
SA3 - 1 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

Greedy On-Line Planning

Sven Koenig

http://www.cc.gatech.edu/fac/Sven.Koenig/

Collaborators:

David Furcy, Yaxin Liu, Yuri Smirnov
(Additional Programming: Colin Bauer, William Halliburton)

Craig Tovey, Maxim Likhachev,

SA3 - 2 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

Greedy On-Line Planning

- abstract overview: what is greedy on-line planning?

- greedy on-line planning makes planning tractable

- greedy on-line planning is reactive to the current situation
(plus other advantages)

- fast replanning for greedy on-line planning

example: greedy localization

example: greedy mapping
example: moving a robot to goal coordinates in unknown terrain

example: greedy mapping
example: moving a robot to goal coordinates in unknown terrain

example: symbolic planning

example: replanning of shortest paths

Part 1:

Part 2:

Part 3:

heuristic search-based replanning
calculating the heuristics for heuristic search-based planning
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Nondeterministic Planning - The Problem

goal

planning in nondeterministic domains is time consuming
due to the many contingencies

goal

start
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planning in nondeterministic domains is time consuming
due to the many contingencies

Nondeterministic Planning - A Solution

start

goal

agent-centered search makes it more efficient by
interleaving planning with limited lookahead and plan execution

Agent-Centered Search[Koenig; 2001]

goal

state space can even become
deterministic

[Nourbakhsh, 1997]
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planning in nondeterministic domains is time consuming
due to the many contingencies

Nondeterministic Planning - A Solution

agent-centered search makes it more efficient by
interleaving planning with limited lookahead and plan execution

Agent-Centered Search

planning plan execution

traditional search

agent-centered search

small (bounded) planning time between plan executions (depends on search area)

small sum of planning and execution time

state space can even become
deterministic

goal
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goal

planning in nondeterministic domains is time consuming
due to the many contingencies

Nondeterministic Planning - Another Solution

start

goal

assumption-based planning makes it more efficient by
making assumptions about the outcomes of action executions

Assumption-Based Planning

desired
trajectory

actual
trajectory

state space can even become
deterministic

[Nourbakhsh, 1997]
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both agent-centered search and assumption-based planning are

Nondeterministic Planning:
Greedy On-Line Planning

greedy planning methods
because they make simplifying assumptions to make planning tractable

on-line planning methods
because they interleave planning and plan execution

Note: without additional assumptions, it is not guaranteed
that greedy on-line planning methods achieve the goal!
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Nondeterministic Planning:
Robot Navigation under Incomplete Information

robot knows the map but not its location
- localization

robot knows its location but not the map
- mapping
- goal-directed navigation in unknown terrain

Sensor-Based Planning[Choset and Burdick, 1994]



SA3 - 9 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

Part 1

Greedy On-line Planning
makes Planning Tractable
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The robot is always in exactly one cell.*
The robot has a compass on board.
The robot has no sensor or actuator uncertainty and knows the map.
The robot initially does not know where it is.

short-range sensor
discretized space

The robot always senses which of the four adjacent cells is empty.
The robot can move to one of the four adjacent empty cells.

Greedy Localization

The task of the robot is to find out where it is with a shortest
travel distance in the worst case (that is, for the worst possible
start location) or detect that this is impossible. (Example: 5 moves)

* We also have results for continuous terrain that are similar to the ones
 presented in the following for discretized terrain.
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It is in NP to determine whether there exists a valid localiza-
tion plan that executes no more movements than a given
value.

It is NP-hard to find a localization plan in gridworlds of size
 whose worst-case number of movements to localiza-

tion is within a factor  of optimum, even in
connected gridworlds in which localization is possible.

m n×
O mn( )log( )

Theorem[Tovey and Koenig, 2000]

contrast with: [Dudek, Romanik, Whitesides, 1995]

Hardness of (Approximately) Optimal Localization
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e1

e2

e3

e4

e5

S1

S2

S3

number of elements
number of sets
number of sets that form a smallest set cover

x = 5
y = 3
y* = 2

Set Cover

Theorem

It is NP-hard to find a set cover whose number of sets is
within a factor  of optimum (for sufficiently
small constants).

O x( )log( )

To prove the theorem, we reduce set cover problems to our
localization problems.

[Lund and Yannakakis, 1994]

Hardness of (Approximately) Optimal Localization
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we make the correspondinge1

e2
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S3

To localize,

horizonal corridor i cells shorter.

that correspond to a set cover.
all the horizontal corridors

the robot has to visit

Hardness of (Approximately) Optimal Localization

e0

SA3 - 14 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

and so on

x3  
re

pl
ic

at
io

ns
 fo

r 
a 

to
ta

l o
f m

 =
 3

x3 y
+

1 
ce

lls

xy cells

(W
e 

le
av

e 
ou

t s
om

e 
sm

al
l t

ec
hn

ic
al

 d
et

ai
ls

.)

n = (xy+2)(x+1) cells

st
ar

t

si
gn

at
ur

e

vertical = column

ho
riz

on
ta

l =
 r

ow

SA3 - 15 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

Consider the following localization plan: Find the closest signature (= gives the robot its
current column). Then move into all vertical corridors that correspond to a smallest set
cover (= gives the robot its current row).

The number of movements of this localization plan is at most 3y*xy.

Thus, the number of movements of an optimal localization plan is at most 3y*xy.

Thus, the number of movements of a localization plan whose worst-case number of move-
ments to localization is within a factor O(log(mn)) of optimum is at most O(log(mn))
3y*xy = O(log(x)) 3y*xy ≤ O(3x3y).

