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Abstract

Multi-Agent Path Finding (MAPF), i.e., finding collision-
free paths for multiple robots, plays a critical role in many
applications. Sometimes, assigning a target to each agent
also presents a challenge. The Combined Target-Assignment
and Path-Finding (TAPF) problem, a variant of MAPF, re-
quires one to simultaneously assign targets to agents and plan
collision-free paths for agents. Several algorithms, includ-
ing CBM, CBS-TA, and ITA-CBS, optimally solve the TAPF
problem, with ITA-CBS being the leading algorithm for
minimizing flowtime. However, the only existing bounded-
suboptimal algorithm ECBS-TA is derived from CBS-TA
rather than ITA-CBS. So, it faces the same issues as CBS-
TA, such as searching through multiple constraint trees
and spending too much time on finding the next-best tar-
get assignment. We introduce ITA-ECBS, the first bounded-
suboptimal variant of ITA-CBS. Transforming ITA-CBS to
its bounded-suboptimal variant is challenging because differ-
ent constraint tree nodes can have different assignments of
targets to agents. ITA-ECBS uses focal search to achieve ef-
ficiency and determines target assignments based on a new
lower bound matrix. We show that it runs faster than ECBS-
TA in 87.42% of 54,033 test cases.

Introduction
The Multi-Agent Path Finding (MAPF) problem requires
planning collision-free paths for multiple agents from their
respective start locations to pre-assigned target locations in a
known environment while minimizing a given cost function.
Many algorithms have been developed to solve this problem
optimally, such as Conflict-Based Search (CBS) (Sharon
et al. 2015), M∗ (Wagner and Choset 2011), and Improved
CBS (ICBS) (Boyarski et al. 2015). Solving the MAPF prob-
lem optimally is known to be NP-hard (Yu and LaValle
2013), so optimal MAPF solvers face challenges in scala-
bility and efficiency. In contrast, suboptimal MAPF solvers,
such as Prioritized Planning (PP) (Erdmann and Lozano-
Perez 1987; Silver 2005), PBS (Ma et al. 2019) and their
variants (Chan et al. 2023; Li et al. 2022), exhibit better
scalability and efficiency. However, these algorithms lack
theoretical guarantees for the quality of their solutions for
a given cost function. Bounded-suboptimal MAPF solvers
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trade off between efficiency and solution quality. Enhanced
CBS (ECBS) (Barer et al. 2014), EECBS (Li, Ruml, and
Koenig 2021), and LaCAM (Okumura 2023) guarantee to
find collision-free solutions whose costs are at most a user-
defined suboptimality factor away from the optimal cost.

Sometimes, assigning a target to each agent also presents
a challenge. This paper explores a variant of the MAPF prob-
lem, the Combined Target-Assignment and Path-Finding
(TAPF) problem (Ma and Koenig 2016; Hönig et al. 2018).
Inspired by warehouse automation, where robots deliver
shelves to packing stations and can initially select which
shelf to retrieve (Wurman, D’Andrea, and Mountz 2008),
TAPF assigns each agent a target (location) from a set of
possible targets. Subsequently, it finds collision-free paths
for all agents to minimize a given cost function. TAPF is a
more general problem and becomes MAPF if the size of the
target set is restricted to one per agent. So, TAPF inherits the
NP-hard complexity of MAPF.

Several algorithms have been proposed to solve the TAPF
problem optimally, including CBM (Ma and Koenig 2016),
CBS-TA (Hönig et al. 2018), and ITA-CBS (Tang et al.
2023), with ITA-CBS being the state-of-the-art optimal al-
gorithm for flowtime (i.e., the sum of all path costs). How-
ever, they all face scalability issues as optimal TAPF solvers.
To the best of our knowledge, ECBS-TA (Hönig et al. 2018)
is the only existing bounded-suboptimal TAPF solver. It di-
rectly applies the ECBS algorithm to CBS-TA and can find
collision-free (valid) solutions more quickly than CBS-TA.
However, since ECBS-TA is based on CBS-TA, ECBS-TA
encounters efficiency problems due to the same two issues as
CBS-TA: (1) ECBS-TA maintains multiple Constraint Trees
(CT) and explores each sequentially, leading to many CT
nodes. (2) It involves solving a K-best target assignment
problem (Chegireddy and Hamacher 1987), which is often
time-consuming. To address these issues, we have devel-
oped a bounded-suboptimal algorithm inspired by the single
CT structure of ITA-CBS, aiming to avoid the computational
bottlenecks of ECBS-TA.

While ITA-CBS is a CBS-like algorithm with a single CT,
developing a bounded-suboptimal algorithm from ITA-CBS
is not straightforward since the target assignment (TA) so-
lution, an arrangement that specifies a target for each agent,
varies at each CT node. Simply applying ECBS to ITA-CBS
can lead to the returned valid solution not being bounded by



a suboptimal factor. By incorporating an additional Lower
Bound (LB) matrix and deriving the TA solution from it,
we develop Incremental Target Assignment with Enhanced
CBS (ITA-ECBS), a bounded-suboptimal variant of ITA-
CBS with flowtime. It can avoid producing unbounded valid
solutions, a risk present when directly applying ECBS to
ITA-CBS. Furthermore, it uses the shortest path costs as LB
values, thereby accelerating path searching algorithm. Our
experimental results show that ITA-ECBS runs faster than
the baseline algorithm ECBS-TA in 87.42% of 54,033 test
cases with 8 different suboptimality factors.

