
SA3 - 1 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

Greedy On-Line Planning

Sven Koenig

http://www.cc.gatech.edu/fac/Sven.Koenig/

Collaborators:

David Furcy, Yaxin Liu, Yuri Smirnov
(Additional Programming: Colin Bauer, William Halliburton)

Craig Tovey, Maxim Likhachev,

SA3 - 2 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

Greedy On-Line Planning

- abstract overview: what is greedy on-line planning?

- greedy on-line planning makes planning tractable

- greedy on-line planning is reactive to the current situation
(plus other advantages)

- fast replanning for greedy on-line planning

example: greedy localization

example: greedy mapping
example: moving a robot to goal coordinates in unknown terrain

example: greedy mapping
example: moving a robot to goal coordinates in unknown terrain

example: symbolic planning

example: replanning of shortest paths

Part 1:

Part 2:

Part 3:

heuristic search-based replanning
calculating the heuristics for heuristic search-based planning

SA3 - 3 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

Nondeterministic Planning - The Problem

goal

planning in nondeterministic domains is time consuming
due to the many contingencies

goal

start

SA3 - 4 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

planning in nondeterministic domains is time consuming
due to the many contingencies

Nondeterministic Planning - A Solution

start

goal

agent-centered search makes it more efficient by
interleaving planning with limited lookahead and plan execution

Agent-Centered Search[Koenig; 2001]

goal

state space can even become
deterministic

[Nourbakhsh, 1997]

SA3 - 5 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

planning in nondeterministic domains is time consuming
due to the many contingencies

Nondeterministic Planning - A Solution

agent-centered search makes it more efficient by
interleaving planning with limited lookahead and plan execution

Agent-Centered Search

planning plan execution

traditional search

agent-centered search

small (bounded) planning time between plan executions (depends on search area)

small sum of planning and execution time

state space can even become
deterministic

goal

SA3 - 6 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

goal

planning in nondeterministic domains is time consuming
due to the many contingencies

Nondeterministic Planning - Another Solution

start

goal

assumption-based planning makes it more efficient by
making assumptions about the outcomes of action executions

Assumption-Based Planning

desired
trajectory

actual
trajectory

state space can even become
deterministic

[Nourbakhsh, 1997]

SA3 - 7 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

both agent-centered search and assumption-based planning are

Nondeterministic Planning:
Greedy On-Line Planning

greedy planning methods
because they make simplifying assumptions to make planning tractable

on-line planning methods
because they interleave planning and plan execution

Note: without additional assumptions, it is not guaranteed
that greedy on-line planning methods achieve the goal!

SA3 - 8 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

Nondeterministic Planning:
Robot Navigation under Incomplete Information

robot knows the map but not its location
- localization

robot knows its location but not the map
- mapping
- goal-directed navigation in unknown terrain

Sensor-Based Planning[Choset and Burdick, 1994]

SA3 - 9 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

Part 1

Greedy On-line Planning
makes Planning Tractable

SA3 - 10 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

The robot is always in exactly one cell.*
The robot has a compass on board.
The robot has no sensor or actuator uncertainty and knows the map.
The robot initially does not know where it is.

short-range sensor
discretized space

The robot always senses which of the four adjacent cells is empty.
The robot can move to one of the four adjacent empty cells.

Greedy Localization

The task of the robot is to find out where it is with a shortest
travel distance in the worst case (that is, for the worst possible
start location) or detect that this is impossible. (Example: 5 moves)

* We also have results for continuous terrain that are similar to the ones
 presented in the following for discretized terrain.

SA3 - 11 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

It is in NP to determine whether there exists a valid localiza-
tion plan that executes no more movements than a given
value.

It is NP-hard to find a localization plan in gridworlds of size
 whose worst-case number of movements to localiza-

tion is within a factor of optimum, even in
connected gridworlds in which localization is possible.

m n×
O mn()log()

Theorem[Tovey and Koenig, 2000]

contrast with: [Dudek, Romanik, Whitesides, 1995]

Hardness of (Approximately) Optimal Localization

SA3 - 12 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

e1

e2

e3

e4

e5

S1

S2

S3

number of elements
number of sets
number of sets that form a smallest set cover

x = 5
y = 3
y* = 2

Set Cover

Theorem

It is NP-hard to find a set cover whose number of sets is
within a factor of optimum (for sufficiently
small constants).

O x()log()

To prove the theorem, we reduce set cover problems to our
localization problems.

[Lund and Yannakakis, 1994]

Hardness of (Approximately) Optimal Localization

SA3 - 13 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

st
ar

t
S1

S2

S3

e0 e1 e2 e3 e4 e5

Whenever ei ∈ Sj,
we make the correspondinge1

e2

e3

e4

e5

S1

S2

S3

To localize,

horizonal corridor i cells shorter.

that correspond to a set cover.
all the horizontal corridors

the robot has to visit

Hardness of (Approximately) Optimal Localization

e0

SA3 - 14 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

and so on

x3
re

pl
ic

at
io

ns
 fo

r
a

to
ta

l o
f m

 =
 3

x3 y
+

1
ce

lls

xy cells

(W
e

le
av

e
ou

t s
om

e
sm

al
l t

ec
hn

ic
al

 d
et

ai
ls

.)

n = (xy+2)(x+1) cells

st
ar

t

si
gn

at
ur

e

vertical = column

ho
riz

on
ta

l =
 r

ow

SA3 - 15 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

Consider the following localization plan: Find the closest signature (= gives the robot its
current column). Then move into all vertical corridors that correspond to a smallest set
cover (= gives the robot its current row).

The number of movements of this localization plan is at most 3y*xy.

Thus, the number of movements of an optimal localization plan is at most 3y*xy.

Thus, the number of movements of a localization plan whose worst-case number of move-
ments to localization is within a factor O(log(mn)) of optimum is at most O(log(mn))
3y*xy = O(log(x)) 3y*xy ≤ O(3x3y).

Thus, such a plan cannot leave its current east-west corridor and can only localize by mov-
ing into all corridors that correspond to a set cover. Let y’ denote the cardinality of this set
cover. Then, the number of movements is at least (2y’-1)(xy-x-1).

Thus, the number of movements is at least (2y’-1)(xy-x-1) and at most O(log(x)) 3y*xy,
implying that y’ = O(log(x)) y* and thus that the set cover is within a factor O(log(x)) of
minimum.

However, it is NP-hard to find a set cover whose number of sets is within a factor
O(log(x)) of minimum.

qed

Hardness of (Approximately) Optimal Localization

SA3 - 16 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

Theorem[Tovey and Koenig, 2000]

For every gridworld of size , there exists a valid local-
ization plan that executes movements to localization
and that can be found in time .

This result is the best possible in the sense that there exist
gridworlds of size in which every valid localization
plan must execute movements to localization and
can only be found in time .

m n×
O mn()

O mn()

m n×
Ω mn()

Ω mn()

Cost of (Approximately) Optimal Localization

SA3 - 17 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

Cost of (Approximately) Optimal Localization

qed

Map and Robot Trajectory Knowledge of the Robot

Matching the Map and Knowledge of the Robot

m cells

n
ce

lls

start

SA3 - 18 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

Cost of (Approximately) Optimal Localization

SA3 - 19 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

Greedy Localization

Greedy Localization repeatedly makes the robot execute a shortest
(deterministic) movement sequence (subplan) that is guaranteed to
reduce the number of possible robot cells by at least one.

Greedy localization uses new information right away.
[Genesereth and Nourbakhsh, 1993][Koenig and Simmons, 1998]

A
B
C
D
E
F

1 2 3 4 5 6 7 8
{A1,C1,E1,B4,D4}

{A2,B5} {C2,E2,D5}

{D2,E5} {F2}

move east

move south

...

...

SA3 - 20 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

Greedy Localization = Agent-Centered Search

start

goal

Greedy Localization repeatedly makes the robot execute a shortest
(deterministic) movement sequence (subplan) that is guaranteed to
reduce the number of possible robot cells by at least one.

Thus, it plans in the deterministic part of the nondeterministic state
space until a plan is found that achieves a gain in information.

Note: Assume localization is possible. The state space is safely explorable.
Greedy Localization always achieves a gain in information.

Thus, Greedy Localization localizes the robot.

goal

SA3 - 21 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

Theorem

The planning and plan-execution times of Greedy Localiza-
tion are guaranteed to be low-order polynomials in the size
of the gridworld.

Cost of (Approximately) Optimal Localization
Greedy

Greedy Localization makes planning tractable.

SA3 - 22 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

Random Acyclic Mazes

gridworld
size

obstacle
density

av. number
of subplans

av. number
of steps per

subplan

av. total
number of
movements

11 x 11 41.3
45.4
46.8
47.6
48.1
48.4
48.6

2.4
3.3
3.8
4.1
4.5
4.7
4.9

1.5
1.7
1.7
1.8
1.8
1.8
1.9

3.6
5.4
6.6
7.5
8.0
8.6
9.1

61 x 61

%
%
%
%
%
%
%

x
x
x
x
x
x
x

=
=
=
=
=
=
=

21 x 21
31 x 31
41 x 41
51 x 51

71 x 71

to localization to localization to localization

Cost of (Approximately) Optimal Localization
Greedy

Greedy Localization is fast in practice.

(5041 cells)

SA3 - 23 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

Example for a Corridor-Like Terrain[Tovey and Koenig, 2000]

The worst-case number of movements of Greedy Localiza-
tion can be a factor worse than the optimal worst-
case number of movements to localization in gridworlds of
size , even in connected gridworlds in which localiza-
tion is possible.

