
12/18/2019

1

Heuristic Search
Sven Koenig, USC

Russell and Norvig, 3rd Edition, Sections 3.5-3.6

These slides are new and can contain mistakes and typos.
Please report them to Sven (skoenig@usc.edu).

Survey

• Please respond to Jiaoyang’s survey!

1

2

12/18/2019

2

Skeleton of Search Algorithms

1. Start with a tree that contains only one node,
labeled with the start state.

2. If there are no unexpanded fringe nodes, stop unsuccessfully.
3. Pick an unexpanded fringe node n. Let s(n) be the state it is labeled with.
4. If s(n) is a goal state, stop successfully

and return the path from the root node to n in the tree.
5. Expand n, that is, create a child node of n for each of the successor

states of s(n), labeled with that successor state.
6. Go to 2.

Skeleton of Search Algorithms

• The search algorithms differ only in how they select the unexpanded
fringe node.

• If no knowledge other than the current tree is available to guide the decision,
then a search algorithm is called uninformed (or blind).

• Otherwise, a search algorithm is called informed. If the knowledge consists of
estimates of the goal distances of the states, the informed search algorithm is
called heuristic. By goal distance, we mean the minimum cost of any path
(action sequence) from the start state to any goal state.

3

4

12/18/2019

3

Best-First Search (for a given priority function f)

1. Start with a tree that contains only one node,
labeled with the start state.

2. If there are no unexpanded fringe nodes, stop unsuccessfully.
3. Pick an unexpanded fringe node n with the smallest f(n).

Let s(n) be the state that it is labeled with.
4. If s(n) is a goal state, stop successfully

and return the path from the root node to n in the tree.
5. Expand n, that is, create a child node of n for each of the successor

states of s(n), labeled with that successor state.
6. Go to 2.

Greedy Best-First Search (operator cost = positive)

1. Start with a tree that contains only one node,
labeled with the start state.

2. If there are no unexpanded fringe nodes, stop unsuccessfully.
3. Pick an unexpanded fringe node n with the smallest f(n) = h(s(n)),

where s(n) is the state that node n is labeled with and h(s(n)) is an
estimate of the goal distance gd(s(n)) of s(n).

4. If s is a goal state, stop successfully
and return the path from the root node to n in the tree.

5. Expand n, that is, create a child node of n for each of the successor
states of s, labeled with that successor state.

6. Go to 2.

5

6

12/18/2019

4

Example: Greedy Best-First Search

Tree

• Optional pruning rule: do not expand a node if a node labeled with the
same state has already been expanded. Thus, we can say that states get
expanded rather than nodes.

• Optional termination rule: terminate once a node labeled with a goal state
has been generated.

A:2

B:1 C:0

1

2

State space

A:2
start state

C:0
goal state

D:6

B:1

1

2010
31

5

h-value

D:6

f-value

3 10 1

Path: A C
(non-optimal
but often finds paths with
few node expansions)

Example: Greedy Best-First Search

Tree

• Optional pruning rule: do not expand a node if a node labeled with the
same state has already been expanded. Thus, we can say that states get
expanded rather than nodes.

• Optional termination rule: terminate once a node labeled with a goal state
has been generated.

State space
A:1

B:1

C:1

D:1

E:0

F:2

2

1
1

1

1

1

start state

goal state

A:1

B:1

C:1

D:1

F:2

1
1

1

1

h-value f-value

Why is it a mistake to expand
the node labeled with D next?

7

8

12/18/2019

5

A* (operator costs = positive)

1. Start with a tree that contains only one node,
labeled with the start state.

2. If there are no unexpanded fringe nodes, stop unsuccessfully.
3. Pick an unexpanded fringe node n with the smallest f(n) = g(n) + h(s(n)),

where s(n) is the state that node n is labeled with, g(n) is the cost from
the root to n and h(s(n)) is an estimate of the goal distance gd(s(n)) of
s(n).

4. If s is a goal state, stop successfully
and return the path from the root node to n in the tree.

5. Expand n, that is, create a child node of n for each of the successor states
of s, labeled with that successor state.

6. Go to 2.

A* (operator costs = positive)

• f(n) is an estimate of the cost of a cost-minimal path from the root
node (start state) along the tree to node n and from there to any goal
state.

9

10

12/18/2019

6

Example: A* (operator cost = positive)

Tree

• Termination rule: terminate once a node labeled with a goal state has been
generated.

