
We assume s1 = sstart unless mentioned otherwise. c(π) =∑l−1

i=1 c(⟨si, si+1⟩) denotes the cost of path π. Path π can
be extended with an edge ⟨sl, sl+1⟩ to obtain a new path
[s1, s2 . . . sl, sl+1]. Path π dominates (resp. weakly domi-
nates) another path π′ iff c(π) ≺ c(π′) (resp. c(π) ⪯ c(π′)).

A solution is a path from sstart to sgoal. A Pareto-optimal
solution is a solution that is not dominated by any other so-
lution. A (cost-unique) Pareto frontier is a maximal subset
of all Pareto-optimal solutions such that any two solutions
in the subset do not have the same cost.

A heuristic (function) h : S → RN
≥0 provides a lower

bound on the cost of any path from any given state s to the
goal state. We assume that the provided heuristic function h
is consistent, that is, h(sgoal) = 0 and h(s) ⪯ c(⟨s, s′⟩) +
h(s′) for all ⟨s, s′⟩ ∈ E.

LTMOA*
Algorithm 1 shows the pseudo-code of LTMOA*. In LT-
MOA*, a node n is associated with a state s(n), a g-value
g(n), and a parent node p(n). We say that n is a node on
state s(n). The f -value of n is defined as f(n) = g(n) +
h(s(n)). Conceptually, a node n corresponds to a path from
sstart to s(n) with cost g(n), and this path can be constructed
in reverse by following the parent nodes from s(n) to sstart.
LTMOA* maintains a priority queue Open for the generated
but not expanded nodes and a set of solutions sols. It initial-
izes Open with a node on state sstart which corresponds to
path [sstart] and whose g-value is 0.

In each iteration, LTMOA* extracts a node n from Open
with the lexicographically smallest f -value. It then performs
dominance checks (Lines 10-11) and prunes n if there exists
• (Condition 1) an expanded node on state s(n) whose g-

value weakly dominates g(n) or

Algorithm 1: LTMOA*
Input : A search problem (S,E, c, sstart, sgoal) and a

consistent heuristic function h
Output: A Pareto frontier

1 sols← ∅
2 for each s ∈ S do
3 initialize GTr

cl (s)
4 n← new node with s(n) = sstart
5 g(n)← zero in all dimensions
6 p(n)← null
7 initialize Open and add n to it
8 while Open ̸= ∅ do
9 extract a node n from Open with the lexicographically

smallest f -value
10 if IsDominated(Tr(g(n)),GTr

cl (s(n))) or
IsDominated(Tr(f(n)),GTr

cl (sgoal)) then
11 continue
12 Update(GTr

cl (s(n)),Tr(g(n)))
13 if s(n) = sgoal then
14 add n to sols
15 continue
16 for each s′ ∈ succ(s(n)) do
17 n′ ← new node with s(n′) = s′

18 g(n′)← g(n) + c(⟨s(n), s′⟩)
19 p(n′)← n

20 if IsDominated(Tr(g(n′)),GTr
cl (s

′)) or
IsDominated(Tr(f(n′)),GTr

cl (sgoal)) then
21 continue
22 add n′ to Open
23 return sols
24 Function IsDominated(V,v):
25 return ∃v′ ∈ V v′ ⪯ v
26 Function Update((V,v)):
27 remove all vectors weakly dominated by v from V
28 add v to V

• (Condition 2) an expanded node on state sgoal whose f -
value weakly dominates f(n).

If node n is not pruned on Line 10, LTMOA* reaches
Line 12. In this case, we say that LTMOA* expands n. If
s(n) = sgoal, LTMOA* adds the corresponding solution of
n to sols (Line 14) or, if s(n) ̸= sgoal, it generates a new
child node n′ for each successor of s(n) (Line 17). LTMOA*
also performs dominance checks for n′ (Lines 20-21) before
adding it to Open. When Open becomes empty, LTMOA*
terminates and returns sols as a Pareto frontier (Line 23).