Problem Definition
The Combined Target-Assignment and Path-
Finding (TAPF) problem is defined as follows: Let
I = {1, 2, · · · , N} denote a set of N agents. G = (V,E)
represents an undirected graph, where each vertex v ∈ V
represents a possible location of an agent in the workspace,
and each edge e ∈ E is a unit-cost edge between two
vertices that moves an agent from one vertex to the other.
Self-loop edges are allowed, which represent “wait-in-
place” actions. Each agent i ∈ I has a start location
si ∈ V . Let G = {g1, g2, · · · , gM} ⊆ V denote a set of M
targets (M ≥ N ). Let A denote a binary N × M target
matrix, where each entry A[i][j] (the i-th row and j-th
column in A) is one if agent i is eligible to be assigned to
target gj and zero otherwise. We refer to the set of targets
{gj ∈ G|A[i][j] = 1} as the target set for agent i. Our task
is to assign each agent i a target gj from its target set and
plan corresponding collision-free paths for all agents. We
cannot assign an agent without specifying a target.

Each action of agents, either waiting in place or moving
to an adjacent vertex, takes one time unit. Let vit ∈ V be the
location of agent i at timestep t. Let πi = [vi0, v

i
1, ..., v

i
T i ]

denote a path of agent i from its start location vi0 to its target
viT i . We assume that agents rest at their targets after complet-
ing their paths, i.e., vit = viT i ,∀t > T i. The cost of agent i’s
path is T i. We refer to the path with the minimum cost as
the shortest path. We consider two types of agent-agent col-
lisions. The first type is a vertex collision, where two agents
i and j occupy the same vertex at the same timestep. The
second type is an edge collision, where two agents move in
opposite directions along the same edge. We use (i, j, t) to
denote a vertex collision between agents i and j at timestep
t or a edge collision between agents i and j at timestep t to
t+1. The requirement of being collision-free implies the tar-
gets assigned to the agents must be distinct from each other.

The objective of the TAPF problem is to find a set of paths
{πi|i ∈ I} for all agents such that, for each agent i:

1. Agent i starts from its start location (i.e., vi0 = si);
2. Agent i stops at a target gj in its target set (i.e., vit =

gj ,∀t ≥ T i and A[i][j] = 1);
3. Every pair of adjacent vertices on path πi is connected

by an edge (i.e., (vit, v
i
t+1) ∈ E,∀0 ≤ t ≤ T i); and

4. {πi|i ∈ I} is collision-free and minimize the flowtime∑N
i=1 T

i.

Related Work
Focal Search
Focal search (Pearl and Kim 1982; Cohen et al. 2018) is
bounded-suboptimal search. Given a user-defined subopti-
mality factor w ≥ 1, it is guaranteed to find a solution with
a cost at most w · copt, where copt is the cost of an optimal
solution. Focal search has two queues: OPEN and FOCAL.
OPEN stores all candidates that need to be searched and sort
each candidate n by f(n) = g(n) + h(n), where g(n) and
h(n) are the cost and an admissible heuristic value of candi-
date n, respectively, which are identical to the g and h values
in A∗ search. FOCAL includes all candidates n satisfying
f(n) ≤ w · ffront, where ffront is the minimum f value in
OPEN. FOCAL sorts candidates by another heuristic func-
tion d(n) which could be any function defined by users.1
Focal search searches candidates in order of FOCAL—the
FOCAL aids in quickly identifying a solution through its
heuristic function. When we find a solution with cost cval,
we call current ffront as this solution’s lower bound (LB)
because of ffront ≤ copt and ffront ≤ cval ≤ wffront.
Therefore, focal search outputs two key pieces of informa-
tion: an LB value cg and a solution with cost c. If there is no
solution, we set both cg and c to ∞.

Multi-Agent Path Finding (MAPF)
MAPF has a long history (Silver 2005), and many algo-
rithms have been developed to solve it or its variants. The
problem is to find collision-free paths for multiple agents
from their start locations to pre-assigned targets while min-
imizing a given cost function. Decoupled algorithms (Sil-
ver 2005; Luna and Bekris 2011; Wang and Botea 2008)
independently plan a path for each agent and then com-
bine all paths to one solution. Coupled algorithms (Standley
2010; Standley and Korf 2011) plan for all agents together.
There also exist dynamically-coupled algorithms (Sharon
et al. 2015; Wagner and Choset 2015) that independently
plan each agent and re-plan multiple agents together when
needed to resolve their collisions. Among them, Conflict-
Based Search (CBS) (Sharon et al. 2015) is a popu-
lar centralized optimal MAPF algorithm. Some bounded-
suboptimal algorithms are based on it, such as ECBS (Barer
et al. 2014) and EECBS (Li, Ruml, and Koenig 2021).