Thus, such a plan cannot leave its current east-west corridor and can only localize by mov-
ing into all corridors that correspond to a set cover. Let y’ denote the cardinality of this set
cover. Then, the number of movements is at least (2y’-1)(xy-x-1).

Thus, the number of movements is at least (2y’-1)(xy-x-1) and at most O(log(x)) 3y*xy,
implying that y’ = O(log(x)) y* and thus that the set cover is within a factor O(log(x)) of
minimum.

However, it is NP-hard to find a set cover whose number of sets is within a factor
O(log(x)) of minimum.

qed

Hardness of (Approximately) Optimal Localization
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Theorem[Tovey and Koenig, 2000]

For every gridworld of size , there exists a valid local-
ization plan that executes movements to localization
and that can be found in time .

This result is the best possible in the sense that there exist
gridworlds of size  in which every valid localization
plan must execute  movements to localization and
can only be found in time .

m n×
O mn( )

O mn( )

m n×
Ω mn( )

Ω mn( )

Cost of (Approximately) Optimal Localization
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Cost of (Approximately) Optimal Localization

qed

Map and Robot Trajectory Knowledge of the Robot

Matching the Map and Knowledge of the Robot

m cells

n 
ce

lls

start
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Cost of (Approximately) Optimal Localization
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Greedy Localization

Greedy Localization repeatedly makes the robot execute a shortest
(deterministic) movement sequence (subplan) that is guaranteed to
reduce the number of possible robot cells by at least one.

Greedy localization uses new information right away.
[Genesereth and Nourbakhsh, 1993][Koenig and Simmons, 1998]

A
B
C
D
E
F

1 2 3 4 5 6 7 8
{A1,C1,E1,B4,D4}

{A2,B5} {C2,E2,D5}

{D2,E5} {F2}

move east

move south

...

...
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Greedy Localization = Agent-Centered Search

start

goal

Greedy Localization repeatedly makes the robot execute a shortest
(deterministic) movement sequence (subplan) that is guaranteed to
reduce the number of possible robot cells by at least one.

Thus, it plans in the deterministic part of the nondeterministic state
space until a plan is found that achieves a gain in information.

Note: Assume localization is possible. The state space is safely explorable.
Greedy Localization always achieves a gain in information.

Thus, Greedy Localization localizes the robot.

goal
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Theorem

The planning and plan-execution times of Greedy Localiza-
tion are guaranteed to be low-order polynomials in the size
of the gridworld.

Cost of (Approximately) Optimal Localization
Greedy

Greedy Localization makes planning tractable.
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Random Acyclic Mazes

gridworld
size

obstacle
density

av. number
of subplans

av. number
of steps per

subplan

av. total
number of
movements

11 x 11 41.3
45.4
46.8
47.6
48.1
48.4
48.6

2.4
3.3
3.8
4.1
4.5
4.7
4.9

1.5
1.7
1.7
1.8
1.8
1.8
1.9

3.6
5.4
6.6
7.5
8.0
8.6
9.1

61 x 61

%
%
%
%
%
%
%

x
x
x
x
x
x
x

=
=
=
=
=
=
=

21 x 21
31 x 31
41 x 41
51 x 51

71 x 71

to localization to localization to localization

Cost of (Approximately) Optimal Localization
Greedy

Greedy Localization is fast in practice.

(5041 cells)
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Example for a Corridor-Like Terrain[Tovey and Koenig, 2000]

The worst-case number of movements of Greedy Localiza-
tion can be a factor  worse than the optimal worst-
case number of movements to localization in gridworlds of
size , even in connected gridworlds in which localiza-
tion is possible.

Ω mn3( )

m n×

Cost of (Approximately) Optimal Localization
Greedy

However, its plan-execution time cannot be optimal.

SA3 - 24 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

st
ar

t

an
d 

so
 o

n

qe
d

Cost of (Approximately) Optimal Localization
Greedy



SA3 - 25 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

gridworld
size

obstacle
density

av. number
of subplans

av. number
of steps per

subplan

av. total
number of
movements

11 x 25 50.2 4.5 2.3 10.2% x =
13 x 36
15 x 49
17 x 64
19 x 81
21 x 100
23 x 121
25 x 144
27 x 169
29 x 196
31 x 225
33 x 256
35 x 289

50.2
50.2
50.2
50.2
50.1
50.1
50.1
50.1
50.1
50.1
50.1
50.1

%
%
%
%
%
%
%
%
%
%
%
%

5.9
7.4
8.9

10.4
11.5
13.4
14.4
16.0
18.0
19.4
20.8
22.5

x
x
x
x
x
x
x
x
x
x
x
x

2.9
3.2
3.4
4.0
4.4
4.5
4.9
5.2
5.4
5.7
5.8
6.1

=
=

=
=
=
=
=
=
=
=
=

=

16.9
23.7
30.6
42.0
50.0
60.4
71.1
82.5
98.0

110.5
121.5
137.7

to localization to localization to localization

Our Acyclic Mazes

Cost of (Approximately) Optimal Localization
Greedy

(5684 cells)
(4563 cells)
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Example for a Room-Like Terrain*

The worst-case number of movements of Greedy Localiza-
tion can be a factor  worse than the
optimal worst-case number of movements to localization in
gridworlds of size , even in connected gridworlds in
which localization is possible.

Ω mn( ) mn( )log( )⁄( )

m n×

Cost of (Approximately) Optimal Localization
Greedy

However, its plan-execution time cannot be optimal.