By exploiting the fact that the expanded nodes have
lexicographically non-decreasing f -values, LTMOA* does
not need to check the g1- and f1-values for dominance
checks. Instead of maintaining the set of g-values of all
expanded nodes for each state s, LTMOA* maintains only
the often significantly smaller set GTr

cl (s) of undominated
truncated g-values. Checking Conditions 1 and 2 can be
done by checking if there exists a vector in GTr

cl (s(n))
that weakly dominates Tr(g(n)) and a vector in GTr

cl (sgoal)
that weakly dominates Tr(f(n)), respectively, using func-
tion IsDominated (Lines 24-25). For each expanded node
n, LTMOA* calls function Update (Line 12) to remove



all vectors that are weakly dominated by Tr(g(n)) from
GTr

cl (s(n)) and then add Tr(g(n)) to GTr
cl (s(n)) (Lines 26-

28). Hernández et al. (2023) propose to use arrays to imple-
ment GTr

cl (s) for each state s, and both the IsDominated
and Update functions need to iterate over the vectors in
GTr

cl (s), which takes time linear in the size of GTr
cl (s).

Reducing Duplicate Dominance Checks
Consider the case when LTMOA* reaches Line 10 with
a node n whose parent node p(n) is not null. LTMOA*
needs to iterate over GTr

cl (s(n)) to check if a vector in
GTr

cl (s(n)) weakly dominates Tr(g(n). However, some vec-
tors in GTr

cl (s(n)) are truncated g-values for nodes whose
parent nodes are also on state s(p(n)). Intuitively, LTMOA*
does not need to check these vectors because it has already
checked the truncated g-values of the parent nodes of the
nodes corresponding to these vectors before expanding p(n).
A similar observation holds for Line 20 as well. For each
truncated g-value v in GTr

cl (s(n)), let the parent state of v
refer to the state of the parent node of the node correspond-
ing to v. We show the following property of LTMOA*.
Property 1. When LTMOA* checks Condition 1 for a
node n whose parent node p(n) is not null, a vector v in
GTr

cl (s(n)) does not weakly dominate Tr(g(n)) if the parent
state of v is s(p(n)).

Proof. We prove this property by contradiction. Assume that
such a vector v weakly dominates Tr(g(n)). Let n′ denote
the expanded node corresponding to v whose parent p(n′)
is also on s(p(n)). We have Tr(g(n′)) ⪯ Tr(g(n)). Be-
cause n′ is expanded prior to n, the f -value of n′ is lex-
icographically no larger than the f -value of n, and hence
we have g1(n

′) ≤ g1(n). Put together, we have g(n′) ⪯
g(n). Because s(p(n)) = s(p(n′)), the difference be-
tween g(p(n)) and g(n) is equal to the difference between
g(p(n′)) and g(n′), that is, c(⟨s(p(n)), s(n)⟩). Therefore,
we have g(p(n′)) ⪯ g(p(n)). If g(p(n′)) ≺ g(p(n)), p(n′)
is expanded before p(n), and p(n) would have been pruned
in dominance checks. Otherwise, we have g(p(n′)) =
g(p(n)), the later extracted one between p(n) and p(n′)
would have been pruned. In both cases, we have a contradic-
tion because both p(n) and p(n′) are expanded nodes.

Based on Property 1, we propose the following technique
to reduce the number of dominance checks:
Dominance-check reduction technique 1 (R1). We par-
tition the vectors in GTr

cl (s) into different subsets accord-
ing to their parent states. When checking Condition 1, we
only check those subsets of GTr

cl (s(n)) whose parent states
are not s(p(n)). When updating GTr

cl (s(n)) with vector
Tr(g(n)), we add Tr(g(n)) only to the subset correspond-
ing to s(p(n)) but still remove vectors weakly dominated by
Tr(g(n)) from all subsets.

While the R1 technique reduces the number of dominance
checks for Condition 1, the following technique reduces the
number of dominance checks for Condition 2:
Dominance-check reduction technique 2 (R2). When per-
forming dominance checks for a node n, we do not check
Condition 2 if f(n) = f(p(n)).

