
12/18/2019

1

Adversarial Search
Sven Koenig, USC

Russell and Norvig, 3rd Edition, Sections 5.1-5.3

These slides are new and can contain mistakes and typos.
Please report them to Sven (skoenig@usc.edu).

Game Playing: Chess (IBM)

• 1997

[Der Spiegel]

Deep Blue vs. Garry Kasparov
3½–2½

1

2

12/18/2019

2

Game Playing: Checkers (University of Alberta)

• 2007

Game Playing: Jeopardy! (IBM)

• 2011

Watson beats champions
Brad Rutter and Ken Jennings

[Wikipedia]

3

4

12/18/2019

3

Game Playing: Poker (University of Alberta)

• 2014

[Heads-Up Limit]
Texas Hold ’em Poker Solved

Game Playing: Go (Google Deepmind)

• 2016

[Go Game Guru]

AlphaGo vs. Lee Sedol
4–1

[PC World]

5

6

12/18/2019

4

Game Playing

• Classifying games
• Chess
• Checkers
• Poker
• Bridge
• Backgammon
• Scrabble
• Go
• …

Game Playing

• Classifying games
• How many players are there? Here: 2
• Are the players competing or cooperating? Here: competing.
• Is the state completely known? Here: yes
• Is there a probabilistic element? Here: no

• We study deterministic, perfect information, 2-player, zero-sum
games, like chess or tic-tac-toe.

7

8

12/18/2019

5

Game Trees

• We are playing a game against an adversary.
• Max nodes:

We pick the move that maximizes our score.
• Min nodes:

Our adversary picks the move that minimizes
our score (i.e. maximizes their score).

• Leaf nodes (terminal game positions):
We receive the given score.

move 1
x1

move n
xn

Max node

…

move 1
x1

move n
xn

Min node

…

Leaf node

z

z

bold = move that
maximizes our score

z = min(x1,…,xn)

bold = move that
minimizes our score

z = max(x1,…,xn)

Minimax on Game Trees
We win = our adversary loses = 10
Draw = 5
We lose = our adversary wins = 0

us (we are to move)

our adversary

1 ply = 1 half move

1 ply = 1 half move

1 move

9

10

12/18/2019

6

Minimax on Game Trees
us (we are to move)

our adversary

We win = our adversary loses = 10
Draw = 5
We lose = our adversary wins = 0

1 ply = 1 half move

1 ply = 1 half move

1 move

101010

10 0

0

10

10

1010 10

Minimax on Game Trees

• Game trees can be huge and then take too long to search.
• Tic-Tac-Toe has at most 39 different legal positions.
• But chess, for example, has about

• 1040 different legal positions and
• 35100 nodes in an average game tree.

11

12

12/18/2019

7

Minimax on Game Trees
We win = our adversary loses = 10
Draw = 5
We lose = our adversary wins = 0

depth cutoff

Minimax on Game Trees

• Evaluation function
• Returns actual value for a terminal node

(e.g. value of “we win” for a terminal node where we win)
• Returns a value between “we win” and “we lose” for a non-terminal node,

• which is roughly proportional to the likelihood of us winning,
• which can be calculated quickly, and
• which is often a weighted average of values of hand-selected features with learned weights.

• Features for Tic-Tac-Toe
• control of the center
• number of our “open files” minus number of adversary’s “open files”
• …

13

14

12/18/2019

8

Minimax on Game Trees

• Evaluation functions are often too inexact for the initial positions and
endgame positions.

• In this case, one uses move libraries that simply store the best moves
for these positions.

Minimax on Game Trees

• One wants to search beyond the depth cutoff until quiescence
(i.e. until the evaluations of a node and its ancestor(s) are similar)
to avoid the horizon effect

white to move black to move

http://mediocrechess.blogspot.com/2006/12/guide-quiescent-search-and-horizon.html

15

16

12/18/2019

9

Minimax on Game Trees

• call MAX-VALUE(node = current game position);

• MAX-VALUE(node)
if node is a terminal node (or to be treated like one) then

return the value of the evaluation function for that node;
else

alpha := value of “we lose”;
for each successor n of node do
alpha := MAX(alpha, MIN-VALUE(n));

return alpha;

• MIN-VALUE(node)
if node is a terminal node (or to be treated like one) then

return the value of the evaluation function for that node;
else

beta := value of “we win”;
for each successor n of node do
beta := MIN(beta, MAX-VALUE(n));

return beta;

Implement this as a depth-first search,
including its memory-saving techniques

Alpha-Beta on Game Trees

• There are nodes in game trees whose evaluations do not matter for
determining the value of the game, i.e. the value of the root node of
the game tree.