* We also have even better lower bounds (although in more
complex gridworlds) and small upper bounds.

SA3 - 27 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

Cost of (Approximately) Optimal Localization
Greedy

start

qed

0 0 0 0 0 1 010 . . .
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(Approximately) Optimal Localization

planning time
plan-execution time

Greedy Localization

low-order polynomial
low-order polynomial

(likely) exponential
low-order polynomial

Cost of (Approximately) Optimal Localization
Greedy

Summary
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no sensor uncertainty, no actuator uncertainty
minimax model

Extension: Actuator and Sensor Noise

so far:

sensor uncertainty, actuator uncertainty
probabilistic model

POMDP-based (“Markov”) Localization

more realistic on robots:

Mobile robots have
- noisy actuators
- noisy sensors

sonar ring occupancy grid
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Landmark-Based Navigation Metric-Based Navigation
“sensitive to the environment” “sensitive to robot movements”

be sensitive to both the environment and the robot movements

discretize the locations, but
allow arbitrary location distributions

restrict location distributions,
but don’t discretize the locations

Kalman Filters POMDPs

maintain a probability distribution over all locations (location distribution)
+

Extension: Actuator and Sensor Noise

0.20 0.100.10 0.200.10 0.10 0.050.05

(Partially Observable Markov Decision Process Models)
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goal location

mapping from location distributions to directives (“policy”)

directive selection

policy generation

POMDP

motion generation

desired directive

motor commandsraw sonar data raw odometer data

occupancy grid [Elfes]

sensor

sensor report motion report

location estimation

current location distribution

topological map
prior actuator model

prior sensor model
prior distance model

POMDP

Navigation

Obstacle Avoidance

Real-Time Control

path planning

Destination Planner

path

model learning

interpretation

 compilation

using GROW-BW
(based on Baum-Welch)

(Bayes’ rule)
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POMDP-Based Navigation on Xavier

Xavier

Extension: Actuator and Sensor Noise

now very popular with large amount of follow-up work

operated for three years with > 200 km travel distance

[Simmons and Koenig, 1995]
[Koenig and Simmons, 1998]

[Thrun, 2000]
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- explicitly models all uncertainty using probabilities
- maintains arbitrary probability distributions over the locations

- utilizes all available sensor data (landmarks, robot movements)
- robust towards sensor errors (no explicit exception handling required)

- uniform, theoretically grounded framework for localization

POMDP-based (“Markov”) Localization

Extension: Actuator and Sensor Noise
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Extension: Actuator and Sensor Noise

no sensor uncertainty, no actuator uncertainty
minimax model

sensor uncertainty, actuator uncertainty
probabilistic model

POMDP-based (“Markov”) Localization

0.1 0.10.1

0.1 0.1

0.1 0.1 0.1

0.2

50 2020

10

(simplified)
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no sensor uncertainty, no actuator uncertainty
minimax model

sensor uncertainty, actuator uncertainty
probabilistic model

POMDP-based (“Markov”) Localization

Extension: Actuator and Sensor Noise

It is NP-hard to find an optimal homing sequence
for a colored finite state automaton.

It is NP-hard to find an optimal localization sequence
in a gridworld.

add more structure
the robot can only move north, east, south, or west

[Schapire, 1992]

It is PSPACE-hard to find an optimal policy for a POMDP.[Papadimitriou, Tsitsiklis, 1987]

?????

add more structure
the robot can only move north, east, south, or west
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Extension: Actuator and Sensor Noise

no sensor uncertainty, no actuator uncertainty
minimax model

sensor uncertainty, actuator uncertainty
probabilistic model

POMDP-based (“Markov”) Localization

Greedy Localization repeatedly makes the robot execute a shortest
(deterministic) movement sequence (subplan) that is guaranteed to
reduce the number of possible robot cells by at least one.

Greedy Localization repeatedly makes the robot execute a shortest
(deterministic) movement sequence (subplan) that is guaranteed to
reduce the entropy of the probability distribution over the possible
robot cells.

[Burgard, Fox, Thrun, 1997]
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Part 2

Greedy On-line Planning
is Reactive to the Current Situation

(plus other advantages)
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Greedy Mapping
Greedy Mapping always moves the robot on a shortest path to clos-
estunobserved(or unvisited) cell.

3

4

4 4
...

we assume here that the robot can move in eight directions

[Koenig, Tovey, Halliburton, 2001] [Thrun et al. 1998] [Romero, Morales, Sucar, 2001]
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Greedy Mapping = Agent-Centered Search

start

goal

Greedy Mapping always moves the robot on a shortest path to clos-
estunobserved(or unvisited) cell.

Thus, it plans in the deterministic part of the nondeterministic state
space until a plan is found that achieves a gain in information.

Note: Assume mapping is possible. The state space is safely explorable.
Greedy Mapping always achieves a gain in information.