CBS Conflict-Based Search (CBS) is an optimal two-level
search algorithm. Its low level plans the shortest paths for
agents from their start locations to targets, while its high
level searches a binary Constraint Tree (CT). Each CT node
H = (c,Ω, π) includes a constraint set Ω, a solution π,
which is a set of shortest paths satisfying Ω for all agents,
and a cost c, which is the flowtime of π. When a solution
π or a path does not include any agent actions or positions
that are restricted by a Ω, we say this solution or path sat-
isfies the Ω. As long as π satisfies Ω, pi could have colli-
sions. We call a CT node solution π a valid solution when

1Since OPEN and FOCAL are for sorting purposes and FOCAL
is a subset of OPEN, in implementation, we store candidate point-
ers in them. If one candidate appears in both queues, only one copy
exists and two pointers point to this candidate copy.



it is collision-free. When expanding a node H , CBS selects
the first collision in H.π, even when multiple collisions oc-
cur in H.π, and formulates two constraints, each prohibiting
one agent from occupying the colliding location or execut-
ing its intended original action at the colliding timestep. We
have two types of constraints: vertex constraint (i, v, t) that
prohibits agent i from occupying vertex v at timestep t and
edge constraint (i, u, v, t) that prohibits agent i from going
from vertex u to vertex v at timestep t. Then CBS gener-
ates two successor nodes identical to H and adds each of
the two constraints to the constraint set of the two respective
successor nodes. After adding a new constraint, each node
should re-plan the path that does not satisfy this constraint.
By maintaining a priority queue OPEN based on each node’s
cost, CBS repeats this process until expanding a node that
has no collisions, in which case, its solution is an optimal
valid solution. CBS is optimal for the flowtime minimiza-
tion (Sharon et al. 2015).

ECBS Enhanced CBS (ECBS) (Barer et al. 2014) is based
on CBS and uses focal search with the same suboptimality
factor w in both two-level searches. In its low-level search,
the focal search returns an LB value cgi and a valid path πi

with cost ci for agent i from its start location to target. The
path and value satisfy: cgi ≤ copti ≤ ci ≤ w · cgi , where copti
is the cost of agent i’s shortest path satisfying Ω, and w is
the suboptimality factor. In its high-level search, comparing
to CBS, each CT node H = (c,Ω, π, L, cL) in ECBS has
an additional cost array L, which stores all LB values cgi for
all paths in π, and cost cL which is the sum of cgi in L. The
high-level search of ECBS maintains two priority queues:
FOCAL and OPEN. OPEN stores all CT nodes sorted in
ascending order of cL. Let the front CT node in OPEN be
Hfront, ECBS adds all CT nodes H in OPEN that satisfy
H.c ≤ w · Hfront.cL into FOCAL. FOCAL is sorted in
ascending order of a user-defined heuristic function d(H).
ECBS guarantees that its returned solution Hsol.π satisfies
Hsol.c ≤ w · copt, where copt is the cost of the optimal valid
solution.

Combined Target-Assignment and Path-Finding
(TAPF)
The Combined Target-Assignment and Path-Finding
(TAPF) problem is a combination of the MAPF problem
and the target-assignment problem. While MAPF has a
pre-defined target for each agent, TAPF simultaneously
assigns targets to agents and finding collision-free paths for
them. There are several TAPF algorithms such as CBM (Ma
and Koenig 2016), CBS-TA (Hönig et al. 2018), ECBS-
TA (Hönig et al. 2018), and ITA-CBS (Tang et al. 2023).
CBM combines CBS with maxflow algorithms to optimally
minimize the makespan maxi∈I{T i}. However, CBM
works only for makespan, while other algorithms also work
for flowtime. CBS-TA tries different Target Assignments
(TA) for agents and then seeks the optimal valid solution
across multiple CTs, one CT for each TA (forming a forest).
Targets are assigned to agents by Hungarian algorithm, that
minimizes the sum of costs in a given cost matrix. ECBS-
TA, a bounded-suboptimal version of CBS-TA, incorporates

focal search (Pearl and Kim 1982; Barer et al. 2014). Both
CBS-TA and ECBS-TA require a substantial amount of
time to determine the next-best TA as they lazily traverse
each CT. In contrast to CBS-TA and ECBS-TA, ITA-CBS
searches for optimal valid solutions within a single CT
and uses the dynamic Hungarian algorithm (Mills-Tettey,
Stentz, and Dias 2007). However, scalability remains a
challenge for ITA-CBS due to its optimality. We propose
ITA-ECBS to overcome this issue.