Ω mn3()

m n×

Cost of (Approximately) Optimal Localization
Greedy

However, its plan-execution time cannot be optimal.

SA3 - 24 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

st
ar

t

an
d

so
 o

n

qe
d

Cost of (Approximately) Optimal Localization
Greedy

SA3 - 25 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

gridworld
size

obstacle
density

av. number
of subplans

av. number
of steps per

subplan

av. total
number of
movements

11 x 25 50.2 4.5 2.3 10.2% x =
13 x 36
15 x 49
17 x 64
19 x 81
21 x 100
23 x 121
25 x 144
27 x 169
29 x 196
31 x 225
33 x 256
35 x 289

50.2
50.2
50.2
50.2
50.1
50.1
50.1
50.1
50.1
50.1
50.1
50.1

%
%
%
%
%
%
%
%
%
%
%
%

5.9
7.4
8.9

10.4
11.5
13.4
14.4
16.0
18.0
19.4
20.8
22.5

x
x
x
x
x
x
x
x
x
x
x
x

2.9
3.2
3.4
4.0
4.4
4.5
4.9
5.2
5.4
5.7
5.8
6.1

=
=

=
=
=
=
=
=
=
=
=

=

16.9
23.7
30.6
42.0
50.0
60.4
71.1
82.5
98.0

110.5
121.5
137.7

to localization to localization to localization

Our Acyclic Mazes

Cost of (Approximately) Optimal Localization
Greedy

(5684 cells)
(4563 cells)

SA3 - 26 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

Example for a Room-Like Terrain*

The worst-case number of movements of Greedy Localiza-
tion can be a factor worse than the
optimal worst-case number of movements to localization in
gridworlds of size , even in connected gridworlds in
which localization is possible.

Ω mn() mn()log()⁄()

m n×

Cost of (Approximately) Optimal Localization
Greedy

However, its plan-execution time cannot be optimal.

* We also have even better lower bounds (although in more
complex gridworlds) and small upper bounds.

SA3 - 27 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

Cost of (Approximately) Optimal Localization
Greedy

start

qed

0 0 0 0 0 1 010 . . .

SA3 - 28 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

(Approximately) Optimal Localization

planning time
plan-execution time

Greedy Localization

low-order polynomial
low-order polynomial

(likely) exponential
low-order polynomial

Cost of (Approximately) Optimal Localization
Greedy

Summary

SA3 - 29 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

no sensor uncertainty, no actuator uncertainty
minimax model

Extension: Actuator and Sensor Noise

so far:

sensor uncertainty, actuator uncertainty
probabilistic model

POMDP-based (“Markov”) Localization

more realistic on robots:

Mobile robots have
- noisy actuators
- noisy sensors

sonar ring occupancy grid

SA3 - 30 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

Landmark-Based Navigation Metric-Based Navigation
“sensitive to the environment” “sensitive to robot movements”

be sensitive to both the environment and the robot movements

discretize the locations, but
allow arbitrary location distributions

restrict location distributions,
but don’t discretize the locations

Kalman Filters POMDPs

maintain a probability distribution over all locations (location distribution)
+

Extension: Actuator and Sensor Noise

0.20 0.100.10 0.200.10 0.10 0.050.05

(Partially Observable Markov Decision Process Models)

SA3 - 31 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

goal location

mapping from location distributions to directives (“policy”)

directive selection

policy generation

POMDP

motion generation

desired directive

motor commandsraw sonar data raw odometer data

occupancy grid [Elfes]

sensor

sensor report motion report

location estimation

current location distribution

topological map
prior actuator model

prior sensor model
prior distance model

POMDP

Navigation

Obstacle Avoidance

Real-Time Control

path planning

Destination Planner

path

model learning

interpretation

 compilation

using GROW-BW
(based on Baum-Welch)

(Bayes’ rule)

SA3 - 32 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

POMDP-Based Navigation on Xavier

Xavier

Extension: Actuator and Sensor Noise

now very popular with large amount of follow-up work

operated for three years with > 200 km travel distance

[Simmons and Koenig, 1995]
[Koenig and Simmons, 1998]

[Thrun, 2000]

SA3 - 33 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

- explicitly models all uncertainty using probabilities
- maintains arbitrary probability distributions over the locations

- utilizes all available sensor data (landmarks, robot movements)
- robust towards sensor errors (no explicit exception handling required)

- uniform, theoretically grounded framework for localization

POMDP-based (“Markov”) Localization

Extension: Actuator and Sensor Noise

SA3 - 34 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

Extension: Actuator and Sensor Noise

no sensor uncertainty, no actuator uncertainty
minimax model

sensor uncertainty, actuator uncertainty
probabilistic model

POMDP-based (“Markov”) Localization

0.1 0.10.1

0.1 0.1

0.1 0.1 0.1

0.2

50 2020

10

(simplified)

SA3 - 35 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

no sensor uncertainty, no actuator uncertainty
minimax model

sensor uncertainty, actuator uncertainty
probabilistic model

POMDP-based (“Markov”) Localization

Extension: Actuator and Sensor Noise

It is NP-hard to find an optimal homing sequence
for a colored finite state automaton.

It is NP-hard to find an optimal localization sequence
in a gridworld.

add more structure
the robot can only move north, east, south, or west

[Schapire, 1992]

It is PSPACE-hard to find an optimal policy for a POMDP.[Papadimitriou, Tsitsiklis, 1987]

?????

add more structure
the robot can only move north, east, south, or west

s

s

s

s

s
n

nn

n

e

e

ew

w

w

n

a

b

ab
a

b

a

a

b a
b

b

SA3 - 36 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

Extension: Actuator and Sensor Noise

no sensor uncertainty, no actuator uncertainty
minimax model

sensor uncertainty, actuator uncertainty
probabilistic model

POMDP-based (“Markov”) Localization

Greedy Localization repeatedly makes the robot execute a shortest
(deterministic) movement sequence (subplan) that is guaranteed to
reduce the number of possible robot cells by at least one.

Greedy Localization repeatedly makes the robot execute a shortest
(deterministic) movement sequence (subplan) that is guaranteed to
reduce the entropy of the probability distribution over the possible
robot cells.

[Burgard, Fox, Thrun, 1997]

SA3 - 37 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

Part 2

Greedy On-line Planning
is Reactive to the Current Situation

(plus other advantages)

SA3 - 38 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

Greedy Mapping
Greedy Mapping always moves the robot on a shortest path to clos-
estunobserved(or unvisited) cell.

3

4

4 4
...

we assume here that the robot can move in eight directions

[Koenig, Tovey, Halliburton, 2001] [Thrun et al. 1998] [Romero, Morales, Sucar, 2001]

SA3 - 39 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

Greedy Mapping = Agent-Centered Search

start

goal

Greedy Mapping always moves the robot on a shortest path to clos-
estunobserved(or unvisited) cell.

Thus, it plans in the deterministic part of the nondeterministic state
space until a plan is found that achieves a gain in information.

Note: Assume mapping is possible. The state space is safely explorable.
Greedy Mapping always achieves a gain in information.

Thus, Greedy Mapping maps the terrain.

goal

SA3 - 40 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

4

can easily be integrated into robot architectures (“reactive planning”)

4 4

does not need to be in control of the robot at all times (“reactive planning”)

Greedy Mapping - Advantages

for example, our implementation combines greedy mapping and
schema-based navigation (MissionLab)[Mackenzie, Arkin, Cameron, 1997]

we assume here that the robot can move in eight directions

SA3 - 41 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

4

utilizes prior map knowledge, if available

can be used by multiple robots that share their maps

Greedy Mapping - Advantages
we assume here that the robot can move in eight directions

SA3 - 42 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.
28 feet

20 feet

Greedy Mapping - Robot Implementation

SA3 - 43 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

Greedy Mapping - Robot Implementation

SA3 - 44 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

Greedy Mapping - Travel Distance

SA3 - 45 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

200

400

600

800

1000

1200

1400

1600

1800

Number of vertices

T
ra

ve
l d

is
ta

nc
e

Greedy Mapping - Travel Distance

number of vertices

tr
av

el
 d

is
ta

nc
e

SA3 - 46 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

Greedy Mapping - Travel Distance
we assume here that the robot can move in eight directions

SA3 - 47 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

Greedy Mapping - Travel Distance
Here: Greedy Mapping always moves the robot on a shortest path to
the closestunvisited cell. This version of Greedy Mapping works
on any strongly connected undirected graph.

start

= visited (known) vertex

= unvisited known vertex

= known edge

= a shortest path to a closest unvisited vertex

1 2 3

4 5 6

7 8 9

10 11 12

= current vertex of the robot

SA3 - 48 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

The worst-case number of move-
ments of Greedy Mapping is
and , where is the number
vertices of the graph, even for
undirected planar graphs.

Ω s()
O s2() s

Theorem:
Trivial Theorem

The worst-case number of move-
ments of Greedy Mapping is

 and , where is
the number vertices of the graph,
even for undirected planar graphs.

Ω slog
sloglog

------------------s() O s slog() s

Theorem:[Koenig, Tovey, Smirnov, 2001]

More Interesting Theorem

robot
start

Here: Greedy Mapping always moves the robot on a shortest path to
the closestunvisited cell.