Thus, Greedy Mapping maps the terrain.

goal
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4

can easily be integrated into robot architectures (“reactive planning”)

4 4

does not need to be in control of the robot at all times (“reactive planning”)

Greedy Mapping - Advantages

for example, our implementation combines greedy mapping and
schema-based navigation (MissionLab)[Mackenzie, Arkin, Cameron, 1997]

we assume here that the robot can move in eight directions
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4

utilizes prior map knowledge, if available

can be used by multiple robots that share their maps

Greedy Mapping - Advantages
we assume here that the robot can move in eight directions
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28 feet

20 feet

Greedy Mapping - Robot Implementation
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Greedy Mapping - Robot Implementation
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Greedy Mapping - Travel Distance
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Greedy Mapping - Travel Distance
we assume here that the robot can move in eight directions
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Greedy Mapping - Travel Distance
Here: Greedy Mapping always moves the robot on a shortest path to
the closestunvisited cell. This version of Greedy Mapping works
on any strongly connected undirected graph.

start

= visited (known) vertex

= unvisited known vertex

= known edge

= a shortest path to a closest unvisited vertex

1 2 3

4 5 6

7 8 9

10 11 12

= current vertex of the robot
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The worst-case number of move-
ments of Greedy Mapping is
and , where  is the number
vertices of the graph, even for
undirected planar graphs.

Ω s( )
O s2( ) s

Theorem:
Trivial Theorem

The worst-case number of move-
ments of Greedy Mapping is

 and , where  is
the number vertices of the graph,
even for undirected planar graphs.

Ω slog
sloglog

------------------s( ) O s slog( ) s

Theorem:[Koenig, Tovey, Smirnov, 2001]

More Interesting Theorem

robot
start

Here: Greedy Mapping always moves the robot on a shortest path to
the closestunvisited cell.

Greedy Mapping - Travel Distance
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order of |V|

order of
log |V|

log log |V|
lower bound for Greedy Mapping

tight bound for chronological backtracking
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|V| (logscale)

lower bound

identity function

n

3
4
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10

travel distance

207
2279

31253
515085

9928271
219130987

5448100629
150617283953

|V|

80
778

9612
144014

2542528
51744018

1193201300
30753086422

travel distance
|V|

2.59
2.93
3.25
3.58
3.90
4.23
4.57
4.90

|V|

Greedy Mapping - Travel Distance

can we use structure to
decrease the travel distance?

order of upper bound for Greedy Mapping|V|log |V|
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[Brumitt and Stentz, 1998] [Hebert, McLachlan, Chang, 1999] [Matthies et al., 2000] [Stentz and Hebert, 1995] [Thayer et al., 2000]

Planning with the Freespace Assumption
Planning with the Freespace Assumption always moves the robot
on a shortest potentially unblocked path to the goal cell.

3

4

4 4
...

we assume here that the robot can move in eight directions
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[Brumitt and Stentz, 1998] [Hebert, McLachlan, Chang, 1999] [Matthies et al., 2000] [Thayer et al., 2000]

Planning with the Freespace Assumption
Planning with the Freespace Assumption always moves the robot
on a shortest potentially unblocked path to the goal cell.

HMMWV that navigated 1,410 meters of natural outdoor terrain in 1995

- Demo Vehicles of the Darpa UGV II Program
- Mars Rover Prototype
- Prototypes of Urban Reconnaissance Robots

[Stentz and Hebert, 1995]
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Freespace Assumption = Assumption-Based Planning
Planning with the Freespace Assumption always moves the robot
on a shortest potentially unblocked path to the goal cell.

Thus, it makes assumptions about outcomes of actions that make
the nondeterministic state space deterministic.

goal

start

goal

desired
trajectory

actual
trajectory

Note: Assume moving to the goal is possible. The state space is safely explorable.
Planning with the Freespace Assumption always achieves a gain in information.

Thus, Planning with the Freespace Assumption moves to the goal.
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Freespace Assumption - Travel Distance
Here: Planning with the Freespace Assumption always moves the
robot on a shortest (potentially unblocked) path to the goal vertex.

start goal

1 2 3

4 5 6

7 8

= edge known to be unblocked

= edge assumed to be unblocked

= a shortest potentially traversable path to the goal

= edge known to be blocked

robot can
- move north
- move east
- move south
- move west
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Freespace Assumption - Travel Distance
Here: Planning with the Freespace Assumption always moves the
robot on a shortest (potentially unblocked) path to the goal vertex.

start goal

= unblocked edge / edge known to be unblocked

= blocked edge / edge known to be blocked

gridworld graph initial knowledge of graph

= edge assumed to be unblocked

start goalstart goal

robot can
- move forward
- move backward
- turn 90 degree left (or right)
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Freespace Assumption - Travel Distance

Planning with the Freespace Assumption results in small
travel distances if the freespace assumption is approxi-
mately satisfied, that is, if the obstacle density is small.

However, the travel distances are also small if the freespace
assumption is not satisfied.
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The worst-case number of movements of
Planning with the Freespace Assumption
is  and , where  is the
number vertices of the graph, even for
undirected planar graphs.

Ω slog
sloglog

------------------s( ) O s3 2⁄( ) s

Theorem:[Koenig, Tovey, Smirnov, 2001]*

* we also have even better bounds

Freespace Assumption - Travel Distance

start

goal

Here: Planning with the Freespace Assumption always moves the
robot on a shortest (potentially unblocked) path to the goal vertex.
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Part 3

Fast Replanning
for Greedy On-line Planning
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Greedy Mapping - Implementation
Greedy Mapping always moves the robot on a shortest path to the
closestunobserved(or unvisited) cell.

we assume here that the robot can move in eight directions
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Planning with the Freespace Assumption always moves the robot
on a shortest potentially unblocked path to the goal cell.

we assume here that the robot can move in eight directions
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original eight-connected gridworld

Path Planning - Example
we assume here that the robot can move in eight directions

sstart sgoal
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changed eight-connected gridworld

Path Planning - Example
we assume here that the robot can move in eight directions

sstart sgoal
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original eight-connected gridworld