CBS-TA and ECBS-TA CBS-TA (Hönig et al. 2018), in-
spiring many extensions (Ren, Rathinam, and Choset 2023;
Zhong et al. 2022; Chen et al. 2021; Okumura and Défago
2023), operates on the following principle: a fixed TA trans-
forms a TAPF instance to a MAPF instance, and CBS
can solve each MAPF instance with one CT. CBS-TA effi-
ciently explores all nodes of the different CTs (CT forest)
by enumerating every TA solution. In CBS-TA, TA solu-
tions are derived from an N × M cost matrix Mc, which
records the path costs from agents’ start locations to tar-
gets, without considering any constraints. Each CT node
H = (c,Ω, π, πta, r) of CBS-TA has two extra fields com-
pared to a node of CBS: a TA solution πta that assigns each
agent a unique target and a root flag r signifying if H is the
root of a CT. CBS-TA maintains a priority queue OPEN to
store nodes from the CT forest and lazily generates roots of
new CTs with different TA solutions. CBS-TA first gener-
ates one CT root with the optimal TA which has the mini-
mum cost based on Mc. It does not need to generate a new
CT until all CT nodes in the queue are larger than the cost of
a new CT root because the cost of a CT root is no larger than
the cost of any child node in the CT. Consequently, it gen-
erates a new root with the next-best TA solution only when
the CT root in OPEN has been expanded. Based on the K-
best task-assignment algorithm (Chegireddy and Hamacher
1987) and the Successive Shortest Path (SSP) algorithm (En-
gquist 1982), CBS-TA finds the next-best TA solution with
complexity O(N3M). Using the ECBS algorithm to search
each CT transforms CBS-TA to the bounded-suboptimal al-
gorithm ECBS-TA (Hönig et al. 2018).

ITA-CBS Since many CT nodes in different CTs of CBS-
TA have identical constraint sets, which leads CBS-TA to
repeat searches, ITA-CBS is a CBS-like algorithm that uses
only one CT to search for the optimal valid solution. Each
CT node H = (c,Ω, π, πta,Mc) in ITA-CBS has two extra
fields compared to a node of CBS: a TA solution πta and
an N ×M cost matrix Mc. Each entry Mc[i][j] is the mini-
mum cost of paths from si to gj satisfying Ω. Mc[i][j] = ∞
if A[i][j] = 0 (i.e., target gj is not included in the target
set of agent i) or there is no path satisfying Ω. In imple-
mentation, ITA-CBS stores costs in Mc together with their
corresponding paths, so that it can construct π directly from
Mc after obtaining πta. In this paper, when we mention Mc,
it could represent costs or the corresponding paths depend-
ing on context. πta is the optimal TA solution of Mc, π is
the set of paths selected from Mc based on πta, and c is the
flowtime of π.

During node expansion, ITA-CBS retrieves a node from
OPEN and checks if its π is collision-free. If so, this π is
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Figure 1: This figure shows the unbounded problem if we di-
rectly use ECBS in ITA-CBS. We have 2 agents {X,Y } and
target sets X:{A,B} and Y :{A,B,C}. Red numbers repre-
sent the matrix’s optimal TA solution. Orange cells represent
the row update since the new constraint is related to only one
agent. The suboptimality factor w is 2. ITA-CBS utilizes Mc

to obtain the optimal TA solution. Here, πta is the TA solu-
tion of Mc. c represents the flowtime based on πta. cL is the
sum of LB values selected from ML based on πta. Real cL is
the cost of the optimal TA solution of ML. d(H) represents
the user-defined heuristic function used in FOCAL.

an optimal valid solution, and ITA-CBS terminates. Other-
wise, like CBS, ITA-CBS generates two child CT nodes and
adds new constraints to their Ωs. When creating a CT node
H , ITA-CBS first re-plans all paths in Mc that do not satisfy
H.Ω. Then, it obtains a new H.πta from H.Mc. Based on
H.πta, ITA-CBS obtains a new H.π from H.Mc and then
inserts H into OPEN. In summary, the order of modifica-
tion of the variables is Ω → Mc → πta → π → children’s
Ω. Since each CT node has only one new constraint com-
pared to its parent and at most one row in Mc is changed,
ITA-CBS uses dynamic Hungarian algorithm (Mills-Tettey,
Stentz, and Dias 2007) with complexity O(NM) to obtain a
new TA, which largely reduces the runtime of TA compared
to using Hungarian algorithm. ITA-CBS is faster than CBS-
TA in experiments. However, its scalability is still limited
since it is an optimal algorithm for TAPF.