Intuitively, if f(n) = f(p(n)), Tr(f(n)) is not dominated
by any vector in GTr

cl (sgoal) because, otherwise, p(n) would
have been pruned. However, it is possible for LTMOA* to
find a solution whose cost is equal to f(n) between the ex-
pansion of p(n) and n. Such cases can be detected by check-
ing the last solution found by LTMOA*.

Bucket Arrays
In this section, we describe the bucket array, a data struc-
ture for storing GTr

cl (s), and how the IsDominated and
Update functions work with bucket arrays. Let N denote
the number of objectives, and hence the length of each vec-
tor in GTr

cl (s) is N − 1. A bucket array is an array of buck-
ets, where each bucket in turn contains an array of vectors
(of length N − 1) and each component of a vector in this
bucket is within a predefined range of value. More specifi-
cally, let δ denote the step of value, which is a parameter for
the bucket array. The index of a vector v is defined as I(v) =
[⌊v1/δ⌋, ⌊v2/δ⌋ . . . ⌊vN−1/δ⌋]. A bucket B contains vectors
with the same index, denoted as I(B). Thus, every vector v
in bucket B satisfies that Ii(B) · δ ≤ vi < (Ii(B) + 1) · δ
for i = 1, 2 . . . N − 1. All buckets in a bucket array have
different indices and are not empty.

When calling IsDominated to determine if there is a
vector in GTr

cl (s) that weakly dominates an input vector v,
the algorithm needs to iterate over each bucket B in the
bucket array (that stores GTr

cl (s)) with the following cases:

1. If I(B) does not weakly dominate I(v), then
IsDominated does not check any vector in B
because none of these vectors weakly dominates v.

2. If I(B) satisfies Ii(B) < Ii(v) for all i = 1, 2 . . . N − 1,
then IsDominated returns true immediately because
all vectors in B weakly dominate v.

3. Otherwise, IsDominated checks the vectors in B and
returns true if it finds a vector that weakly dominates v.

The algorithm needs to check the vectors inside a bucket
only in the last case. Therefore, using bucket arrays can re-
duce the number of vectors that need to be checked.

When LTMOA* calls the Update function, it adds an
input vector v to GTr

cl (s) and removes all vectors that are
weakly dominated by v from GTr

cl (s). Note that v is not
weakly dominated by any vector in GTr

cl (s) because, other-
wise, LTMOA* would have reached Line 11 and continued
to the next iteration. The Update function first adds v to
the bucket whose index is I(v) (before that, Update might
need to create such a bucket if it does not exist yet). It then
iterates over the buckets in GTr

cl (s) with the following cases:

1. If I(B) is not weakly dominated by I(v), then Update
does not update B because none of these vectors is
weakly dominated by v.

2. If I(B) satisfies that Ii(v) < Ii(B) for all i =
1, 2 . . . N−1, Update removes B from the bucket array
because all of its vectors are weakly dominated by v.

3. Otherwise, Update iterates over the vectors in B and
remove the ones that are weakly dominated by v.



3 objectives (d-t-m) 4 objectives (l-d-t-m) 5 objectives (l-d-t-m-r)
#solved tavg #ops #solved tavg #ops #solved tavg #ops

LTMOA* 70 22.10 19727K 38 37.66 24444K 23 23.93 19078K
LTMOA*+R1 71 17.56 16267K 39 30.46 20379K 23 18.21 15858K
LTMOA*+R2 71 20.07 17041K 38 35.30 20613K 23 21.12 16120K
LTMOA*+R 71 17.45 13581K 39 29.69 16548K 23 15.94 12899K
LTMOA*+ND-Tree 59 67.35 6585K 37 56.02 7020K 22 21.93 12201K
LTMOA*+Bucket 76 11.01 1744K 40 13.54 2332K 27 4.08 1506K
LTMOA*+R+Bucket 77 10.08 958K 41 9.51 1293K 28 3.31 886K

Table 1: Numbers of solved problem instances (#solved), average runtimes (tavg, in seconds) and average numbers of vector
comparisons (#ops) for different variants of LTMOA* on problem instances with different numbers of objectives.

Similar to the three cases for the IsDominated function,
the Update function needs to check the vectors inside a
bucket only in the last case.