Path Planning - Example
we assume here that the robot can move in eight directions
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changed eight-connected gridworld

Path Planning - Example
we assume here that the robot can move in eight directions
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heuristic incremental
searchsearch

how to search efficiently
using heuristic to guide the search

how to search efficiently
by reusing information

Path Planning - Example

from previous searches

Artificial Intelligence Algorithm Theory
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Breadth-First Search
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heuristic search

A*

Lifelong Planning A*

[Ramalingam, Reps, 1996]

[Hart, Nilsson, Raphael, 1968]

with early termination (our addition)

Path Planning - Lifelong Planning A*
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Path Planning - Experimental Evaluation
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sgoalsstart sgoalsstart
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ve = vertex expansions, va = vertex accesses, hp = heap percolates

(with the same tie-breaking as LPA*)
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changed eight-connected gridworld - second implementation
Path Planning - Experimental Evaluation
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ve = vertex expansions, hp = heap percolates

(with the same tie-breaking as LPA*)
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Path Planning - Experimental Evaluation
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heuristic search

Lifelong Planning A*

ve = vertex expansions, hp = heap percolates, t1 = time in main search routine,

(with better tie-breaking than LPA*)
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after the third replanning episode,
the total planning time of LPA* over all episodes is less than that of A*

t2= total runtime (including maze generation etc.)
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procedure CalculateKey(s)
return [min(g(s), rhs(s)) + h(s,sgoal); min(g(s), rhs(s))];
procedure Initialize()
U = Ø;
for all s∈ S rhs(s) = g(s) =∞
rhs(sstart) = 0;
U.Insert(sstart, CalculateKey(sstart)];
procedure UpdateVertex(u)
if (u ≠ sstart) rhs(u) = mins’ ∈ Pred(u)(g(s’)+c(s’,u));
if (u ∈ U) U.Remove(u);
if (g(u) ≠ rhs(u)) U.Insert(u, CalculateKey(u));

procedure ComputeShortestPath()
while (U.TopKey < CalculateKey(sgoal) OR rhs(sgoal) ≠ g(sgoal))

u = U.Pop();
if (g(u) > rhs(u))

g(u) = rhs(u);
for all s∈ Succ(u) UpdateVertex(s);

else
g(u) =∞;
for all s∈ Succ(u)∪ {u} UpdateVertex(s);

procedure Main()
Initialize();
forever

ComputeShortestPath();
Wait for changes in edge costs;
for all directed edges (u, v) with changed edge costs

Update the edge cost c(u,v);
UpdateVertex(v);

Path Planning - Lifelong Planning A*

This version of LPA* can be
optimized further without changing

We also have versions of LPA* that
- break ties differently
- work with inconsistent heuristics

its overall operation.

U.TopKey() returns the smallest priority
of all vertices in the priority queue U.
If U is empty, then U.TopKey() returns
[∞; ∞]. U.Pop() deletes the vertex with the
smallest priority in priority queue U and
returns the vertex. U.Insert(s,k) inserts
vertex s into priority queue U with
priority k. Finally, U.Remove(s) removes
vertex s from priority queue U.

The heuristics need to be nonnegative and
(forward) consistent:

for all vertices s∈ S and s’∈ Succ(s).
and h(s,sgoal) ≤ c(s,s’) + h(s’,sgoal)
h(sgoal,sgoal) = 0

- terminate earlier
- contain several runtime optimizations.

[Koenig, Likhachev, 2001]
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Lifelong Planning A*
- applies to the same finite search problems as A*

- produces the same (optimal) solution as A*
- handles arbitrary edge cost changes

- is algorithmically very similar to A*
- is more efficient than A* in many situations

- applies to
- route planning problems (traffic, networking, ...)
- robot control
- symbolic artificial intelligence planning

- has nice theoretical properties

- ...

Path Planning - Lifelong Planning A*
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Path Planning - Lifelong Planning A*
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g-value
rhs-value

g-value = rhs-value:

g-value > rhs-value:
g-value < rhs-value:

cell is locally consistent

cell is locally overconsistent
cell is locally underconsistent

the priority queue contains exactly the locally inconsistent vertices s

g-value ≠ rhs-value: cell is locally inconsistent

their priority is [min(g(s),rhs(s))+h(s,sgoal); min(g(s),rhs(s))]
smaller priorities first, according to a lexicographic ordering
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ComputeShortestPath() expands every vertex at most twice and
thus terminates.

Theorem:[Likhachev and Koenig, 2001]

Path Planning - Lifelong Planning A*

After ComputeShortestPath() terminates, one can trace back a
shortest path from the start to the goal by always moving from the
current vertex s, starting at the goal, to any predecessor s’ that min-
imizes g(s’) + c(s’,s) until the start is reached (ties can be broken
arbitrarily).

Theorem:[Likhachev and Koenig, 2001]
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In the worst case, replanning cannot be more
efficient than planning from scratch.[Nebel, Koehler, 1995]

Path Planning - Lifelong Planning A*

old search tree

new search tree

start goal

old search tree

new search tree

start goal
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ComputeShortestPath() does not expand any vertices whose g-val-
ues were equal to their respective start distances before Compute-
ShortestPath() was called.

Theorem:[Likhachev and Koenig, 2001]

Path Planning - Lifelong Planning A*

= LPA* is efficient because it uses incremental search

ComputeShortestPath() expands at most those vertices s with [f(s);
g*(s)] ≤ [f(sstart); g*(sstart)] or [gold(s)+h(s); gold(s)] ≤ [f(sstart);
g*(sstart)], where f(s) = g*(s)+h(s) and gold(s) is the g-value of s
directly before the call to ComputeShortestPath().