ITA-ECBS
Adapting the optimal ITA-CBS algorithm to its bounded-
suboptimal counterpart is challenging since the optimal TA
often changes from CT node to CT node. In ITA-CBS, we
derive πta from Mc and a solution π based on πta. Directly
applying focal search during low-level path search in ITA-
CBS can yield two N×M matrices for each CT node H: an
LB matrix ML, which stores all LB values cg returned from
focal search, and a cost matrix Mc satisfying ML[i][j] ≤
Mc[i][j] ≤ w ·ML[i][j], i = 1, ..., N, j = 1, ...,M . We can
apply a target assignment algorithm to either one of these
two matrices: πta obtained from ML provides a lower bound
on the cost of all TAPF solutions that meet H.Ω, whereas

Algorithm 1: ITA-ECBS-v0 and ITA-ECBS
Input: Graph G, start locations {si}, target locations {gi}, target
matrix A, suboptimality factor w, algorithm type ALGO TYPE
Output: A valid TAPF solution within the suboptimality factor w
1: H0 = new CTnode()
2: H0.Ω = ∅
3: for each (i, j) ∈ {1, · · · , N} × {1, · · · ,M} do
4: H0.Mc[i][j] = H0.ML[i][j] = ∞
5: if A[i][j] = 1 then
6: H0.ML[i][j], H0.Mc[i][j] =

lowLevelSearch(G, si, gj , H0, w)
7: H0.πta = optimalTargetAssignment(H0.ML)
8: H0.c,H0.π = getPlan(H0.πta, H0.Mc)
9: H0.cL = getLowerBound(H0.πta, H0.ML)

10: FOCAL = OPEN = PriorityQueue()
11: Calculate d(H0) and insert H0 into OPEN
12: while OPEN not empty do
13: Hfront = OPEN.front()
14: FOCAL = FOCAL ∪ {H ∈ OPEN |H.c ≤ w ·Hfront.cL}
15: Hcur = FOCAL.front(); FOCAL.pop()
16: Delete Hcur from OPEN
17: if Hcur.π has no collision then
18: return Hcur.π
19: (i, j, t) = getFirstCollision(Hcur.π)
20: for each agent k in (i, j) do
21: Q = a copy of Hcur

22: if (i, j, t) is a vertex collision then
23: Q.Ω = Q.Ω ∪ (k, vkt , t) // vertex constraint
24: else
25: Q.Ω = Q.Ω ∪ (k, vkt−1, vkt , t) // edge constraint
26: for each x with A[k][x] = 1 do
27: Q.ML[k][x], Q.Mc[k][x] =

lowLevelSearch(G, sk, gx, Q,w)
28: Q.πta = optimalTargetAssignment(Q.ML)
29: Q.c,Q.π = getPlan(Q.πta, Q.Mc)
30: Q.cL = getLowerBound(Q.πta, Q.ML)
31: if Q.c <∞ then
32: Calculate d(Q) and insert Q into OPEN
33: return No valid solution
34: function lowLevelSearch(G, sk, gx, Q,w)
35: if ALGO TYPE = ITA-ECBS-v0 then
36: cg , c = focalSearch(G, sk, gx, Q.Ω, Q.Mc, w)
37: if ALGO TYPE = ITA-ECBS then
38: cg = shortestPathSearch(G, sk, gx, Q.Ω)
39: c = searchWithLB(G, sk, gx, Q.Ω, Q.Mc, w, cg)
40: return cg , c

πta obtained from Mc has the minimum flowtime among
all possible TA solutions in Mc. These two TA can differ.
If we simply apply ECBS in ITA-CBS to make it bounded-
suboptimal version, the returned valid solution π, derived
from πta of Mc, may not be bounded-suboptimal.

Figure 1 provides an example with suboptimality fac-
tor w = 2. H1 is a parent CT node with πta = {X →
B, Y → A} based on H1.Mc. The sum of LB values se-
lected from H1.ML based on πta is cL = 6, whereas the
minimum LB sum Real cL is 4 in ML. H1 generates two
child nodes {H2, H3}, assuming both child node solutions
π are collision-free. Since H2.c ≤ w ·min(H2.cL, H3.cL),
we add H2 to FOCAL and the same applies to H3. Assume
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1.02, 1.20} to find optimal and bounded-suboptimal valid solutions with small and large suboptimality factors.

'%&, "!

Ω"
!! !'

', ", *(+")

H!

H" H#
H( H" H# H$OPEN :

H# H(FOCAL : 

" ⋅ $%. &&H!
1

2

3

4

'%&, "!

!! !'

', ", *(+$)'%&, "!

Ω#

!! !'

', ", *(+")

Ω$

Figure 3: ITA-ECBS overview: There are two CT nodes
{H0, H1} in OPEN. (1) Although H0 has a lower cL value
and precedes H1 in OPEN, the heuristic function d(H) may
result in H1 being selected for expansion. (2) We verify
whether H1.π is collision-free. If not, we generate two child
CT nodes with new constraint sets Ω2 and Ω3 and then use
focal search to obtain new ML and Mc for each node. A new
ML leads to a new πta and cL. The updated πta and Mc give
us a bounded-suboptimal solution π and the cost c. We then
calculate d(H). (3) We insert these two nodes into OPEN,
indicated by the red values. (4) All CT nodes in OPEN with
cost c ≤ w ·H0.cL are added to FOCAL. H2 could be posi-
tioned ahead of H0 in FOCAL by the heuristic function d.

H2 has a lower heuristic value d(H2) and should be eval-
uated before H3, leading to H2.π becoming the returned
valid solution. The flowtime of H2.π is 9. However, based
on Real cL = 4 in H3, it might be possible to find a child
node of H3 that has a valid solution with a flowtime copt

equal to Real cL = 4. In this case, H2.c ≥ w · copt. This
suggests that H2’s solution may not be bounded by w, which
we call the unbounded problem.