• One does not need to determine the values of such nodes but can
“prune” them by backtracking from them immediately.

• This can save a lot of effort.
• In fact, Alpha-Beta determines the same action as Minimax and the

same value of the game but can often search a game tree twice as
deep as Minimax in the same amount of time.

17

18

12/18/2019

10

Alpha-Beta on Game Trees

MAX

Alpha-Beta on Game Trees

MAX

MIN

19

20

12/18/2019

11

Alpha-Beta on Game Trees

5

MAX

MIN

Alpha-Beta on Game Trees

5

MAX

MIN

MAX

21

22

12/18/2019

12

Alpha-Beta on Game Trees

5

4

MAX

MIN

MAX

Alpha-Beta on Game Trees

5

4

MAX

MIN

MAX

≤4

5

If this node is reached, then MIN
is a minimax value of ≤4 guaranteed
but MAX is already a minimax value
of ≥5 guaranteed and thus will make
sure that this node is not reached

23

24

12/18/2019

13

Alpha-Beta on Game Trees

5

4

MAX

MIN

MAX

There might be a large
subtree here that does

not need to be searched.

Alpha-Beta on Game Trees

3

MAX

MIN

MAX

MIN

MAX

4

1 2

5

25

26

12/18/2019

14

Alpha-Beta on Game Trees

5

4

MAX

MIN

MAX

≤4

5

If this node is reached, then MIN
is a minimax value of ≤4 guaranteed
but MAX is already a minimax value
of ≥5 guaranteed and thus will make
sure that this node is not reached

Alpha-Beta on Game Trees

5

5

MAX

MIN

MAX

≤5

5

If this node is reached, then MIN
is a minimax value of ≤5 guaranteed
but MAX is already a minimax value
of ≥5 guaranteed and thus can safely
make sure that this node is not reached
(since this node cannot have a larger
minimax value than MAX is already
guaranteed)

27

28

12/18/2019

15

Alpha-Beta on Game Trees
MAX

Alpha-Beta on Game Trees
MAX

MIN

29

30

12/18/2019

16

Alpha-Beta on Game Trees

3

MAX

MIN

Alpha-Beta on Game Trees

3

MAX

MIN

MAX

31

32

12/18/2019

17

Alpha-Beta on Game Trees

3

MAX

MIN

MAX 4

Alpha-Beta on Game Trees

3

MAX

MIN

MAX

MIN

4

33

34

12/18/2019

18

Alpha-Beta on Game Trees

3

MAX

MIN

MAX

MIN

MAX

4

Alpha-Beta on Game Trees

3

MAX

MIN

MAX

MIN

MAX

4

1

35

36

12/18/2019

19

Alpha-Beta on Game Trees

3

MAX

MIN

MAX

MIN

MAX

4

1

≤1

≥3

Alpha-Beta on Game Trees

3

MAX

MIN

MAX

MIN

MAX

4

1

37

38

12/18/2019

20

5

Alpha-Beta on Game Trees

3

MAX

MIN

MAX

MIN

MAX

4

1

Alpha-Beta on Game Trees

• call MAX-VALUE(node = current game position, alpha=value of “we lose”, beta=“value of “we win”);

• MAX-VALUE(node, alpha, beta)
if node is a terminal node (or to be treated like one) then

return the value of the evaluation function for that node;
else

for each successor n of node do
alpha := MAX(alpha, MIN-VALUE(n, alpha, beta));
if alpha ≥ beta then return alpha;

return alpha;

• MIN-VALUE(node, alpha, beta)
if node is a terminal node (or to be treated like one) then

return the value of the evaluation function for that node;
else

for each successor n of node do
beta := MIN(beta, MAX-VALUE(n, alpha, beta));
if alpha ≥ beta then return beta;

return beta;

Implement this as a depth-first search,
including its memory-saving techniques

alpha = largest minimax value MAX is guaranteed
to achieve if node “node” is reached;

beta = smallest minimax value MIN is guaranteed
to achieve if node “node” is reached;

39

40

12/18/2019

21

Alpha-Beta on Game Trees
MAX

alpha = largest minimax value MAX is guaranteed
to achieve if the node is reached;

beta = smallest minimax value MIN is guaranteed
to achieve if the node is reached;

[“we lose”,”we win”] = [0,10]

Initialize alpha-beta interval.

Alpha-Beta on Game Trees
MAX

MIN

alpha = largest minimax value MAX is guaranteed
to achieve if the node is reached;

beta = smallest minimax value MIN is guaranteed
to achieve if the node is reached;

[0,10]

[0,10]

Propagate alpha-beta interval down.