Theorem:[Likhachev and Koenig, 2001]

= LPA* is efficient because it uses heuristic search

SA3 - 87 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

The first search of Lifelong Planning A* is the same as that of A*.
Afterwards, Lifelong Planning A* operates in a very similar way to
A*. (The theorem makes this more concrete. For example, Com-
puteShortestPath() expands locally overconsistent vertices with
finite f-values in the same order as A*.)

“Theorem:”[Likhachev and Koenig, 2001]

Path Planning - Lifelong Planning A*
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goal

Planning with the Freespace Assumption always moves the robot
on a shortest potentially unblocked path to the goal cell.

we assume here that the robot can move in eight directions
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goal
robot

Transforming Planning with the Freespace

here: search from the goal location towards the robot location
- allows one to reuse parts of the search tree after the robot has moved
- allows one to use heuristics to focus the search

(this additional argument holds for Greedy Mapping later)

Assumption to Path Planning

sstart
sgoal

h(sstart,s) =
g(s) =

approximation of the distance from the robot to vertex s
approximation of the goal distance of vertex s
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Transforming Planning with the Freespace

here: search from the goal location towards the robot location
- makes incremental search efficient

Assumption to Path Planning

old search tree

new search tree

robot sstart goal sgoal
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procedure CalculateKey(s)
return [min(g(s), rhs(s)) + h(sstart, s); min(g(s), rhs(s))];
procedure Initialize()
U = Ø;
for all s∈ S rhs(s) = g(s) =∞
rhs(sgoal) = 0;
U.Insert(sgoal, CalculateKey(sgoal);
procedure UpdateVertex(u)
if (u ≠ sgoal) rhs(u) = mins’ ∈ Succ(u)(c(u,s’)+g(s’));
if (u ∈ U) U.Remove(u);
if (g(u) ≠ rhs(u)) U.Insert(u, CalculateKey(u));

procedure ComputeShortestPath()
while (U.TopKey < CalculateKey(sstart) OR rhs(sstart) ≠ g(sstart))

u = U.Pop();
if (g(u) > rhs(u))

g(u) = rhs(u);
for all s∈ Pred(u) UpdateVertex(s);

else
g(u) =∞;
for all s∈ Pred(u)∪ {u} UpdateVertex(s);

procedure Main()
Initialize();
ComputeShortestPath();
while (sstart≠ sgoal)

/* if (g(sstart) = ∞) then there is no known path */
sstart = arg mins’ ∈Succ(sstart) (c(sstart,s’)+g(s’))
Move to sstart;
Scan graph for changed edge costs;

Freespace Assumption - D* Lite (Basic Version)

U.TopKey() returns the smallest priority
of all vertices in the priority queue U.
If U is empty, then U.TopKey() returns
[∞; ∞]. U.Pop() deletes the vertex with the
smallest priority in priority queue U and
returns the vertex. U.Insert(s,k) inserts
vertex s into priority queue U with
priority k. Finally, U.Remove(s) removes
vertex s from priority queue U.

if any edge costs changed
for all directed edges (u,v) with changed edge costs

Update the edge cost c(u,v);
UpdateVertex(u);

for all s∈ U
U.Update(s, CalculateKey(s));

ComputeShortestPath();

The heuristics need to be nonnegative and
backward consistent

for all vertices s∈ S and s’∈ Pred(s).
and h(sstart,s)≤ h(sstart, s’)+c(s’,s)
h(sstart,sstart) = 0
no matter what the start vertex is:

[Koenig, Likhachev, 2002]

SA3 - 92 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

When the robot moves, the goal of the search (sstart) moves.
This influences the priorities of the vertices in the priority queue

(but not which vertices are in the priority queue).

vertex s is locally inconsistent iff
vertex s is in the priority queue

with priority [min(g(s),rhs(s))+h(soldstart,s); min(g(s),rhs(s))].

This value changes when the robot moves from soldstart to snewstart.
Thus, one needs to reorder the priority queue.[Stentz, 1994]

Freespace Assumption - D* Lite (Basic Version)

h(snewstart,s)

Idea
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priority queue A: [8;5]; B: [8;6]; C: [8;7]

priority queue C: [7;7]; B: [8;6]; A: [9;5]

Freespace Assumption - D* Lite (Basic Version)
Fictitious Example
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procedure CalculateKey(s)
return [min(g(s), rhs(s)) + h(sstart, s) + km; min(g(s), rhs(s))];
procedure Initialize()
U = Ø;
km = 0;
for all s∈ S rhs(s) = g(s) =∞
rhs(sgoal) = 0;
U.Insert(sgoal, CalculateKey(sgoal);
procedure UpdateVertex(u)
if (u ≠ sgoal) rhs(u) = mins’ in Succ(u)(c(u,s’)+g(s’));
if (u ∈ U) U.Remove(u);
if (g(u) ≠ rhs(u)) U.Insert(u, CalculateKey(u));

procedure ComputeShortestPath()
while (U.TopKey < CalculateKey(sstart) OR rhs(sstart) ≠ g(sstart))

kold = U.TopKey();
u = U.Pop();
if (kold < CalculateKey(u))

U.Insert(u, CalculateKey(u));
else if (g(u) > rhs(u))

g(u) = rhs(u);
for all s∈ Pred(u) UpdateVertex(s);

else
g(u) =∞;
for all s∈ Pred(u)∪ {u} UpdateVertex(s);

procedure Main()
slast = sstart;
Initialize();
ComputeShortestPath();