Bucket arrays (and other data structures) can be combined
with the R1 and R2 techniques with minor modifications.
For example, the R1 technique partitions GTr

cl (s) into differ-
ent subsets. In this case, we simply store each subset in a
separate bucket array.

Experimental Results
In this section, we evaluate our proposed enhancements with
LTMOA* on problem instances with three to five objectives.
We use the NY road network (264,346 states and 733,846
edges) from the 9th DIMACS Implementation Challenge:
Shortest Path.1 The NY road network has two objectives,
namely travel distance (d) and travel time (t), available in
the benchmark. Additionally, we use the economic cost (m)
(Pulido, Mandow, and Pérez-de-la Cruz 2015), the number
of edges (l) (Maristany de las Casas et al. 2023), and a ran-
dom integer between 1 and 100 (r) (Hernández et al. 2023)
as the third, fourth, and fifth objective, respectively. We use
the same 100 pairs of start and goal states used by Sedeño-
Noda and Colebrook (2019) and Ahmadi et al. (2021) for
our problem instances. Following Hernández et al. (2023),
we use the heuristic that corresponds to the exact minimum
cost for each objective to reach the goal state.

We first evaluate LTMOA* with only the R1 technique
(+R1), only the R2 technique (+R2), and both techniques
(+R), where arrays are used to store sets of cost vectors.
Then, we evaluate LTMOA* with ND-trees (+NDTree), LT-
MOA* with bucket arrays (+Bucket), and, finally, LTMOA*
that combines R1, R2, and bucket arrays (+R+Bucket). We
implemented all variants of LTMOA* in C++.2 We obtained
the original ND-Tree implementation from Jaszkiewicz and
Lust (2018) and integrated it into our code base. The runtime
limit for solving each problem instance was ten minutes.

An ND-Tree is parameterized by a branching factor b
and a maximum number of vectors L in each leaf node.
In our preliminary study, we evaluated LTMOA*+NDTree
with all combinations of b ∈ {5, 10, 20} and L ∈
{20, 40, 80} on 30 random problem instances on NY with
four objectives. We then chose the parameter combina-
tion with the smallest runtime, namely b = 5 and L =

1http://www.diag.uniroma1.it/challenge9/download.shtml
2https://github.com/HanZhang39/MultiObjectiveSearch

10 3 10 1 101

LTMOA *

10 3

10 2

10 1

100

101

102

LT
M

OA
*+

R+
Bu

ck
et

1x
10x

d-t-m
l-d-t-m
l-d-t-m-r

Figure 1: Runtimes (in seconds) on individual problem
instances for LTMOA* versus LTMOA*+R+Bucket. The
dashed diagonal lines correspond to different speed-ups.

20. Similarly, we evaluated LTMOA*+Bucket with δ ∈
{1000, 10000, 20000, 50000, 100000} on the same 30 prob-
lem instances and chose δ = 20000.

Table 1 shows the results for the different variants of LT-
MOA*. All averages are taken over instances that are solved
by all algorithms. For all objectives, the addition of R1 or R2
improves the average runtime of LTMOA*. For five objec-
tives, the addition of R1 and R2 speeds up the average run-
time of LTMOA* about 1.5 times. Although ND-trees reduce
the numbers of vector comparisons in all cases, they improve
the average runtime only for problem instances with five ob-
jectives due to their runtime overhead. However, bucket ar-
rays improve the average runtime of LTMOA* in all cases,
and LTMOA*+R+Bucket has the best runtime overall.

Figure 1 shows the runtime of LTMOA* and LT-
MOA*+R+Bucket on each problem instance. We use dif-
ferent markers for different objectives. LTMOA*+R+Bucket
runs faster than LTMOA* on most problem instances except
some easy ones that take less than 0.01 seconds to solve. The
speed-up over LTMOA* is up to an order of magnitude.

Conclusions
Multi-objective search requires frequent dominance checks.
In this paper, we facilitated efficient dominance checks via
two techniques that reduce duplicate dominance checks and
an effective data structure, called bucket arrays. Our ex-
perimental results showed that our proposed enhancements
speed up LTMOA* by up to an order of magnitude. One di-
rection of future work is to investigate the effect of different
δ-values for the different dimensions of bucket arrays.