41

42

12/18/2019

22

Alpha-Beta on Game Trees

3

MAX

MIN

alpha = largest minimax value MAX is guaranteed
to achieve if the node is reached;

beta = smallest minimax value MIN is guaranteed
to achieve if the node is reached;

[0,10]
3

Evaluate node, propagate node value up.

Alpha-Beta on Game Trees

3

MAX

MIN

alpha = largest minimax value MAX is guaranteed
to achieve if the node is reached;

beta = smallest minimax value MIN is guaranteed
to achieve if the node is reached;

[3,10]
3

Increase alpha value of MAX node if possible.

43

44

12/18/2019

23

Alpha-Beta on Game Trees

3

MAX

MIN

alpha = largest minimax value MAX is guaranteed
to achieve if the node is reached;

beta = smallest minimax value MIN is guaranteed
to achieve if the node is reached;

[3,10]

[3,10]

Propagate alpha-beta interval down.

Alpha-Beta on Game Trees

3

MAX

MIN

MAX

alpha = largest minimax value MAX is guaranteed
to achieve if the node is reached;

beta = smallest minimax value MIN is guaranteed
to achieve if the node is reached;

[3,10]

[3,10]

[3,10]

Propagate alpha-beta interval down.

45

46

12/18/2019

24

Alpha-Beta on Game Trees

3

MAX

MIN

MAX 4

alpha = largest minimax value MAX is guaranteed
to achieve if the node is reached;

beta = smallest minimax value MIN is guaranteed
to achieve if the node is reached;

[3,10]

[3,10]
4

Evaluate node, propagate node value up.

Alpha-Beta on Game Trees

3

MAX

MIN

MAX 4

alpha = largest minimax value MAX is guaranteed
to achieve if the node is reached;

beta = smallest minimax value MIN is guaranteed
to achieve if the node is reached;

[3,10]

[3,4]
4

Decrease beta value of MIN node if possible.

47

48

12/18/2019

25

Alpha-Beta on Game Trees

3

MAX

MIN

MAX 4

alpha = largest minimax value MAX is guaranteed
to achieve if the node is reached;

beta = smallest minimax value MIN is guaranteed
to achieve if the node is reached;

[3,10]

[3,4]

[3,4]

Propagate alpha-beta interval down.

Alpha-Beta on Game Trees

3

MAX

MIN

MAX

MIN

4

alpha = largest minimax value MAX is guaranteed
to achieve if the node is reached;

beta = smallest minimax value MIN is guaranteed
to achieve if the node is reached;

[3,10]

[3,4]

[3,4]

[3,4]

Propagate alpha-beta interval down.

49

50

12/18/2019

26

Alpha-Beta on Game Trees

3

MAX

MIN

MAX

MIN

MAX

4

alpha = largest minimax value MAX is guaranteed
to achieve if the node is reached;

beta = smallest minimax value MIN is guaranteed
to achieve if the node is reached;

[3,10]

[3,4]

[3,4]

[3,4]

[3,4]

Propagate alpha-beta interval down.

Alpha-Beta on Game Trees

3

MAX

MIN

MAX

MIN

MAX

4

1

alpha = largest minimax value MAX is guaranteed
to achieve if the node is reached;

beta = smallest minimax value MIN is guaranteed
to achieve if the node is reached;

1

[3,10]

[3,4]

[3,4]

[3,4]

Evaluate node, propagate node value up.

51

52

12/18/2019

27

Alpha-Beta on Game Trees

3

MAX

MIN

MAX

MIN

MAX

4

1

alpha = largest minimax value MAX is guaranteed
to achieve if the node is reached;

beta = smallest minimax value MIN is guaranteed
to achieve if the node is reached;

1

[3,10]

[3,4]

[3,4]

[3,1]

Decrease beta value of MIN node if possible.

Alpha-Beta on Game Trees

3

MAX

MIN

MAX

MIN

MAX

4

1

alpha = largest minimax value MAX is guaranteed
to achieve if the node is reached;

beta = smallest minimax value MIN is guaranteed
to achieve if the node is reached;

[3,10]

[3,4]

[3,4]

[3,1]

Backtrack since the interval is empty or a point.

If this node is reached, then MIN
is a minimax value of ≤3 guaranteed
but MAX is already a minimax value
of ≥4 guaranteed and thus will make
sure that this node is not reached

53

54

12/18/2019

28

Alpha-Beta on Game Trees

3

MAX

MIN

MAX

MIN

MAX

4

1

alpha = largest minimax value MAX is guaranteed
to achieve if the node is reached;

beta = smallest minimax value MIN is guaranteed
to achieve if the node is reached;

[3,10]

[3,4]

[3,4]

[3,1]

1

Propagate beta value of MIN node up,
increase alpha value of MAX node if possible.