Focal search thus cannot turn ITA-CBS into a bounded-
suboptimal algorithm. We need to obtain πta from ML

rather than Mc. As shown in Figure 3 and Algorithm 1, we
propose two bounded-suboptimal TAPF algorithms: ITA-

ECBS-v0 and its enhanced version ITA-ECBS. We first in-
troduce ITA-ECBS-v0. Each CT node of ITA-ECBS-v0 is
represented as H = (c,Ω, π, πta,Mc,ML, cL). It has two
extra fields compared to a node of ITA-CBS: an LB matrix
ML and cost cL which is the sum of LB values selected from
ML based on πta. The two matrices ML and Mc can be gen-
erated concurrently because focal search returns an LB value
and a path satisfying Ω in one search. Each entry ML[i][j]
represents the LB value of paths from si to gj , and Mc[i][j]
denotes the actual path and Mc[i][j] ≤ w ·ML[i][j]. If focal
search has no solution for a path satisfying Ω or A[i][j] = 0,
we set both ML[i][j] and Mc[i][j] to ∞. A key distinction
of ITA-ECBS-v0 from ITA-CBS is that πta is the optimal
TA solution obtained from ML rather than Mc. This change
helps to avoid the unbounded problem. π is the set of paths
selected from Mc based on πta. c is the flowtime of π.

Algorithm 1 shows the pseudocode of ITA-ECBS-v0. It
starts by generating the root node H0, including creating an
empty constraint set H0.Ω and the corresponding matrices
H0.Mc and H0.ML using focal search. Subsequently, a tar-
get assignment algorithm, such as the dynamic Hungarian
algorithm, determines H0.πta based on H0.ML. Then H0.π
is obtained from H0.Mc based on H0.πta (Lines 1-9). In the
high-level search, ITA-ECBS-v0, like ECBS, maintains two
priority queues: OPEN and FOCAL. OPEN has all CT nodes
sorted by their cL. FOCAL contains only those CT nodes H
with H.c ≤ w ·Hfront.cL, where Hfront is the OPEN front
node. FOCAL is sorted by a given heuristic function d(H).
ITA-ECBS-v0 first gets Hfront from OPEN in each itera-
tion. Based on Hfront.cL, it adds all eligible CT nodes in
OPEN to FOCAL. Then, it chooses the front node Hcur in
FOCAL and removes it from OPEN (Lines 10-16).

ITA-ECBS-v0 checks if Hcur.π is collision-free. If so,
this π is a bounded-suboptimal valid solution (Lines 17-18).
Otherwise, like ECBS, ITA-ECBS-v0 utilizes the first iden-
tified collision to generate two constraints. It then creates
two child CT nodes identical to Hcur and adds one con-
straint to Ω of the first child CT node and the other con-
straint to Ω of the second child CT node (Lines 19-25). For



Figure 4: The success rates of different algorithms as a function of the suboptimality factor.
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Figure 5: The success rates of three algorithms with three selected suboptimality factors as a function of the number of agents.

each child CT node Q with a constraint for agent k added, all
LB values in Q.ML and all paths in Q.Mc related to agent
k have to be replanned subject to the new constraint set Q.Ω
(Lines 26-27, 36). Since Q.ML changes, the TA Qπta

, solu-
tion Q.π, and costs Q.c and Q.cL have to be updated as well
(Lines 28-30). Because focal search returns ∞ if no solution
exists, Q.c = ∞ means that there is no π satisfying Q.Ω and
ITA-ECBS-v0 can ignore this CT node. Otherwise, it insert
Q into OPEN (Lines 31-32).

Usually, bounded-suboptimal algorithms aim to find a
bounded-suboptimal valid solution swiftly. In the low-level
search, we could have more candidates in FOCAL by obtain-
ing larger LB values. Since all candidates in FOCAL have a
bounded-suboptimal solution, more candidates in FOCAL

increases our chances of rapidly discovering a valid solu-
tion if d(n) is properly designed. For an LB value cg , we
have cg ≤ copt where copt is the shortest path cost. Rather
than obtaining an LB value cg from focal search, we can di-
rectly use copt as the LB value from a shortest path algorithm
such as A∗. Using copt as the LB value can give us more
freedom to get a path leading to a valid π. We use a new
function named searchWithLB to identify paths with the
lowest d(n) values, using an given LB value cv as a guide-
line. searchWithLB is similar to focal search but only has
FOCAL contains all candidates with costs w · cv . If a candi-
date cost is larger than w · cv , it cannot contain a bounded-
suboptimal solution and we can ignore it.

The final version of ITA-ECBS is shown in Algorithm 1.