Greedy Mapping - Travel Distance

SA3 - 49 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

order of |V|

order of
log |V|

log log |V|
lower bound for Greedy Mapping

tight bound for chronological backtracking

tr
av

el
 d

is
ta

nc
e

(lo
gs

ca
le

)

|V| (logscale)

lower bound

identity function

n

3
4
5
6
7
8
9

10

travel distance

207
2279

31253
515085

9928271
219130987

5448100629
150617283953

|V|

80
778

9612
144014

2542528
51744018

1193201300
30753086422

travel distance
|V|

2.59
2.93
3.25
3.58
3.90
4.23
4.57
4.90

|V|

Greedy Mapping - Travel Distance

can we use structure to
decrease the travel distance?

order of upper bound for Greedy Mapping|V|log |V|

SA3 - 50 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

[Brumitt and Stentz, 1998] [Hebert, McLachlan, Chang, 1999] [Matthies et al., 2000] [Stentz and Hebert, 1995] [Thayer et al., 2000]

Planning with the Freespace Assumption
Planning with the Freespace Assumption always moves the robot
on a shortest potentially unblocked path to the goal cell.

3

4

4 4
...

we assume here that the robot can move in eight directions

SA3 - 51 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

[Brumitt and Stentz, 1998] [Hebert, McLachlan, Chang, 1999] [Matthies et al., 2000] [Thayer et al., 2000]

Planning with the Freespace Assumption
Planning with the Freespace Assumption always moves the robot
on a shortest potentially unblocked path to the goal cell.

HMMWV that navigated 1,410 meters of natural outdoor terrain in 1995

- Demo Vehicles of the Darpa UGV II Program
- Mars Rover Prototype
- Prototypes of Urban Reconnaissance Robots

[Stentz and Hebert, 1995]

SA3 - 52 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

Freespace Assumption = Assumption-Based Planning
Planning with the Freespace Assumption always moves the robot
on a shortest potentially unblocked path to the goal cell.

Thus, it makes assumptions about outcomes of actions that make
the nondeterministic state space deterministic.

goal

start

goal

desired
trajectory

actual
trajectory

Note: Assume moving to the goal is possible. The state space is safely explorable.
Planning with the Freespace Assumption always achieves a gain in information.

Thus, Planning with the Freespace Assumption moves to the goal.

SA3 - 53 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

Freespace Assumption - Travel Distance
Here: Planning with the Freespace Assumption always moves the
robot on a shortest (potentially unblocked) path to the goal vertex.

start goal

1 2 3

4 5 6

7 8

= edge known to be unblocked

= edge assumed to be unblocked

= a shortest potentially traversable path to the goal

= edge known to be blocked

robot can
- move north
- move east
- move south
- move west

SA3 - 54 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

Freespace Assumption - Travel Distance
Here: Planning with the Freespace Assumption always moves the
robot on a shortest (potentially unblocked) path to the goal vertex.

start goal

= unblocked edge / edge known to be unblocked

= blocked edge / edge known to be blocked

gridworld graph initial knowledge of graph

= edge assumed to be unblocked

start goalstart goal

robot can
- move forward
- move backward
- turn 90 degree left (or right)

SA3 - 55 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

Freespace Assumption - Travel Distance

Planning with the Freespace Assumption results in small
travel distances if the freespace assumption is approxi-
mately satisfied, that is, if the obstacle density is small.

However, the travel distances are also small if the freespace
assumption is not satisfied.

SA3 - 56 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

50

100

150

200

250

300

350

400

Number of vertices

T
ra

ve
l d

is
ta

nc
e

Freespace Assumption - Travel Distance

number of vertices

tr
av

el
 d

is
ta

nc
e

SA3 - 57 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

The worst-case number of movements of
Planning with the Freespace Assumption
is and , where is the
number vertices of the graph, even for
undirected planar graphs.

Ω slog
sloglog

------------------s() O s3 2⁄() s

Theorem:[Koenig, Tovey, Smirnov, 2001]*

* we also have even better bounds

Freespace Assumption - Travel Distance

start

goal

Here: Planning with the Freespace Assumption always moves the
robot on a shortest (potentially unblocked) path to the goal vertex.

SA3 - 58 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

Part 3

Fast Replanning
for Greedy On-line Planning

SA3 - 59 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

3

4

4 4
...

1 1
1
11

2
1 1 1

1
2
2

2
3

1 1 1

33
2 2

1 1 1
2 2
3 3 3

1
1

2
2
2

3
3
3

33 3

3

Greedy Mapping - Implementation
Greedy Mapping always moves the robot on a shortest path to the
closestunobserved(or unvisited) cell.

we assume here that the robot can move in eight directions

SA3 - 60 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

3
2
1
01

1
2
3

2
2
2
3

3
3
3
345

3

4

4 4
...

5 4
4
45

5

Freespace Assumption - Implementation

3
2
1
01

1
2
3

2
2
2
3

5
3
3
345

5 4
4
55

5

3
2
1
01

1
2
3

2
2
2
3

3
3
3
345

5 4
4
45

5

3
2
1
01

1
2
3

2
2
2
3

5
3
3
345

5 4
4
55

5

3
2
1
01

1
2
3

2
2
2
3

5
3
3
345

5 4
4
55

5

goal

Planning with the Freespace Assumption always moves the robot
on a shortest potentially unblocked path to the goal cell.

we assume here that the robot can move in eight directions

SA3 - 61 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

original eight-connected gridworld

Path Planning - Example
we assume here that the robot can move in eight directions

sstart sgoal

SA3 - 62 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

changed eight-connected gridworld

Path Planning - Example
we assume here that the robot can move in eight directions

sstart sgoal

SA3 - 63 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

original eight-connected gridworld

Path Planning - Example
we assume here that the robot can move in eight directions

12
2
3

3
4

6

4
5

5
6

5

7 6

5
6

6 6
6 6

8 8

7 7 7
6 7

7
8

14159

8

12 11 10 10

7 866
7
88

9

8
9
9

11111112
1212

9

10
10
10
10

1818

11
11

10

12

14

14

14
13

12 14

14
14

15

15
15
16
16
15
15

16

17

16

15
16 17
16

1817
18

18

1 2
3 4

5 6 7
10
10 11

8

3 5 7
14

sstart sgoal12
8

55

7
7

8

3

3
3

4

6
6 6

7
777

9

7

3

4

4

5

5

9

5

5 5
6

6

6

6

7
8 9

8
9

8 9

9

12

12

11
11

11

9
9

10

1313
13
13

12 13
13
14

13
15
16

16
16

16

17
17

11

13

13

18

16

16

SA3 - 64 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

changed eight-connected gridworld

Path Planning - Example
we assume here that the robot can move in eight directions

12
2
3

4

8

4
5

9
9

10

7 6

5
6

6 6
6 6 6

10 9

7 7 7
6 7

7
9

141510

8

12 11 10 10

7 866
7
88

9

8
9
9

11111112
1212

10

10
10
10
10

1919

11
11

10

12

15

15

14
13

12 14

14
14

16

16
16
17
16
15
15

17

17

17

16
17 18
17
17
1818

19
18

1 2
3 4

5 6 7
11
12 12

8

3 5 7
15

sstart 13
8

55

7
7

8

3

3
3

10

10
8 6

7
889

10

7

3

4

4

5

5

9

5

5 5
6

6

6

6

9 9

8
9

8

10

12

12

11
11

11

9
9

10

1313
13
13

13 14
14
15

14
16
17

17
16

16

18
18

11

13

13

18

16

17

13

sgoal

SA3 - 65 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

heuristic incremental
searchsearch

how to search efficiently
using heuristic to guide the search

how to search efficiently
by reusing information

Path Planning - Example

from previous searches

Artificial Intelligence Algorithm Theory

SA3 - 66 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

uninformed search

Breadth-First Search

DynamicSWSF-FP

co
m

pl
et

e
se

ar
ch

in
cr

em
en

ta
l s

ea
rc

h

heuristic search

A*

Lifelong Planning A*

[Ramalingam, Reps, 1996]

[Hart, Nilsson, Raphael, 1968]

with early termination (our addition)

Path Planning - Lifelong Planning A*

SA3 - 67 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

uninformed search

co
m

pl
et

e
se

ar
ch

heuristic search

Lifelong Planning A*

original eight-connected gridworld
Path Planning - Experimental Evaluation

in
cr

em
en

ta
l s

ea
rc

h

sgoalsstartsgoalsstart

sgoalsstart sgoalsstart

SA3 - 68 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

uninformed search

co
m

pl
et

e
se

ar
ch

heuristic search

Lifelong Planning A*

changed eight-connected gridworld
Path Planning - Experimental Evaluation

in
cr

em
en

ta
l s

ea
rc

h
sstart

sstart

sstart sgoal

sgoal

sstart sgoal

sgoal

SA3 - 69 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

ve =
va =
hp =

ve =
va =
hp =

ve=
va=
hp=

ve=
va=
hp=

1331.7
26207.2
5985.3

173.0
5697.4
956.2

284.0
6177.3
1697.3

25.6
1235.9
240.1

+/-
+/-
+/-

+/-
+/-
+/-

+/-
+/-
+/-

4.4
84.0
19.7

4.9
167.0
26.6

+/-
+/-
+/-

5.9
129.3
39.9

2.0
75.0
16.9

uninformed search

co
m

pl
et

e
se

ar
ch

heuristic search

Lifelong Planning A*

changed eight-connected gridworld - first implementation
Path Planning - Experimental Evaluation

in
cr

em
en

ta
l s

ea
rc

h

ve = vertex expansions, va = vertex accesses, hp = heap percolates

(with the same tie-breaking as LPA*)

SA3 - 70 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

ve =

hp =

ve =

hp =

ve=

hp=

ve=

hp=

801.76

2359.60

115.95

561.48

172.20

724.60

18.80

182.15

uninformed search

co
m

pl
et

e
se

ar
ch

heuristic search

Lifelong Planning A*

changed eight-connected gridworld - second implementation
Path Planning - Experimental Evaluation

in
cr

em
en

ta
l s

ea
rc

h

ve = vertex expansions, hp = heap percolates

(with the same tie-breaking as LPA*)

SA3 - 71 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

Path Planning - Experimental Evaluation

ve=
hp=
t1=

ve=
hp=
t1=

68.17
547.72
13.62

18.80
182.15

6.66

heuristic search

Lifelong Planning A*

ve = vertex expansions, hp = heap percolates, t1 = time in main search routine,

(with better tie-breaking than LPA*)

t2= 18.61

t2= 13.22

tie
-b

re
ak

in
g

m
at

te
rs

A
*

ex
pa

nd
s

no
de

s
fa

st
er

 th
an

LP
A

*

tim
e

sp
ee

du
p

=
x1

.5
 in

 th
e

lo
ng

 r
un

after the third replanning episode,
the total planning time of LPA* over all episodes is less than that of A*

t2= total runtime (including maze generation etc.)