Alpha-Beta on Game Trees

3

MAX

MIN

MAX

MIN

MAX

4

1

alpha = largest minimax value MAX is guaranteed
to achieve if the node is reached;

beta = smallest minimax value MIN is guaranteed
to achieve if the node is reached;

[3,10]

[3,4]

[3,4]

[3,1]

Propagate alpha-beta interval down.

[3,4]

55

56

12/18/2019

29

Alpha-Beta on Game Trees

3

MAX

MIN

MAX

MIN

MAX

4

1

5

alpha = largest minimax value MAX is guaranteed
to achieve if the node is reached;

beta = smallest minimax value MIN is guaranteed
to achieve if the node is reached;

[3,10]

[3,4]

[3,4]
5

Evaluate node, propagate node value up.

Alpha-Beta on Game Trees

3

MAX

MIN

MAX

MIN

MAX

4

1

5

alpha = largest minimax value MAX is guaranteed
to achieve if the node is reached;

beta = smallest minimax value MIN is guaranteed
to achieve if the node is reached;

[3,10]

[3,4]

[5,4]
5

Increase alpha value of MAX node if possible,
backtrack since the interval is empty or a point.

57

58

12/18/2019

30

Alpha-Beta on Game Trees

3

MAX

MIN

MAX

MIN

MAX

4

1

5

alpha = largest minimax value MAX is guaranteed
to achieve if the node is reached;

beta = smallest minimax value MIN is guaranteed
to achieve if the node is reached;

[3,10]

[3,4]

[5,4]

5

Propagate alpha value of MAX node up,
decrease beta value of MIN node if possible.

Alpha-Beta on Game Trees

3

MAX

MIN

MAX

MIN

MAX

4

1

5

alpha = largest minimax value MAX is guaranteed
to achieve if the node is reached;

beta = smallest minimax value MIN is guaranteed
to achieve if the node is reached;

[3,10]

[3,4]

[5,4]

4

Propagate beta value of MIN node up.

59

60

12/18/2019

31

Alpha-Beta on Game Trees

3

MAX

MIN

MAX

MIN

MAX

4

1

5

alpha = largest minimax value MAX is guaranteed
to achieve if the node is reached;

beta = smallest minimax value MIN is guaranteed
to achieve if the node is reached;

[4,10]

[3,4]

[5,4]

4

Increase alpha value of MAX node if possible.

Alpha-Beta on Game Trees

3

MAX

MIN

MAX

MIN

MAX

4

1

5

alpha = largest minimax value MAX is guaranteed
to achieve if the node is reached;

beta = smallest minimax value MIN is guaranteed
to achieve if the node is reached;

[4,10]

[3,4]

[5,4]

4

The alpha value of the MAX node (which would
need to be propagated up) is the minimax value
of the game. (Use this as a sanity check.)

61

62

12/18/2019

32

Alpha-Beta on Game Trees

MAX

MIN

MAX

MIN 3 4 1 2 7 8 5 6 6 5 8 7 2 1 4 3

Alpha-Beta on Game Trees

3 4 1

alpha= 0 2 6
beta=10

alpha= 0
beta=10 4 2

alpha= 2
beta=10 8 6

alpha= 0 3 4
beta=10

alpha= 0 1 2
beta=4

3 14

7 8

alpha= 2 7 8
beta=10

7 8

4 2

2

8

6

6

2 5 6

alpha= 2 5 6
beta=8

5 62

6

63

64

12/18/2019

33

Alpha-Beta on Game Trees

6 5 8 2 1

alpha= 0 6
beta=10

alpha= 0
beta=10 6

alpha= 6
beta=10 6

alpha= 0 6
beta=10

alpha= 0 8
beta=6

alpha= 6
beta=10

6 8 25 1

6 8

6

6

6

6

Alpha-Beta on Game Trees

MAX

MIN

MAX

MIN 3 4 1 2 7 8 5 6 6 5 8 2 1

These two game trees are identical. Just the way the moves at the MAX and MIN nodes are ordered are different!

65

66

12/18/2019

34

Alpha-Beta on Game Trees

• For alpha-beta to prune lots of nodes, one needs to try the (likely)
strong moves (“killer moves”) first.

• At MAX nodes, try the best moves for MAX first (i.e. those that lead to
positions with large values).

• At MIN nodes, try the best moves for MIN first (i.e. those that lead to
positions with small values).

• In chess, for example, try moves at MAX and MIN nodes first that
result in the capture of pieces since these are typically strong moves
for the player who is to move at the node

67