A:2=0+21

State space

A:2
start state

C:0
goal state

D:6

B:1

1

2010
31

5

h-value f-value = g-value + h-value

3 1

B:4=3+1 C:10=10+02 D:7=1+6
10

Path: A B C
(optimal)

A:6=4+2 C:8=8+0

B:8=7+1 C:14=14+05 D:11=5+6
10

A:10=8+2 C:12=12+0

3

1 5

3 1

1 5

4

C:21=21+0
20

6

This is the second node labeled
with C that was generated yet it
is the first such node that will be
expanded

Admissible H-Values

• The h-value (= heuristic value) of a state approximates its goal
distance. It should be close to the goal distance without going over
(i.e. “optimistic”).

• h-values are called admissible if and only if the h-value h(s) of each
state s is not larger than its goal distance gd(s):

0 ≤ h(s) ≤ gd(s) for all states s.

• We require the h-values to be admissible.
Otherwise, A* won’t be able to find minimum-cost paths.

11

12

12/18/2019

7

Example: A* (operator cost = positive)

Tree

• Termination rule: terminate once a node labeled with a goal state has been
generated.

A:2=0+21

State space

A:2
start state

C:0
goal state

D:6

B:100

1

2010
31

5

h-value f-value = g-value + h-value

3 1

B:103=3+100 C:10=10+0 D:7=1+6
10

Path: A C
(non-optimal)

2

C:21=21+0
20

3

Admissible H-Values

• Find a shortest (not: fastest) path from the USC main campus to the airport
• Straight-line-distance heuristic

• h(location) = straight-line distance from the location to the airport

13

14

12/18/2019

8

Admissible H-Values

• Find a shortest movement sequence that solves the eight-puzzle
• Tiles-out-of-order heuristic (5 for the example below)

• h(tile configuration) = the number of tiles not at their correct place

• Manhattan-distance heuristic (1+1+3+1+1=7 for the example below)
• h(tile configuration) = the sum of the x- and y-displacements of each tile from

its correct place

21 3

5 6

47 8

current configuration

31 2

64 5

7 8

goal configuration

Consistent H-Values

• H-values are called consistent if and only if they satisfy the
triangle inequality (c(s,s’) is the action cost of moving from s to s’):

h(s) = 0 for all goal states s, and
0 ≤ h(s) ≤ c(s,s’) + h(s’) for all non-goal states s and their successor states s’.

• From here on, we require the h-values to be consistent, not only
admissible, for reasons that are explained on the following slides.

s

goal state

s’

c(s,s’)
h(s’)

h(s)

15

16

12/18/2019

9

Consistent H-Values

• Admissible h-values are not necessarily consistent:

• Consistent h-values are admissible:
Proof by induction:
The statement is true for all states s with gd(s) = 0, i.e. all goal states.
Now pick any non-goal state s.
Assume that the statement is true for all states s’ with gd(s’) < gd(s).
Pick a cost-minimal path from s to any goal state.
Let s’’ be the successor state of s on that path.
Then, 0 ≤ h(s) ≤ c(s,s’’) + h(s’’) ≤ c(s,s’’) + gd(s’’) = gd(s). Qed.

A:2 B:0 C:0
goal state

1 1
h-value

Consistent H-Values

• Consider a search tree for consistent h-values

• Then, f(n) = g(n) + h(A) ≤ g(n) + c(A,B) + h(B) = g(n’) + h(B) = f(n’).
• Thus, the f-values of the children of any expanded node are no

smaller than the f-value of the expanded node itself.

node n labeled with state A

node n’ labeled with state B

f(n) = g(n) + h(A)

f(n’) = g(n’) + h(B)
with g(n’) = g(n) + c(A,B)

c(A,B)

A:h(A)

B:h(B)

17

18

12/18/2019

10

Consistent H-Values

• Assume that A* picks node n for expansion and that the set of
unexpanded fringe nodes at this point in time is OPEN. Then, the f-
values of all nodes in OPEN are no smaller than the f-value of node n
since A* always picks an unexpanded fringe node with the smallest f-
value for expansion (Property A).

• Assume that the set of children of node n after its expansion is C. The
f-values of the children of node n are no smaller than the f-value of
node n (Property B), see the previous slide.

• (Our argument continues on the next slide…)

Consistent H-Values

• After the expansion of node n, the new set of unexpanded fringe
nodes is OPEN’ := (OPEN\{n})ᴜC since node n is no longer an
unexpanded fringe node but the children of node n have become new
unexpanded fringe nodes.