SA3 - 72 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

procedure CalculateKey(s)
return [min(g(s), rhs(s)) + h(s,sgoal); min(g(s), rhs(s))];
procedure Initialize()
U = Ø;
for all s∈ S rhs(s) = g(s) =∞
rhs(sstart) = 0;
U.Insert(sstart, CalculateKey(sstart)];
procedure UpdateVertex(u)
if (u ≠ sstart) rhs(u) = mins’ ∈ Pred(u)(g(s’)+c(s’,u));
if (u ∈ U) U.Remove(u);
if (g(u) ≠ rhs(u)) U.Insert(u, CalculateKey(u));

procedure ComputeShortestPath()
while (U.TopKey < CalculateKey(sgoal) OR rhs(sgoal) ≠ g(sgoal))

u = U.Pop();
if (g(u) > rhs(u))

g(u) = rhs(u);
for all s∈ Succ(u) UpdateVertex(s);

else
g(u) =∞;
for all s∈ Succ(u)∪ {u} UpdateVertex(s);

procedure Main()
Initialize();
forever

ComputeShortestPath();
Wait for changes in edge costs;
for all directed edges (u, v) with changed edge costs

Update the edge cost c(u,v);
UpdateVertex(v);

Path Planning - Lifelong Planning A*

This version of LPA* can be
optimized further without changing

We also have versions of LPA* that
- break ties differently
- work with inconsistent heuristics

its overall operation.

U.TopKey() returns the smallest priority
of all vertices in the priority queue U.
If U is empty, then U.TopKey() returns
[∞; ∞]. U.Pop() deletes the vertex with the
smallest priority in priority queue U and
returns the vertex. U.Insert(s,k) inserts
vertex s into priority queue U with
priority k. Finally, U.Remove(s) removes
vertex s from priority queue U.

The heuristics need to be nonnegative and
(forward) consistent:

for all vertices s∈ S and s’∈ Succ(s).
and h(s,sgoal) ≤ c(s,s’) + h(s’,sgoal)
h(sgoal,sgoal) = 0

- terminate earlier
- contain several runtime optimizations.

[Koenig, Likhachev, 2001]

SA3 - 73 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

Lifelong Planning A*
- applies to the same finite search problems as A*

- produces the same (optimal) solution as A*
- handles arbitrary edge cost changes

- is algorithmically very similar to A*
- is more efficient than A* in many situations

- applies to
- route planning problems (traffic, networking, ...)
- robot control
- symbolic artificial intelligence planning

- has nice theoretical properties

- ...

Path Planning - Lifelong Planning A*

SA3 - 74 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

start
0 11

1

22

2

3 3

4 4

35 54 4

goal

Path Planning - Lifelong Planning A*

3

4

5

6

A

B

C

D

1 2 4 5 6

SA3 - 75 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

2

3

4

Path Planning - Lifelong Planning A*

3

4

5

3+1

5+1

minimum 4

A

B

C

...

...

...

g-value
rhs-value

g-value = rhs-value:

g-value > rhs-value:
g-value < rhs-value:

cell is locally consistent

cell is locally overconsistent
cell is locally underconsistent

the priority queue contains exactly the locally inconsistent vertices s

g-value ≠ rhs-value: cell is locally inconsistent

their priority is [min(g(s),rhs(s))+h(s,sgoal); min(g(s),rhs(s))]
smaller priorities first, according to a lexicographic ordering

SA3 - 76 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

start
0 11

1

22

2

3 3

4 4

35 54 4

goal

Path Planning - Lifelong Planning A*

3

4

5

6

A

B

C

D

1 2 4 5 6

SA3 - 77 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

start
0 11

1

22

2

3 3

4 4

35 54 4

goal

Path Planning - Lifelong Planning A*

3

4

5

6
min(2,4)+2
min(2,4)

A

B

C

D

1 2 4 5 6

priority queue
C3: [4;2]

SA3 - 78 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

start
0 11

1

22

∞
3 3

4 4

35 54 4

goal

Path Planning - Lifelong Planning A*

3

4

5

6
min(∞,4)+2
min(∞,4)

min(3,5)+1
min(3,5)

A

B

C

D

1 2 4 5 6

priority queue
D3: [4;3]; C3: [6;4]

SA3 - 79 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

start
0 11

1

22

∞
3 3

4 4

∞5 54 4

goal

Path Planning - Lifelong Planning A*

3

4

5

6
min(∞,5)+1
min(∞,5)

min(4,6)+0
min(4,6)

4
min(4,6)+2
min(4,6)

A

B

C

D

1 2 4 5 6

priority queue
D2: [4;4]; D4: [6;4]; D3: [6;5]

SA3 - 80 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

start
0 11

1

22

∞
3 3

4 4

∞5 5∞ 4

goal

Path Planning - Lifelong Planning A*

3

4

5

6
min(∞,5)+1
min(∞,5)

min(∞,6)+0
min(∞,6)

min(4,6)+2
min(4,6)

A

B

C

D

1 2 4 5 6

priority queue
D4: [6;4]; D3: [6;5]; D2: [6;6]

SA3 - 81 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

start
0 11

1

22

∞
3 3

4 4

∞5 5∞ ∞
goal

Path Planning - Lifelong Planning A*

3

4

5

6
min(∞,6)+0
min(∞,6)

min(∞,6)+2
min(∞,6)

min(5,7)+3
min(5,7)

A

B

C

D

1 2 4 5 6

priority queue
D2: [6;6]; D5: [8;5]; D4: [8;6]

SA3 - 82 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

start
0 11

1

22

∞
3 3

4 4

∞5 56 ∞
goal

Path Planning - Lifelong Planning A*

3

4

5

6
min(∞,6)+2
min(∞,6)

min(5,7)+3
min(5,7)

min(∞,7)+1
min(∞,7)

A

B

C

D

1 2 4 5 6

priority queue
D5: [8;5]; D4: [8;6]; D3: [8;7]

SA3 - 83 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

start
0 11

1

22

∞
3 3

4 4

∞5 56 ∞
goal

Path Planning - Lifelong Planning A*

3

4

5

6
min(∞,6)+2
min(∞,6)

min(5,7)+3
min(5,7)

min(∞,7)+1
min(∞,7)

A

B

C

D

1 2 4 5 6

priority queue
D5: [8;5]; D4: [8;6]; D3: [8;7]

SA3 - 84 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

ComputeShortestPath() expands every vertex at most twice and
thus terminates.

Theorem:[Likhachev and Koenig, 2001]

Path Planning - Lifelong Planning A*

After ComputeShortestPath() terminates, one can trace back a
shortest path from the start to the goal by always moving from the
current vertex s, starting at the goal, to any predecessor s’ that min-
imizes g(s’) + c(s’,s) until the start is reached (ties can be broken
arbitrarily).

Theorem:[Likhachev and Koenig, 2001]

SA3 - 85 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

In the worst case, replanning cannot be more
efficient than planning from scratch.[Nebel, Koehler, 1995]

Path Planning - Lifelong Planning A*

old search tree

new search tree

start goal

old search tree

new search tree

start goal

SA3 - 86 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

ComputeShortestPath() does not expand any vertices whose g-val-
ues were equal to their respective start distances before Compute-
ShortestPath() was called.

Theorem:[Likhachev and Koenig, 2001]

Path Planning - Lifelong Planning A*

= LPA* is efficient because it uses incremental search

ComputeShortestPath() expands at most those vertices s with [f(s);
g*(s)] ≤ [f(sstart); g*(sstart)] or [gold(s)+h(s); gold(s)] ≤ [f(sstart);
g*(sstart)], where f(s) = g*(s)+h(s) and gold(s) is the g-value of s
directly before the call to ComputeShortestPath().

Theorem:[Likhachev and Koenig, 2001]

= LPA* is efficient because it uses heuristic search

SA3 - 87 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

The first search of Lifelong Planning A* is the same as that of A*.
Afterwards, Lifelong Planning A* operates in a very similar way to
A*. (The theorem makes this more concrete. For example, Com-
puteShortestPath() expands locally overconsistent vertices with
finite f-values in the same order as A*.)

“Theorem:”[Likhachev and Koenig, 2001]

Path Planning - Lifelong Planning A*

SA3 - 88 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

3
2
1
01

1
2
3

2
2
2
3

3
3
3
345

3

4

4 4
...