Average of Success Rate Number of Agents Percentage of Shared Targets
w algorithms 30 60 90 120 150 0% 30% 60% 100%

1.01
ECBS TA 0.854 0.582 0.396 0.240 0.150 0.537 0.498 0.515 0.466

ITA-ECBS-v0 0.864 0.589 0.379 0.190 0.150 0.545 0.498 0.487 0.427
ITA-ECBS 0.875 0.639 0.453 0.267 0.223 0.578 0.562 0.564 0.480

1.03
ECBS TA 0.873 0.782 0.640 0.406 0.200 0.698 0.610 0.625 0.600

ITA-ECBS-v0 0.878 0.762 0.603 0.376 0.215 0.701 0.635 0.618 0.528
ITA-ECBS 0.890 0.820 0.707 0.515 0.387 0.76 0.741 0.719 0.612

1.04
ECBS TA 0.889 0.817 0.701 0.482 0.279 0.743 0.647 0.673 0.660

ITA-ECBS-v0 0.893 0.792 0.657 0.471 0.315 0.747 0.678 0.672 0.582
ITA-ECBS 0.906 0.843 0.770 0.607 0.490 0.795 0.787 0.777 0.672

1.05
ECBS TA 0.898 0.837 0.737 0.529 0.320 0.771 0.669 0.703 0.701

ITA-ECBS-v0 0.904 0.810 0.696 0.509 0.373 0.775 0.719 0.702 0.607
ITA-ECBS 0.932 0.859 0.810 0.671 0.551 0.831 0.822 0.814 0.708

1.10
ECBS TA 0.959 0.868 0.85 0.692 0.485 0.871 0.752 0.787 0.820

ITA-ECBS-v0 0.964 0.848 0.804 0.684 0.571 0.868 0.842 0.806 0.699
ITA-ECBS 0.985 0.873 0.854 0.801 0.757 0.901 0.902 0.889 0.790

Table 1: Average success rates across variables not specified in the table. The highest average success rates are shown in bold.
Due to space constraints, only five numbers of agents are shown.

The only difference between ITA-ECBS-v0 and ITA-CBS
lies in Lines 37-39. We first use shortest path search to
determine copt based on Ω. copt is then utilized as cv in
the searchWithLB function to identify a path with a cost
of at most w · copt, thus enabling quicker discovery of a
bounded-suboptimal valid solution. As demonstrated in our
experimental section, ITA-ECBS is more efficient than ITA-
ECBS-v0 despite requiring twice path searches.

In code implementation, we use the number of collisions
in H.π as the heuristic function d for both the low-level path
search and the high-level CT node search. However, this
heuristic is more advantageous for the low-level search of
ECBS-TA than ITA-ECBS. ECBS-TA updates a single path
for one agent and does not need to modify the TA solution
of CT nodes, which ensures d(n) is accurate when using
low-level focal search to find a path. In ITA-ECBS, the ac-
curacy is compromised because changes in the TA can lead
to changes in the paths of multiple agents. When calculating
the number of collisions for a path in ITA-ECBS, the paths
of the other agents are not finalized. For example, we need
to re-plan paths for two agents a1 and a2 one by one due
to a new πta. We want to calculate the number of collisions
for the focal search of a1. However, it is impossible to ac-
curately count collisions between a1 and a2 because we do
not know a2’s new path. So we can only use a2’s old path to
count collisions between a1 and a2.

Experimental Results
We compare the success rate and runtime of ITA-ECBS with
ECBS-TA since, to the best of our knowledge, ECBS-TA
is the only bounded-suboptimal TAPF algorithm that mini-
mizes flowtime. We implement ITA-ECBS and ECBS-TA in
C++, partially based on the existing ITA-CBS implementa-
tion.2 All experiments are conducted on an Ubuntu 20.04.1

2The ITA-ECBS and ECBS-TA code and test data are available
at https://github.com/TachikakaMin/ITA-CBS2. Based on tests,

system with an AMD Ryzen 3990X 64-Core Processor with
2133 MHz 64GB RAM.

Test Settings
We test ITA-ECBS and ECBS-TA with the suboptimal-
ity factors w = 1.00, 1.01, 1.02, 1.03, 1.04, 1.05, 1.10, and
1.20 on 8 maps from the MAPF Benchmark (Stern et al.
2019). These maps are shown in Figure 4 and previously
to evaluate ITA-CBS and CBS-TA (Tang et al. 2023): (1)
random-32-32-10 (32x32) and empty-32-32 (32x32) are
grid maps with and without random obstacles, (2) den312d
(65x81) is a grid map from the video game Dragon Age
Origins, (3) maze-32-32-2 (32x32) is a maze-like grid map,
(4) room-64-64-8 (64x64) is a room-like grid map, (5)
warehouse-10-20-10-2-1 (161x63) is a grid map inspired
by real-world autonomous warehouses, and (6) orz900d
(1491x656) and Boston-0-256 (256x256) are the largest and
second largest benchmark maps.