Freespace Assumption - D* Lite (Final Version)

while (sstart≠ sgoal)
/* if (g(sstart) = ∞) then there is no known path */
sstart = arg mins’∈Succ(sstart) (c(sstart,s’)+g(s’))
Move to sstart;
Scan graph for changed edge costs;
if any edge costs changed

km = km + h(slast,sstart);
slast = sstart;
for all directed edges (u,v) with changed edge costs

Update the edge cost c(u,v);
UpdateVertex(u);

ComputeShortestPath();

The heuristics need to be nonnegative and
forward-backward consistent:

for all vertices s,s’,s’’∈ S.
h(s,s’’) ≤ h(s,s’)+h(s’,s’’)

The heuristics also need to be admissible
no matter what the goal vertex is:
h(s,s’)≤ shortest distance from s to s’
for all vertices s,s’∈ S.

[Koenig, Likhachev, 2002]

s
s’

s’’

triangle inequality
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Freespace Assumption - D* Lite (Final Version)

Reordering the priority queue is time consuming.

vertex s is locally inconsistent iff
vertex s is in the priority queue

with priority [min(g(s),rhs(s))+h(soldstart,s); min(g(s),rhs(s))].

[Stentz, 1995]

We use lower bounds on the new priorities instead of the new priorities themselves.
[min(g(s),rhs(s))+h(soldstart,s); min(g(s),rhs(s))]

≤ [min(g(s),rhs(s))+h(soldstart,snewstart)+h(snewstart,s); min(g(s),rhs(s))]
[min(g(s),rhs(s))+h(soldstart,s)-h(soldstart,snewstart); min(g(s),rhs(s))]

≤ [min(g(s),rhs(s))+h(snewstart,s); min(g(s),rhs(s))]
The term h(soldstart,snewstart) is the same across vertices in the priority queue.
Instead of deletingit from the all vertices in the priority queue,
we addit to the vertices added to the priority queue in the future.
When ComputeShortestPath() selects a vertex for expansion,
it checks first whether its priority is correct.
If so, it expands the vertex.
If it is a lower bound, it calculates the correct priority and reinserts the vertex into the queue.

h(snewstart,s)

Idea
[Stentz, 1995]]
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Freespace Assumption - D* Lite (Final Version)

priority queue A: [8;5]; B: [8;6]; C: [8;7]
add vertex D with priority [10;5]

priority queue A: [6;5]; B: [6;6]; C: [6;7]
add vertex D with priority [10;5]

priority queue A: [8;5]; B: [8;6]; C: [8;7]
add vertex D with priority [12;5]

priority queue A: [8;5]; B: [8;6]; C: [8;7]

priority queue B: [8;6]; C: [8;7]; A: [9;5]

correct priority is A: [9;5]

correct priority is B: [8;6]

expand B

Fictitious Example



SA3 - 97 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

Freespace Assumption - D* Lite

knowledge before the movement sequence of the robot
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we assume here that the robot can move in eight directions
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Freespace Assumption - D* Lite

knowledge after the movement sequence of the robot
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we assume here that the robot can move in eight directions
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Freespace Assumption - D* Lite

uninformed search
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D* Lite (Lifelong Planning A*)

before the movement sequence of the robot
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Freespace Assumption - D* Lite

uninformed search
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after the movement sequence of the robot
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Freespace Assumption - D* Lite

A = overhead of D* Lite without incremental Search (A*)

va

ve

hp

B = overhead of D* Lite without heuristic search
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Freespace Assumption - D* Lite

overhead of Focussed D* =

va

ve

hp

[Stentz, 1995]

probably the first truly incremental heuristic search method
(note: Focussed D* is likely a bit faster than D* Lite per vertex expansion)
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Greedy Mapping - Implementation
Greedy Mapping always moves the robot on a shortest path to clos-
estunobserved(or unvisited) cell.

we assume here that the robot can move in eight directions

SA3 - 104 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

RR

new vertex

Transforming Greedy Mapping to
Planning with the Freespace Assumption

= goal vertex

RR
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knowledge before the movement sequence of the robot

Greedy Mapping - D* Lite
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knowledge after the movement sequence of the robot

Greedy Mapping - D* Lite
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uninformed search
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D* Lite (Lifelong Planning A*)

after the movement sequence of the robot
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Greedy Mapping - D* Lite

A = overhead of D* Lite without incremental Search (A*)

va

ve

hp

B = overhead of D* Lite without heuristic search
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overhead of Focussed D* =

Greedy Mapping - D* Lite

va

ve

hp

[Stentz, 1995]

probably the first truly incremental heuristic search method
(note: Focussed D* is likely a bit faster than D* Lite per vertex expansion)

SA3 - 111 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

- world changes over time

- what-if analyses
- model of the world changes over time

emergency management

planning task 1
slightly different
planning task 2

slightly different
planning task 3

...