5 4
4
45

5

Freespace Assumption - Implementation

3
2
1
01

1
2
3

2
2
2
3

5
3
3
345

5 4
4
55

5

3
2
1
01

1
2
3

2
2
2
3

3
3
3
345

5 4
4
45

5

3
2
1
01

1
2
3

2
2
2
3

5
3
3
345

5 4
4
55

5

3
2
1
01

1
2
3

2
2
2
3

5
3
3
345

5 4
4
55

5

goal

Planning with the Freespace Assumption always moves the robot
on a shortest potentially unblocked path to the goal cell.

we assume here that the robot can move in eight directions

SA3 - 89 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

goal
robot

Transforming Planning with the Freespace

here: search from the goal location towards the robot location
- allows one to reuse parts of the search tree after the robot has moved
- allows one to use heuristics to focus the search

(this additional argument holds for Greedy Mapping later)

Assumption to Path Planning

sstart
sgoal

h(sstart,s) =
g(s) =

approximation of the distance from the robot to vertex s
approximation of the goal distance of vertex s

SA3 - 90 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

Transforming Planning with the Freespace

here: search from the goal location towards the robot location
- makes incremental search efficient

Assumption to Path Planning

old search tree

new search tree

robot sstart goal sgoal

SA3 - 91 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

procedure CalculateKey(s)
return [min(g(s), rhs(s)) + h(sstart, s); min(g(s), rhs(s))];
procedure Initialize()
U = Ø;
for all s∈ S rhs(s) = g(s) =∞
rhs(sgoal) = 0;
U.Insert(sgoal, CalculateKey(sgoal);
procedure UpdateVertex(u)
if (u ≠ sgoal) rhs(u) = mins’ ∈ Succ(u)(c(u,s’)+g(s’));
if (u ∈ U) U.Remove(u);
if (g(u) ≠ rhs(u)) U.Insert(u, CalculateKey(u));

procedure ComputeShortestPath()
while (U.TopKey < CalculateKey(sstart) OR rhs(sstart) ≠ g(sstart))

u = U.Pop();
if (g(u) > rhs(u))

g(u) = rhs(u);
for all s∈ Pred(u) UpdateVertex(s);

else
g(u) =∞;
for all s∈ Pred(u)∪ {u} UpdateVertex(s);

procedure Main()
Initialize();
ComputeShortestPath();
while (sstart≠ sgoal)

/* if (g(sstart) = ∞) then there is no known path */
sstart = arg mins’ ∈Succ(sstart) (c(sstart,s’)+g(s’))
Move to sstart;
Scan graph for changed edge costs;

Freespace Assumption - D* Lite (Basic Version)

U.TopKey() returns the smallest priority
of all vertices in the priority queue U.
If U is empty, then U.TopKey() returns
[∞; ∞]. U.Pop() deletes the vertex with the
smallest priority in priority queue U and
returns the vertex. U.Insert(s,k) inserts
vertex s into priority queue U with
priority k. Finally, U.Remove(s) removes
vertex s from priority queue U.

if any edge costs changed
for all directed edges (u,v) with changed edge costs

Update the edge cost c(u,v);
UpdateVertex(u);

for all s∈ U
U.Update(s, CalculateKey(s));

ComputeShortestPath();

The heuristics need to be nonnegative and
backward consistent

for all vertices s∈ S and s’∈ Pred(s).
and h(sstart,s)≤ h(sstart, s’)+c(s’,s)
h(sstart,sstart) = 0
no matter what the start vertex is:

[Koenig, Likhachev, 2002]

SA3 - 92 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

When the robot moves, the goal of the search (sstart) moves.
This influences the priorities of the vertices in the priority queue

(but not which vertices are in the priority queue).

vertex s is locally inconsistent iff
vertex s is in the priority queue

with priority [min(g(s),rhs(s))+h(soldstart,s); min(g(s),rhs(s))].

This value changes when the robot moves from soldstart to snewstart.
Thus, one needs to reorder the priority queue.[Stentz, 1994]

Freespace Assumption - D* Lite (Basic Version)

h(snewstart,s)

Idea

SA3 - 93 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

priority queue A: [8;5]; B: [8;6]; C: [8;7]

priority queue C: [7;7]; B: [8;6]; A: [9;5]

Freespace Assumption - D* Lite (Basic Version)
Fictitious Example

SA3 - 94 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

procedure CalculateKey(s)
return [min(g(s), rhs(s)) + h(sstart, s) + km; min(g(s), rhs(s))];
procedure Initialize()
U = Ø;
km = 0;
for all s∈ S rhs(s) = g(s) =∞
rhs(sgoal) = 0;
U.Insert(sgoal, CalculateKey(sgoal);
procedure UpdateVertex(u)
if (u ≠ sgoal) rhs(u) = mins’ in Succ(u)(c(u,s’)+g(s’));
if (u ∈ U) U.Remove(u);
if (g(u) ≠ rhs(u)) U.Insert(u, CalculateKey(u));

procedure ComputeShortestPath()
while (U.TopKey < CalculateKey(sstart) OR rhs(sstart) ≠ g(sstart))

kold = U.TopKey();
u = U.Pop();
if (kold < CalculateKey(u))

U.Insert(u, CalculateKey(u));
else if (g(u) > rhs(u))

g(u) = rhs(u);
for all s∈ Pred(u) UpdateVertex(s);

else
g(u) =∞;
for all s∈ Pred(u)∪ {u} UpdateVertex(s);

procedure Main()
slast = sstart;
Initialize();
ComputeShortestPath();

Freespace Assumption - D* Lite (Final Version)

while (sstart≠ sgoal)
/* if (g(sstart) = ∞) then there is no known path */
sstart = arg mins’∈Succ(sstart) (c(sstart,s’)+g(s’))
Move to sstart;
Scan graph for changed edge costs;
if any edge costs changed

km = km + h(slast,sstart);
slast = sstart;
for all directed edges (u,v) with changed edge costs

Update the edge cost c(u,v);
UpdateVertex(u);

ComputeShortestPath();

The heuristics need to be nonnegative and
forward-backward consistent:

for all vertices s,s’,s’’∈ S.
h(s,s’’) ≤ h(s,s’)+h(s’,s’’)

The heuristics also need to be admissible
no matter what the goal vertex is:
h(s,s’)≤ shortest distance from s to s’
for all vertices s,s’∈ S.

[Koenig, Likhachev, 2002]

s
s’

s’’

triangle inequality

SA3 - 95 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

Freespace Assumption - D* Lite (Final Version)

Reordering the priority queue is time consuming.

vertex s is locally inconsistent iff
vertex s is in the priority queue

with priority [min(g(s),rhs(s))+h(soldstart,s); min(g(s),rhs(s))].

[Stentz, 1995]

We use lower bounds on the new priorities instead of the new priorities themselves.
[min(g(s),rhs(s))+h(soldstart,s); min(g(s),rhs(s))]

≤ [min(g(s),rhs(s))+h(soldstart,snewstart)+h(snewstart,s); min(g(s),rhs(s))]
[min(g(s),rhs(s))+h(soldstart,s)-h(soldstart,snewstart); min(g(s),rhs(s))]

≤ [min(g(s),rhs(s))+h(snewstart,s); min(g(s),rhs(s))]
The term h(soldstart,snewstart) is the same across vertices in the priority queue.
Instead of deletingit from the all vertices in the priority queue,
we addit to the vertices added to the priority queue in the future.
When ComputeShortestPath() selects a vertex for expansion,
it checks first whether its priority is correct.
If so, it expands the vertex.
If it is a lower bound, it calculates the correct priority and reinserts the vertex into the queue.

h(snewstart,s)

Idea
[Stentz, 1995]]

SA3 - 96 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

Freespace Assumption - D* Lite (Final Version)

priority queue A: [8;5]; B: [8;6]; C: [8;7]
add vertex D with priority [10;5]

priority queue A: [6;5]; B: [6;6]; C: [6;7]
add vertex D with priority [10;5]

priority queue A: [8;5]; B: [8;6]; C: [8;7]
add vertex D with priority [12;5]

priority queue A: [8;5]; B: [8;6]; C: [8;7]

priority queue B: [8;6]; C: [8;7]; A: [9;5]

correct priority is A: [9;5]

correct priority is B: [8;6]