Acknowledgements
The research at the University of Southern California was
supported by the National Science Foundation (NSF) un-
der grant numbers 1409987, 1724392, 1817189, 1837779,
1935712, and 2112533. It was also supported by the United
States-Israel Binational Science Foundation (BSF) under
grant number 2021643, the Ministry of Science & Tech-
nology, Israel, under grant number 3-17385, the National
Center for Artificial Intelligence CENIA FB210017, Basal
ANID, and the Centro Ciencia & Vida FB210008, Finan-
ciamiento Basal ANID. The views and conclusions con-
tained in this document are those of the authors and should
not be interpreted as representing the official policies, either
expressed or implied, of the sponsoring organizations, agen-
cies, or governments.

References
Ahmadi, S.; Tack, G.; Harabor, D.; and Kilby, P. 2021. Bi-
Objective Search with Bi-Directional A*. In Symposium on
Combinatorial Search (SoCS), 142–144.
Bachmann, D.; Bökler, F.; Kopec, J.; Popp, K.; Schwarze,
B.; and Weichert, F. 2018. Multi-Objective Optimisation
Based Planning of Power-Line Grid Expansions. ISPRS In-
ternational Journal of Geo-Information, 7(7): 258.
Bronfman, A.; Marianov, V.; Paredes-Belmar, G.; and Lüer-
Villagra, A. 2015. The Maximin HAZMAT Routing Prob-
lem. European Journal of Operational Research, 241(1):
15–27.
Fu, M.; Kuntz, A.; Salzman, O.; and Alterovitz, R. 2019. To-
ward Asymptotically-Optimal Inspection Planning via Effi-
cient Near-Optimal Graph Search. In Robotics: Science and
Systems (RSS).
Fu, M.; Salzman, O.; and Alterovitz, R. 2021.
Computationally-Efficient Roadmap-Based Inspection
Planning via Incremental Lazy Search. In IEEE Interna-
tional Conference on Robotics and Automation (ICRA),
7449–7456.
Hernández, C.; Yeoh, W.; Baier, J. A.; Felner, A.; Salzman,
O.; Zhang, H.; Chan, S.-H.; and Koenig, S. 2023. Multi-
Objective Search via Lazy and Efficient Dominance Checks.
In International Joint Conference on Artificial Intelligence
(IJCAI), 7223–7230.
Jaszkiewicz, A.; and Lust, T. 2018. ND-Tree-Based Update:
a Fast Algorithm for the Dynamic Nondominance Problem.
IEEE Transactions on Evolutionary Computation, 22(5):
778–791.
Maristany de las Casas, P.; Kraus, L.; Sedeño-Noda, A.; and
Borndörfer, R. 2023. Targeted Multiobjective Dijkstra Al-
gorithm. Networks, 82(3): 277–298.
Pulido, F.-J.; Mandow, L.; and Pérez-de-la Cruz, J.-L. 2015.
Dimensionality Reduction in Multiobjective Shortest Path
Search. Computers & Operations Research, 64: 60–70.
Ren, Z.; Zhan, R.; Rathinam, S.; Likhachev, M.; and Choset,
H. 2022. Enhanced Multi-Objective A* Using Balanced Bi-
nary Search Trees. In Symposium on Combinatorial Search
(SoCS), 162–170.

Salzman, O.; Felner, A.; Hernández, C.; Zhang, H.; Chan,
S.; and Koenig, S. 2023. Heuristic-Search Approaches for
the Multi-Objective Shortest-Path Problem: Progress and
Research Opportunities. In International Joint Conference
on Artificial Intelligence (IJCAI), 6759–6768.
Sedeño-Noda, A.; and Colebrook, M. 2019. A Biobjective
Dijkstra Algorithm. European Journal of Operational Re-
search, 276(1): 106–118.
Ulungu, E.; and Teghem, J. 1991. Multi-Objective Short-
est Path Problem: A Survey. In Workshop on Multicriteria
Decision Making: Methods–Algorithms–Applications, 176–
188.