• A* must pick one of the nodes in OPEN’ for the next expansion, and
the f-values of all nodes in OPEN’ are no smaller than the f-value of
node n according to (Property A) and (Property B).

• Thus, A* expands nodes in order of non-decreasing f-values. That is, a
node that A* expands later than some other node has an f-value that
is no smaller than the f-value of the other node.

19

20

12/18/2019

11

Consistent H-Values

• Now assume that A* expands a node n labeled with state s and later
another node n’ labeled with the same state s. Then,

• f(n) ≤ f(n’)
• g(n) + h(s) ≤ g(n’) + h(s)
• g(n) ≤ g(n’)

• Thus, the first node that A* expands has the smallest g-value among
all nodes labeled with the same state that A* expands. Remember
that the g-value of a node corresponds to the length of the path in
the tree from the root node to the node, that is, the length of a path
found in the state space from the start state to the state that labels
the node. A* thus does not need to expand any nodes labeled with
the same state as a node that it has already expanded!

Example: A* (operator cost = positive)

Tree

• Optional pruning rule: do not expand a node if a node labeled with the
same state has already been expanded. Thus, we can say that states get
expanded rather than nodes.

• Termination rule: terminate once a node labeled with a goal state has been
generated.

State space

A:2
start state

C:0
goal state

D:6

B:1

1

2010
31

5

h-value f-value = g-value + h-value

Path: A B C
(optimal)

A:2=0+21

3 1

B:4=3+1 C:10=10+02 D:7=1+6
10

A:6=4+2 C:8=8+0

1 5
3

C:21=21+0
20

4

21

22

12/18/2019

12

Implementation of A*

• For each state, maintain at most one node labeled with it, namely the
one with the smallest f-value so far (the node might or might not
have been expanded already).

• Maintain the unexpanded fringe nodes in a heap (often called OPEN
list) with their f-values as keys. Always choose the “top” of the heap
(a node in the heap with a smallest f-value) for expansion. Break ties
among nodes with the smallest f-value in favor of nodes with larger g-
values.

A:2=0+21

3 1

B:4=3+1 C:10=10+02 D:7=1+6
10

A:6=4+2 C:8=8+0

1 5
4

C:21=21+0
20

6

n

n’ n’’

In this case (if the optional pruning rule is used),
every node in the search tree is labeled with a
different state – and one can now talk about
“states” in the search tree instead of “nodes.”

Problem Relaxation

• Obtain a new planning problem by relaxing constraints of the actions
(e.g. by deleting preconditions of operator schemata), which can add
states and actions to the state space.

• Typically, this is done in a way so that the goal distances for the new
planning problem can be computed without search.

• Use the goal distance of a state for the new planning problem as the
h-value of the state for the original planning problem.

• The resulting h-values are consistent and thus also admissible.
• Many human-created admissible h-values can be explained as

resulting from this process. Thus, in practice, many human-created
admissible h-values are consistent!

23

24

12/18/2019

13

Problem Relaxation

• Find a shortest (not: fastest) path from the USC main campus to the airport
• Straight-line-distance heuristic

• h(location) = straight-line distance from the location to the airport
• Relaxation: one can drive on- and off-roads

Problem Relaxation

• Find a shortest movement sequence that solves the eight-puzzle
• Tiles-out-of-order heuristic (5 for the example below)

• h(tile configuration) = the number of tiles not at their correct place
• Relaxation: one can move any tile to any place in one move, even if that place

is already occupied by another tile

• Manhattan-distance heuristic (0+1+1+3+1+1=7 for the example below)
• h(tile configuration) = the sum of the x- and y-displacements of each tile from

its correct place
• Relaxation: one can move any tile from its current place to any adjacent place,

even if that place is already occupied by another tile

25

26

12/18/2019

14

Consistent H-Values

• To verify that h-values are consistent,
• either prove that the triangle inequality holds or
• show that they can result from a problem relaxation.

• To create consistent h-values,
• create admissible h-values and verify that they are consistent.

Dominating H-Values

• A* expands nodes in order of non-decreasing f-values. Let gd* be the
goal distance of the start state or, equivalently, the g-value and f-value
of the node labeled with a goal state that A* is about to expand when
it terminates. Then, A* expands

• all nodes n with f(n) < gd*, and
• no nodes n with f(n) > gd*.

27

28

12/18/2019

15

Dominating H-Values

• H-values h(s) dominate h-values h’(s)
if and only if, for all states s, h(s) ≥ h’(s).