expand B

Fictitious Example

SA3 - 97 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

Freespace Assumption - D* Lite

knowledge before the movement sequence of the robot

2
3

2
2

3

6

3

5

77
6

5
6

5

8

12
7

12
13
13
13
78

14

14
8
14
14

12
12
12

1314
13
13
13

12
14

14

18

14

14

14
14

14

13

13
13

12

12
12

4

6

4

3
3
3

3
3
4
5

3

2

4

8

2
1
1
2

3

5

7
6

5
6

4
3

2

4

8

1

3

6

7
6

6
6

6
6

6

8

1

13
12

9
9

9
9

9
9

6

12
12

13

14sstart

7
7
7

3

7

7
7

7
7

7
7

7

7

8

1
9
9

16

11

13
12

10

10
10
10

10

11

7
12

10
10

10
10

10

10

14

4
11
11
11

11

11

7
12

11
11

11
11

11

11

15

5

6
1
2

3

5

7
6

5
6

4
3

2

4

8

1
1
1
2

3

5

7
6

5
6

4
3

2

4

8

1
2
2
2

3

5

7
6

5
6

4
3

2

4

8

2
3
3
3

3

5

7
6

5
6

4
3

3

4

8

3
4
4
4

4

5

7
6

5
6

4
4

4

4

8

4
5
5
5

5

5

7
6

5
6

5
5

5

5

8

5

6
8
8
8

3

5

7
6

8
8

8
8

8

4

8

2
9
9

sgoal

6

we assume here that the robot can move in eight directions

SA3 - 98 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

Freespace Assumption - D* Lite

knowledge after the movement sequence of the robot

2
3

2
2

3

6

3

5

77
6

5
6

5

819

15
7

14
14
14
15
7
20

8

15

15
8
14
14

12
12
12

1314
13
13
13

12
14

14

21

14

14

15
15

15

13

13
13

12

12
12

4

6

4

3
3
3

3
3
4
5

3

2

4

8

2
1
1
2

3

5

7
6

5
6

4
3

2

4

8

1

6

3

6

7
6

6
6

6
6

6

8

1

14
13

6

9
9

14

16
15

9
9

9
9

13

17

10
10
10

12

14

7
15

10
10

10
10

11

13

17

4
11
11
11

12

14

7
15

11
11

11
11

12

13

18

5
6

13
13

14

1
2

3

5

7
6

5
6

4
3

2

4

8

1
1
1
2

3

5

7
6

5
6

4
3

2

4

8

1
2
2
2

3

5

7
6

5
6

4
3

2

4

8

2
3
3
3

3

5

7
6

5
6

4
3

3

4

8

3
4
4
4

4

5

7
6

5
6

4
4

4

4

8

4
5
5
5

5

5

7
6

5
6

5
5

5

5

8

5

6

sstart

sgoal7
7
7

3

7

7
7

7
7

7
7

7

7

8

1
9

11
10

8
8
8

3

5

7
6

8
8

8
8

2

4

8

2
6

we assume here that the robot can move in eight directions

SA3 - 99 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

Freespace Assumption - D* Lite

uninformed search

co
m

pl
et

e
se

ar
ch

heuristic search

D* Lite (Lifelong Planning A*)

before the movement sequence of the robot

in
cr

em
en

ta
l s

ea
rc

h

sgoal

sstart

sgoal

sstart

sgoal

sstart

sgoal

sstart

SA3 - 100 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

Freespace Assumption - D* Lite

uninformed search

co
m

pl
et

e
se

ar
ch

heuristic search

D* Lite (Lifelong Planning A*)

after the movement sequence of the robot

in
cr

em
en

ta
l s

ea
rc

h
sgoal

sstart

sgoal

sstart

sgoal

sstart

sgoal

sstart

SA3 - 101 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

Freespace Assumption - D* Lite

A = overhead of D* Lite without incremental Search (A*)

va

ve

hp

B = overhead of D* Lite without heuristic search
SA3 - 102 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

Freespace Assumption - D* Lite

overhead of Focussed D* =

va

ve

hp

[Stentz, 1995]

probably the first truly incremental heuristic search method
(note: Focussed D* is likely a bit faster than D* Lite per vertex expansion)

SA3 - 103 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

3

4

4 4
...

1 1
1
11

2
1 1 1

1
2
2

2
3

1 1 1

33
2 2

1 1 1
2 2
3 3 3

1
1

2
2
2

3
3
3

33 3

3

Greedy Mapping - Implementation
Greedy Mapping always moves the robot on a shortest path to clos-
estunobserved(or unvisited) cell.

we assume here that the robot can move in eight directions

SA3 - 104 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

RR

new vertex

Transforming Greedy Mapping to
Planning with the Freespace Assumption

= goal vertex

RR

SA3 - 105 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

knowledge before the movement sequence of the robot

Greedy Mapping - D* Lite

0
0
0

3

0

5

17
6

5
2

1

216

16
16

16
17
17
17
17
17

18

18

18
18
18
18

16
16
16

1718
17
17
17

16
18

18

18

18

18

18
18

18

17

17
17

16

16
16

4

2

0

0

3

0

0

2

0
1
1
2

3

5

7
6

5
3

4
3

2

4

3

1

10
6

10
10

10
6

10

17
16

14
13

13

13
13

13
13

13
13

13

13

15
14
14

14

14

14
14

14
14

14
14

15

14

14

16
15
15
15

15

15

15
15

15
15

15
15

15

15

15

16
16
16

17

5

4
5

4
4

5
3

4

5

5
5

5
5

5
3

5

5

6
6

6
6

6
3

6

5

7
7

7
7

7
3

7

5

8
8

8
8

8
4

8

5

9
9

9
9

9
5

9

sstart

7
7
7

3

7

11

11
11

11
7

7

7

11

1
15

15
16

15
14
13

14

12

12
12

12
12

12
12

15

13

12

1617

14

1011

0

0

1
1
2

3
2

4

1
∞
∞
∞

∞
∞

∞

∞
∞
∞
∞

∞
∞

∞

∞
∞
∞
∞

∞
∞

∞

∞
∞
∞
∞

∞
∞

∞

∞
∞
∞
∞

∞
∞

∞

∞
∞
∞
∞

∞
∞

∞

∞
∞
∞
∞

∞
∞

∞

∞

we assume here that the robot can move in eight directions

SA3 - 106 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

knowledge after the movement sequence of the robot

Greedy Mapping - D* Lite

16

16
16

16
17
17
17
17
17

18

18

18
18
18
18

19
20
21

1919
20
21
22

23
22

20

18

23

21

18
18

18

23

18
17

22

17
18

0

0

1
1
2

3

5

5
4
3

2

4

1

6

17
16

17
18
19

14

14

14
14

22
23

21
20

15

14

14

16
17
18
19

15

15

15
15

22
23

21
20

15

15

15

16
16
16

17

5

3

5

3

5

3

5

3

5

4

5

5

sstart

1617

22
23

21
22
23

22
23
23

23
24
24

24
25
25

25
26
26

26
27
27

27
28
28

28

29

5

7
6

5
30

4
3

2

3

31

32

1
2

7
6

3
10
10

10
4
5

4
5
5

5
6
6

6
7
7

7
8
8

8
9
9

9
11
11

11

18
19

13

13
13

22
23

21
20

13

13

7
7
7

3

7

7

7

1
17

15
14

16
17
18
19

14

12

12
12

22
23

21
20

15

13

12

16

7

∞
∞
∞

∞
∞

∞

∞
∞
∞
∞

∞
∞

∞

∞
∞
∞
∞

∞
∞

∞

∞
∞
∞
∞

∞
∞

∞

∞
∞
∞
∞

∞
∞

∞

∞
∞
∞
∞

∞
∞

∞

∞
∞
∞
∞

∞
∞

∞

∞

we assume here that the robot can move in eight directions

SA3 - 107 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

uninformed search

co
m

pl
et

e
se

ar
ch

heuristic search

D* Lite (Lifelong Planning A*)

before the movement sequence of the robot

sstart sstart

sstart sstart

Greedy Mapping - D* Lite

in
cr

em
en

ta
l s

ea
rc

h

SA3 - 108 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

uninformed search

co
m

pl
et

e
se

ar
ch

heuristic search

D* Lite (Lifelong Planning A*)

after the movement sequence of the robot

sstart sstart

sstart sstart

Greedy Mapping - D* Lite

in
cr

em
en

ta
l s

ea
rc

h

SA3 - 109 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

Greedy Mapping - D* Lite

A = overhead of D* Lite without incremental Search (A*)

va

ve

hp

B = overhead of D* Lite without heuristic search
SA3 - 110 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

overhead of Focussed D* =

Greedy Mapping - D* Lite

va

ve

hp

[Stentz, 1995]

probably the first truly incremental heuristic search method
(note: Focussed D* is likely a bit faster than D* Lite per vertex expansion)

SA3 - 111 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

- world changes over time

- what-if analyses
- model of the world changes over time

emergency management

planning task 1
slightly different
planning task 2

slightly different
planning task 3

...

Other Examples of Lifelong Planning

replanning (and plan reuse) is important!

SA3 - 112 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

Other Examples of Lifelong Planning

- symbolic planning (with HSP)
- continual planning
- one-time planning

- mobile robotics
- mapping
- goal-directed navigation in unknown terrain

- computer games

- reinforcement learning and on-line dynamic programming
- control (with the Parti-Game algorithm)

- route planning
- in traffic networks
- in computer networks

SA3 - 113 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

Game Playing

Total Annihilation

SA3 - 114 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

- plan adaptation
- repair-based planning
- learning search control knowledge
- case-based planning

- lifelong planning

- transformational planning
- iterative repair methods in scheduling

CHEF, GORDIUS, LS-ADJUST-PLAN, MRL,
NoLimit, PLEXUS, PRIAR, SPA...

plan quality of replanning is as good as
plan quality of planning from scratch

plan quality of replanning is usually worse than
plan quality of planning from scratch

SHERPA

Symbolic Planning (with HSP) - Continual Planning

SA3 - 115 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

start goal

STRIPS-type planning in the elevator domain

Operators:

• The elevator moves from floor fi to floor fj with i ≠ j.
• Person pk boards the elevator on floor fi provided that the elevator

is currently on floor fi and floor fi is the origin of person pk.
• Person pk gets off the elevator on floor fi, provided that person pk

is in the elevator, the elevator is currently on floor fi, and floor ri is
the destination of person pk.

Symbolic Planning (with HSP) - Continual Planning

SA3 - 116 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

planning problem 1 planning problem 2 planning problem 3

SHERPA
Speedy HEuristic search-based RePlAnner

[S. Koenig, D. Furcy, C. Bauer, 2002]

...