The number of agents ranges from 10 to 150 in increments
of 10. For each map, every agent has a target set of the same
size, which is 5, 15, 5, 4, 20, 30, 10, 10 for maps random-32-
32-10, den312d, empty-32-32, maze-32-32-2, room-64-64-
8, warehouse-10-20-10-2-1, orz900d, Boston-0-256 respec-
tively. Each target set has unique targets and targets shared
among all agents. We vary the percentage of shared targets
in target sets from 0%, 30%, 60% to 100%. All numbers
round down.3 However, we ensure that each target set al-

our ECBS-TA implementation runs faster than the original one.
3The size of the target set for each map is determined by the

number of cells available to be assigned to agents, except large
maps orz900d and Boston-0-256. For instance, the empty-32-32
map has 1,024 cells. With a maximum of 150 agents, the target
set size is calculated as 1, 024/150 = 6.82, and we use 5 as the
target set size. On large maps, the size of the target set is 10 to
prevent ITA-ECBS and ECBS-TA from timing out. Because most
of the time on a large map will be occupied by low-level searches,
the number of CT nodes that can be searched within 30 seconds is



0.000 0.005 0.010 0.015 0.020
Average Time per CT Node (s)

ECBS-TA

ITA-ECBS-v0

ITA-ECBS

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Average Total Time (s)

ECBS-TA

ITA-ECBS-v0

ITA-ECBS

task assignment
low-level search time

heuristic calculation for CT nodes
CT node creation

other

Figure 6: Runtime breakdown (seconds) for target assign-
ment (Algorithm 1 Line 28), low-level search (Line 27),
heuristic calculation for CT nodes (Line 32), CT node cre-
ation (Line 21), which requires copying variables and other
tasks.

ways includes at least one unique target to guarantee agents
have enough targets to allocate.

For each map, number of agents, and percentage of shared
targets, we generate 20 test cases with randomly selected
start and target locations. An algorithm is considered to have
failed for a given test case if it does not find a valid solution
within 30 seconds. The success rate is the percentage of the
20 test cases where the algorithm succeeds.

Performance
Overall, we have 76,800 test cases. Among these, 48,334
test cases are solved by both ITA-ECBS and ECBS-TA,
5,190 are solved only by ITA-ECBS, 509 are solved only by
ECBS-TA, and 22,767 are not solved by either algorithm.
Out of the 54,033 test cases solved by at least one algo-
rithm, ITA-ECBS was faster than ECBS-TA in 87.42% of
the test cases and 5 times faster in 24.71% of them. Figure 2
showcases their performance for three selected suboptimal-
ity factors. As the suboptimality factor increases, ITA-ECBS
and ECBS-TA solve more test cases and the success rates of
ITA-ECBS are larger than those of ECBS-TA.

Figure 4 displays the success rates of different algorithms
as the suboptimality factor increases. Figure 5 displays the
success rates of different algorithms as the number of agents
increases for three selected suboptimality factors. The suc-
cess rates of all algorithms tend to decrease as the number
of agents increases, as expected. The success rates of all al-
gorithms increase as the suboptimality factor increases. In
orz900d, the success rate of ITA-ECBS-v0 decreases signifi-
cantly, likely because orz900d is the largest map (1491x656)
and the low-level focal search of ITA-ECBS-v0 is slow due
to the uninformed heuristic function. Table 1 summarizes the
average success rates for various algorithms as a function of

only a few dozen if the size of the target set is larger.

their suboptimality factors, numbers of agents, and percent-
ages of shared targets. ITA-ECBS outperforms ECBS-TA in
most scenarios.

Figure 6 shows the average runtimes of different compo-
nents of three algorithms, on those test cases that they solved
within the runtime limit across different suboptimality fac-
tors. ITA-ECBS-v0 is slower than ECBS-TA in processing
each CT node, primarily due to its slower low-level focal
search. But it is faster than ECBS-TA because ITA-ECBS-v0
uses a single CT and generates fewer CT nodes. ITA-ECBS
improves on ITA-ECBS-v0 by obtaining a larger LB value
to increase the number of nodes in FOCAL, which reduces
the path search time both per CT node and the average time.
Additionally, ITA-ECBS and ITA-ECBS-v0 benefit from us-
ing the dynamic Hungarian algorithm, which is considerably
faster than the next-best target assignment algorithm used in
ECBS-TA, as their task-assignment runtimes show.

Conclusion
This work presented a new algorithm, Incremental Target
Assignment with Enhanced CBS (ITA-ECBS), designed to
solve the TAPF problem with a bounded-suboptimal flow-
time. It is the first bounded-suboptimal algorithm derived
from ITA-CBS, a leading optimal algorithm for TAPF. By
using an LB matrix to derive the TA solution, ITA-ECBS
avoids the unbounded problem, a risk present when directly
converting the CBS algorithm of ITA-CBS to its bounded-
suboptimal version ECBS. Furthermore, ITA-ECBS uses
shortest path costs as LB values, which accelerate the fo-
cal search for pathfinding. Although ITA-ECBS could be
improved further, such as by designing a good heuristic
function for its CT nodes despite different CT nodes hav-
ing different TA solutions, our experimental results demon-
strate that ITA-ECBS is significantly faster than the prior
best bounded-suboptimal TAPF algorithm ECBS-TA.
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