• Consider consistent h-values h(s) and h’(s) where the h-values h(s)
dominate the h-values h’(s). Then, A* with h’(s) expands at least all
nodes n that A* with h(s) expands, except perhaps for some states n
whose f-values under both searches equal their goal distances.
Proof: Consider any state n expanded by A* with h(s). Then, g(n) +
h(s(n)) = f(n) ≤ gd*, which implies that h’(s(n)) ≤ h(s(n)) ≤ gd* – g(n).
Thus, either h’(s(n)) = h(s(n)) = gd* – g(n), i.e. f’(n) = f(n) = gd*, or
h’(s(n)) < gd* – g(n), i.e. f’(n) = g(n) + h’(s(n)) < gd* and A* with h’(s)
expands n as well. Qed.

Dominating H-Values

• Given consistent h-values h(s) and h’(s) where the h-values h(s)
dominate the h-values h’(s). Then, A* with h’(s) and A* with h(s) both
find cost-minimal paths but A* with h(s) runs at least as fast (in terms
of node expansions) as A* with h’(s), perhaps up to tie-breaking
among nodes whose f-values equal their goal distances.

• Note: This does not take into account that calculating the h-values
h(s) and h’(s) can take different amounts of time!

29

30

12/18/2019

16

Examples: Dominating H-Values

• The tiles-out-of-order h-values and the Manhattan-distance h-values
are both consistent (since they result from problem relaxations), and
the Manhattan-distance h-values dominate the tiles-out-of-order h-
values. Thus, you want to use A* with the Manhattan-distance h-
values rather than A* with the tiles-out-of-order h-values.

• Given two consistent h-values h(s) and h’(s), the h-values
max(h(s),h’(s)) are consistent and dominate both h(s) and h’(s) (prove
it yourself). Thus, you want to use A* with max(h(s),h’(s)) rather than
A* with h(s) or A* with h’(s).

Uninformed Search vs. Informed Search

Uniform cost search (A* with h(s) = 0) A*

start
state

goal
state

… start
state

goal
state…

iso f-value contours

31

32

12/18/2019

17

Uninformed Search vs. Informed Search

• Example
• Grid world in which one can move N, E, S and W with cost 1
• h(cell) = goal distance of the cell / 2

Iterative Deepening A* (operator cost = positive)

• Combine the best properties of A* and depth-first searches, which can be
necessary since A* still needs an exponential amount of memory

• Implement an A* search with a series of depth-first searches with
increasing f-value limits (that is, depth-first searches that assume that
nodes whose f-values are larger than the depth limit have no children).

1. l := h(start).
2. Perform a depth-first search with f-value limit l.
3. If a node n with f-value l and labeled with a goal state was expanded, stop

successfully and return the path from the root node to n in the tree.
4. If no node with f-value larger than l was expanded, stop unsuccessfully.
5. l := the smallest f-value of any expanded node whose f-value is larger than l.
6. Go to 2.

33

34

12/18/2019

18

Example: Iterative Deepening A* (= IDA*)

A:1
start state

B:3 C:4

D:3 E:5

F:0
goal state

1 1

12

3

A:1
start state

B:4=1+3 C:5=1+4

D:6=3+3 E:7=2+5

F:6=6+0
goal state

1 1

12

3

A:1
start state

B:4=1+3 C:5=1+4

D:6=3+3 E:7=2+5

F:6=6+0
goal state

1 1

12

3

A:1
start state

B:4=1+3 C:5=1+4

D:6=3+3 E:7=2+5

F:6=6+0
goal state

1 1

12

3

A:1
start state

B:4=1+3 C:5=1+4

D:6=3+3 E:7=2+5

F:6=6+0
goal state

1 1

12

3

l=1 l=4 l=5 l=6

State space Tree

Path: A B D F
(optimal)

depth-first search

Example: Iterative Deepening A* (= IDA*)

• The overhead of Iterative Deepening over Breadth-First Search (i.e.
the percentage of additional node expansions) is often smaller than
the overhead of Iterative Deepening A* over A*.

• The reason is that there are often more nodes with the same g-value
[= all of them get expanded for the first time during the same Depth-
First Search of Iterative Deepening] when all action costs are one than
there are nodes with the same f-value [= all of them get expanded for
the first time during the same Depth-First Search of Iterative
Deepening A*] (especially when all action costs are different).

35

36

12/18/2019

19

Heuristic Search

• Want to play around with heuristic search algorithms?
• Go here: http://aispace.org/search/

37