...

Symbolic Planning (with HSP) - Continual Planning

note: in the following, we consider only finding shortest plans

SA3 - 117 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

first search in the
elevator domain

similar to HSP 2.0

[Bonet, Geffner, 2001]

with the hmax heuristic

g=5

h=0

rhs=5

g=1

h=3

rhs=1

g=2

h=2

rhs=2

g=2

h=2

rhs=2

g=1

h=2

rhs=1

g=3

h=2

rhs=3

g=∞

h=3

rhs=3

g=3

h=2

rhs=3

g=3

h=2

rhs=3

g=0

h=3

rhs=0

GOAL

9

876

54

3 2

1

g=∞

h=3

rhs=3

[6;3][6;3]

g=∞

h=2

rhs=4

[6;4]

g=∞

h=2

rhs=4

[6;4]

g=4

h=1

rhs=4

10

ground
operator

deleted after
the search

generated
vertex

expanded
vertex

i
order of
vertex

expansion

start

goal

Symbolic Planning (with HSP) - Continual Planning

using SHERPA

SA3 - 118 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

second search in the

using SHERPA from scratch
elevator domain

similar to HSP 2.0
with the hmax heuristic
[Bonet, Geffner, 2001]

GOAL

12

11

76

9

54

3 2

1

10

8

g=0

h=3

rhs=0

g=1

h=3

rhs=1

g=1

h=2

rhs=1

g=2

h=2

rhs=2

g=2

h=2

rhs=2

g=3

h=2

rhs=3

g=3

h=2

rhs=3

g=3

h=3

rhs=3

g=4

h=2

rhs=4

g=4

h=2

rhs=4

g=6

h=0

rhs=6

g=5

h=1

rhs=5

g=∞

h=2

rhs=5

[7;5]

g=∞

h=3

rhs=4

[7;4]

generated
vertex

expanded
vertex

i
order of
vertex

expansion

Symbolic Planning (with HSP) - Continual Planning

SA3 - 119 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

second search in the
elevator domain
using SHERPA

GOAL

2

1
5

4

g=0

h=3

rhs=0

g=1

h=3

rhs=1

g=1

h=2

rhs=1

g=2

h=2

rhs=2

g=2

h=2

rhs=2

g=3

h=2

rhs=3

g=3

h=2

rhs=3

g=3

h=3

rhs=3

g=4

h=2

rhs=4

g=4

h=2

rhs=4

g=6

h=0

rhs=6

g=5

h=1

rhs=5

g=∞

h=2

rhs=5

[7;5]

g=∞

h=3

rhs=4

[7;4]

6

7

3 8

untouched
vertex

generated
vertex

expanded
vertex

i
order of
vertex

expansion

Symbolic Planning (with HSP) - Continual Planning

SA3 - 120 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

sa
vi

ng
s

pe
rc

en
ta

ge
number of people

ve for elevator (5 floors)

80%

SHERPA achieves speedups up to 80 percent

planning from scratch with SHERPA

Symbolic Planning (with HSP) - Continual Planning

SA3 - 121 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

old search tree

new search tree

start goal

old search tree

new search tree

start goal

Symbolic Planning (with HSP) - Continual Planning

SA3 - 122 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

number of edges between the deleted edge in the plan and the goal state

sa
vi

ng
s

pe
rc

en
ta

ge

ve for blocksworld

speedup
becomes negative

Symbolic Planning (with HSP) - Continual Planning

SA3 - 123 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

number of deleted ground operators

sa
vi

ng
s

pe
rc

en
ta

ge

ve for blocksworld

Symbolic Planning (with HSP) - Continual Planning

SA3 - 124 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

planning problem 1 planning problem 2 planning problem 3

PINCH
Prioritized, INCremental Heuristics calculation

...
calcu-
late
heu-
ristic
value

1

calcu-
late
heu-
ristic
value

n

calcu-
late
heu-
ristic
value
n-1

calcu-
late
heu-
ristic
value

2

calcu-
late
heu-
ristic
value

7

calcu-
late
heu-
ristic
value

6

calcu-
late
heu-
ristic
value

5

calcu-
late
heu-
ristic
value

4

calcu-
late
heu-
ristic
value

3

tens of thousands of calculations of heuristic values for each planning problem

[Liu, Koenig, Furcy, 2002]

...

...

Symbolic Planning (with HSP) - One-Time Planning

SA3 - 125 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

PINCH
Prioritized, INCremental Heuristics calculation

hadd(state) =

gstate(proposition) = 0 if proposition in state

minoperator with proposition in add list(1 + gstate(operator)) otherwise

gstate(operator) =

Σproposition in goal state gstate(proposition)

Σproposition on precondition list of operatorgstate(proposition)

{

g=0

h=3

rhs=0

g=1

h=3

rhs=1

g=1

h=2

rhs=1

order of state expansions

here: for HSP 2.0 with the hadd heuristic[Bonet, Geffner, 2001]

Symbolic Planning (with HSP) - One-Time Planning

SA3 - 126 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

PINCH achieves speedups up to (another!) 80 percent.

problem size

sa
vi

ng
s

pe
rc

en
ta

ge

method used by HSP 2.0 (value iteration)

generalized Bellman Ford

PINCH

80%

Symbolic Planning (with HSP) - One-Time Planning

SA3 - 127 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

Reinforcement Learning and On-Line DP

while there exists at least one state with g(s) = rhs(s)
pick a state s with g(s) = rhs(s) and then set g(s) := rhs(s)

Prioritized Sweeping[Moore and Atkeson; 1993]

Minimax LPA*
- chooses the g-value of which state to update
- updates the g-value of the chosen state in a particular way

- chooses the g-value of which state to update
- updates the g-value of the chosen state in a particular way
- minimizes the expected orworst-case plan-execution cost for MDPs

- minimizes the worst-case plan-execution cost for MDPs
- uses heuristics to focus the search
- terminates immediate once a shortest path is found

SA3 - 128 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

Reinforcement Learning and On-Line DP
Prioritized Sweeping[Moore and Atkeson; 1993]

s1

g=102
∆=0

s3

g=101
∆=2

s2

g=103
∆=0

10

2

1

1

g=100
∆=0
s4

g=99
∆=0
s5

1

s1

g=102
∆=2

s3

g=103
∆=0

s2

g=103
∆=2

10

2

1

1

g=100
∆=0
s4

g=99
∆=0
s5

1

s1

g=104
∆=0

s3

g=103
∆=2

s2

g=103
∆=2

10

2

1

1

g=100
∆=0
s4

g=99
∆=0
s5

1

s1

g=104
∆=2

s3

g=103
∆=2

s2

g=105
∆=0

10

2

1

1

g=100
∆=2
s4

g=99
∆=0
s5

1

s1

g=104
∆=2

s3

g=105
∆=0

s2

g=105
∆=2

10

2

1

1

g=100
∆=2
s4

g=99
∆=0
s5

1

s1

g=106
∆=0

s3

g=105
∆=2

s2

g=105
∆=2

10

2

1

1

g=100
∆=2
s4

g=99
∆=0
s5

1

1

and so on, for a total of 22 g-value updates. Minimax LPA* needs only 6.
Note: Minimax LPA* expands every state at most twice.

SA3 - 129 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

Control (with the Parti-Game algorithm)

state spaces of control problems are
often continuous and sometimes high-dimensional

might not be able to find a plan is very inefficient
coarse-grained discretization fine-grained discretization

SA3 - 130 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

Control (with the Parti-Game algorithm)

avoids these problems
nonuniform discretization

Parti-Game algorithm [Moore and Atkeson; 1995]

SA3 - 131 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

Control (with the Parti-Game algorithm)

goal

goal

goal

goal

goal

goal

goal

goal

goal

goal

here: using a deterministic state space for illustration

SA3 - 132 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

A
t1

t2

t0

A

A

O1

O2

O3

Control (with the Parti-Game algorithm)

the state space is really nondeterministic
we thus use Minimax LPA* instead of LPA*

SA3 - 133 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

Control (with the Parti-Game algorithm)

Implementation

Uninformed Search from Scratch
Informed Search from Scratch
Uninformed Incremental Search
Informed Incremental Search (Minimax LPA*)

Planning Time

362 minutes
135 minutes
14 minutes
13 minutes

55 seconds
15 seconds
53 seconds
53 seconds

terrains of size 2000 x 2000

SA3 - 134 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

References (in order of their appearance)

S. Koenig, Agent-Centered Search, Artificial Intelligence Magazine, 22(4), 2001, 109-131.
I. Nourbakhsh, Interleaving Planning and Execution for Autonomous Robots, Kluwer, 1997.
H. Choset, J. Burdick, Sensor-based planning and nonsmooth analysis. In Proceedings of the International Confer-
ence on Robotics and Automation, 1994, 3034-3041.
C. Tovey and S. Koenig, Gridworlds as Testbeds for Planning with Incomplete Information, Proceedings of the
National Conference on Artificial Intelligence, 819-824, 2000.
G. Dudek, K. Romanik, S. Whitesides, Localizing a robot with minimum travel, In Proceedings of the ACM-SIAM
Symposium on Discrete Algorithms, 437-446, 1995.
C. Lund, M. Yannakakis, On the hardness of approximating minimization problems, Journal of the ACM, 41:960-
981, 1994.
M. Genesereth and I. Nourbakhsh, Time-saving tips for problem solving with incomplete information, In Proceed-
ings of the National Conference on Artificial Intlligence, 1993, 724-730.
S. Koenig and R. Simmons, Solving robot navigation problems with initial pose uncertainty using real-time heuris-
tic search, In Proceedings of the International Conference on Artificial Intelligence Planning Systems, 1998, 145-
153.
R. Simmons, S. Koenig, Probabilistic Robot Navigation in Partially Observable Environments, Proceedings of the
International Joint Conference on Artificial Intelligence, 1993, 99-105.
S. Koenig and R. Simmons, Xavier: A Robot Navigation Architecture Based on Partially Observable Markov Deci-
sion Process Models, In: Artificial Intelligence Based Mobile Robots: Case Studies of Successful Robot Systems,
D. Kortenkamp, R. Bonasso, R. Murphy (Eds.), MIT Press, 1998.
S. Thrun, Probabilistic Algorithms in Robotics, Artificial Intelligence Magazine, 21(4), 2000, 93-109.
W. Burgard, D. Fox, S. Thrun, Active Mobile Robot Localization, Proceedings of the International Joint Conference
on Artificial Intelligence, 1997.
R. Schapire, The Design and Analysis of Efficient Learning Algorithms, MIT Press, 1992.
C. Papadimitriou and J. Tsitsiklis, The complexity of Markov decision processes, Mathematics of Operations
Research 12(3), 1987, 441-450.