Other Examples of Lifelong Planning

replanning (and plan reuse)  is important!
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Other Examples of Lifelong Planning

- symbolic planning  (with HSP)
- continual planning
- one-time planning

- mobile robotics
- mapping
- goal-directed navigation in unknown terrain

- computer games

- reinforcement learning and on-line dynamic programming
- control (with the Parti-Game algorithm)

- route planning
- in traffic networks
- in computer networks
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Game Playing

Total Annihilation
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- plan adaptation
- repair-based planning
- learning search control knowledge
- case-based planning

- lifelong planning

- transformational planning
- iterative repair methods in scheduling

CHEF, GORDIUS, LS-ADJUST-PLAN, MRL,
NoLimit, PLEXUS, PRIAR, SPA...

plan quality of replanning is as good as
plan quality of planning from scratch

plan quality of replanning is usually worse than
plan quality of planning from scratch

SHERPA

Symbolic Planning (with HSP) - Continual Planning
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start goal

STRIPS-type planning in the elevator domain

Operators:

• The elevator moves from floor fi to floor fj with i ≠ j.
• Person pk boards the elevator on floor fi provided that the elevator

is currently on floor fi and floor fi is the origin of person pk.
• Person pk gets off the elevator on floor fi, provided that person pk

is in the elevator, the elevator is currently on floor fi, and floor ri is
the destination of person pk.

Symbolic Planning (with HSP) - Continual Planning
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planning problem 1 planning problem 2 planning problem 3

SHERPA
Speedy HEuristic search-based RePlAnner

[S. Koenig, D. Furcy, C. Bauer, 2002]

...

...

Symbolic Planning (with HSP) - Continual Planning

note: in the following, we consider only finding shortest plans
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first search in the
elevator domain

similar to HSP 2.0

[Bonet, Geffner, 2001]

with the hmax heuristic
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Symbolic Planning (with HSP) - Continual Planning

using SHERPA
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second search in the

using SHERPA from scratch
elevator domain

similar to HSP 2.0
with the hmax heuristic
[Bonet, Geffner, 2001]
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Symbolic Planning (with HSP) - Continual Planning
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second search in the
elevator domain
using SHERPA
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Symbolic Planning (with HSP) - Continual Planning
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sa
vi

ng
s 

pe
rc

en
ta

ge
number of people

ve for elevator (5 floors)

80%

SHERPA achieves speedups up to 80 percent

planning from scratch with SHERPA

Symbolic Planning (with HSP) - Continual Planning
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old search tree

new search tree

start goal

old search tree

new search tree

start goal

Symbolic Planning (with HSP) - Continual Planning
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number of edges between the deleted edge in the plan and the goal state

sa
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ve for blocksworld

speedup
becomes negative

Symbolic Planning (with HSP) - Continual Planning
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number of deleted ground operators
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Symbolic Planning (with HSP) - Continual Planning
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planning problem 1 planning problem 2 planning problem 3

PINCH
Prioritized, INCremental Heuristics calculation

...
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tens of thousands of calculations of heuristic values for each planning problem

[Liu, Koenig, Furcy, 2002]

...

...

Symbolic Planning (with HSP) - One-Time Planning
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PINCH
Prioritized, INCremental Heuristics calculation

hadd(state) =

gstate(proposition) = 0 if proposition in state

minoperator with proposition in add list(1 + gstate(operator)) otherwise

gstate(operator) =

Σproposition in goal state gstate(proposition)

Σproposition on precondition list of operatorgstate(proposition)

{

g=0

h=3

rhs=0

g=1

h=3

rhs=1

g=1

h=2

rhs=1

order of state expansions

here: for HSP 2.0 with the hadd heuristic[Bonet, Geffner, 2001]

Symbolic Planning (with HSP) - One-Time Planning
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PINCH achieves speedups up to (another!) 80 percent.

problem size

sa
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method used by HSP 2.0 (value iteration)

generalized Bellman Ford

PINCH

80%

Symbolic Planning (with HSP) - One-Time Planning
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Reinforcement Learning and On-Line DP

while there exists at least one state with g(s) = rhs(s)
pick a state s with g(s) = rhs(s) and then set g(s) := rhs(s)

Prioritized Sweeping[Moore and Atkeson; 1993]

Minimax LPA*
- chooses the g-value of which state to update
- updates the g-value of the chosen state in a particular way

- chooses the g-value of which state to update
- updates the g-value of the chosen state in a particular way
- minimizes the expected orworst-case plan-execution cost for MDPs

- minimizes the worst-case plan-execution cost for MDPs
- uses heuristics to focus the search
- terminates immediate once a shortest path is found
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Reinforcement Learning and On-Line DP
Prioritized Sweeping[Moore and Atkeson; 1993]
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and so on, for a total of 22 g-value updates. Minimax LPA* needs only 6.
Note: Minimax LPA* expands every state at most twice.
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Control (with the Parti-Game algorithm)

state spaces of control problems are
often continuous and sometimes high-dimensional

might not be able to find a plan is very inefficient
coarse-grained discretization fine-grained discretization
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Control (with the Parti-Game algorithm)

avoids these problems
nonuniform discretization

Parti-Game algorithm [Moore and Atkeson; 1995]
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Control (with the Parti-Game algorithm)

goal

goal

goal

goal

goal

goal

goal

goal

goal

goal

here: using a deterministic state space for illustration
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A
t1

t2

t0

A

A

O1

O2

O3

Control (with the Parti-Game algorithm)

the state space is really nondeterministic
we thus use Minimax LPA* instead of LPA*
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Control (with the Parti-Game algorithm)

Implementation

Uninformed Search from Scratch
Informed Search from Scratch
Uninformed Incremental Search
Informed Incremental Search (Minimax LPA*)

Planning Time

362 minutes
135 minutes
14 minutes
13 minutes

55 seconds
15 seconds
53 seconds
53 seconds

terrains of size 2000 x 2000
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Lifelong Planning Techniques - Our Work
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