SA3 - 135 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

References(in order of their appearance)

S. Koenig, C. Tovey, W. Halliburton, Greedy Mapping of Terrain, Proceedings of the International Conference on
Robotics and Automation, 2001, 3594-3599.
S. Thrun, A. Buecken, W. Burgard, D. Fox, T. Froehlinghaus, D. Hennig, T. Hofmann, M. Krell, T. Schmidt, Map
learning and high-speed navigation in RHINO, In : Artificial Intelligence Based Mobile Robotics: Case Studies of
Successful Robot Systems, D. Kortenkamp, R. Bonasso, R. Murphy (Eds.), MIT Press, 1998, 21-52.
L. Romero, E. Morales, E. Sucar, An exploration and navigation approach for indoor mobile robots considering sen-
sor’s perceptual limitations, Proceedings of the International Conference on Robotics and Automation, 2001, 3092-
3097.
D. Mackenzie, R. Arkin, J. Cameron, Multiagent mission specification and execution, Autonomous Robots, 4(1),
1997, 29-57.
S. Koenig, C. Tovey, Y. Smirnov, Performance Bounds for Planning in Unknown Terrain, 2001.
B. Brumitt, A. Stentz, GRAMMPS: a generalized mission planner for multiple mobile robots. In Proceedings of the
International Conference on Robotics and Automation, 1998.
M. Hebert, R. McLachlan, P. Chang, Experiments with driving modes for urban robots, Proceedings of the SPIE
Mobile Robots, 1999.
L. Matthies, Y. Xiong, R. Hogg, D. Zhu, A. Rankin, B. Kennedy, M. Hebert, R. Maclachlan, C. Won, T. Frost, G.
Sukhatme, M. McHenry, S. Goldberg, A portable, autonomous, urban reconnaissance robot. Proceedings of the
International Conference on Intelligent Autonomous Systems, 2000.
A. Stentz and M. Hebert, A complete navigation system for goal acquisition in unknown environments. Autono-
mous Robots, 2(2), 1995, 127-145.
S. Thayer, B. Digney, M. Diaz, A. Stentz, B. Nabbe, M. Hebert, Distributed robotic mapping of extreme environ-
ments. In Proceedings of the SPIE: Mobile Robots XV and Telemanipulator and Telepresence Technologies VII,
Volume 4195, 2000.
P. Hart, N. Nilsson, B. Raphael, A Formal Basis for the Heuristic Determination of Minimum Cost Paths in Graphs,
IEEE Transactions on Systems Science and Cybernetics, SSC-4(2), 1968, 100-107.
G. Ramalingam, T. Reps, On the computational complexity of dynamic graph problems, Theoretical Computer Sci-
ence 158 (1-2), 1996, 233-277.

SA3 - 136 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

References(in order of their appearance)

S. Koenig, M. Likhachev, Incremental A*, Advances in Neural Information Processing Systems, 2001.
M. Likhachev, S. Koenig, Lifelong Planning A* and Dynamic A* Lite: The Proofs, 2001.
B. Nebel and J. Koehler, Plan reuse versus plan generation: A theoretical and empirical analysis, Artificial Intelli-
gence, 76(1-2), 1995, 427-454.
A. Stentz, Optimal and Efficient Path Planning for Partially-Known Environments, Proceedings of the International
Conference on Robotics and Automation, 1994, 3310-3317.
S. Koenig, M. Likhachev, D* Lite, Proceedings of the National Conference on Artificial Intelligence, 2002.
A. Stentz. The focussed D* algorithm for real-time replanning. In Proceedings of the International Joint Conference
on Artificial Intelligence, 1652-1659, 1995.
S. Koenig, D. Furcy, C. Bauer, Heuristic Search-Based Replanning, Proceedings of the International Conference on
Artificial Intelligence Planning Systems, 2002.
B. Bonet, H. Geffner, Heuristic Search Planner 2.0, Artificial Intelligence Magazine 22(3), 2001, 77-80.
Y. Liu, S. Koenig, D. Furcy, Speeding up the calculation of the heuristics for heuristic search-based planning, Pro-
ceedings of the National Conference on Artificial Intelligence, 2002.

SA3 - 137 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

Greedy On-Line Planning and Lifelong Planning

Related Work:

K. Hammond. Explaining and repairing plans that fail, Artificial Intelligence 45, 1990, 173-228.
R. Simmons. A theory of debugging plans and interpretations, in: Proceedings of the National Conference on Artifi-
cial Intelligence, 1988, 94-99.
A. Gerevini, I. Serina, Fast plan adaptation through planning graphs: Local and systematic search techniques, in:
proceedings of the International Conference on Artificial Intelligence Planning and Scheduling, 2000, 112-121.
J. Koehler, Flexible plan reuse in a formal framework, in: C. Baeckstroem, E. Sandewall (Eds.), Current Trends in
AI Planning, IOS Press, 1994, 171-184.
M. Veloso, Planning and Learning by Analogical Reasoning, Springer, 1994.
R. Alterman, Adaptive Planning, Cognitive Science 12(3), 1988, 393-421.
S. Kambhampati, J. Hendler, A validation-structure-based theory of plan modification and reuse, Artificial Intelli-
gence 55, 1992, 193-258.
S. Edelkamp, Updating Shortest Paths, Proceedings of the European Conference on Artificial Intelligence, 1998,
655-659.
S. Hanks, D. Weld, A domain-independent algorithm for plan adaptation, Journal of Artificial Intelligence Research
2, 1995, 319-360.

... and many more

Artificial Intelligence

SA3 - 138 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

Greedy On-Line Planning and Lifelong Planning

Related Work:

G. Ausiello, G. Italiano, A. Marchetti-Spaccamela, U. Nanni, Incremental algorithms for minimal length paths,
Journal of Algorithms 12(4), 1991, 615-638.
S. Even, H. Gazit, Updating distance in dynamic graphs, Methods of Operations Research 49, 1985, 371-387.
E. Feuerstein, A. Marchetti-Spaccamela, Dynamic algorithms for shortest paths in planar graphs, Theoretical Com-
puter Science 116(2), 1993, 359-371.
P. Franciosa, D. Frigioni, R. Giaccio, Semi-dynamic breadth-first search in digraphs, Theoretical Computer Science
250(1-2), 2001, 201-217.
D. Friogioni, A. Marchetti-Spaccamela, U. Nanni, Fully dynamic output bounded single source shortest path prob-
lem, in: Prodeedings of the Symposium on Discrete Algorithms, 1996, 212-221.
S. Goto, A. Sangiovanni-Vincentelli, A new shortest path updating algorithm, Networks 8(4), 1978, 341-372.
G. Italiano, Finding paths and deleting edges in directed acyclic graphs, Information Processing Letters 28(1), 1988,
5-11.
P. Klein, S. Subramanian, Fully dynamic approximation schemes for shortest path problems in planar graphs, in:
Proceedings of the International Workshop on Algorithms and Data Structures, 1993, 443-451.
C. Lin, R. Chang, On the dynamic shortest path problem, Journal of Information Processing 13(4), 1990, 470-476.
H. Rohnert, A dynamization of the all pairs least cost path problem, in: Proceedings of the Symposium on Theoret-
ical Aspects of Computer Science, 1985, 279-286.
P. Spira, A. Pan, On finding and updating spanning trees and shortest paths, SIAM Journal on Computing 4, 1975,
375-380.

... and many more

Algorithm Theory

SA3 - 139 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

Greedy On-Line Planning and Lifelong Planning

Related Work:

V. Lumelsky and A. Stepanov. Path planning strategies for point mobile automaton moving amidst unknown obsta-
cles of arbitrary shape. Algorithmica, 2:403-430, 1987.
M. Barbehenn and S. Hutchinson. Efficient search and hierarchical motion planning by dynamically maintaining
single-source shortest paths trees. IEEE Transactions on Robotics and Automation, 11(2):198-214, 1995.
T. Ersson and X. Hu. Path planning and navigation of mobile robots in unknown environments. In Proceedings of
the International Conference on Intelligent Robots and Systems, 2001.
Y. Huiming, C. Chia-Jung, S. Tong, and B. Qiang. Hybrid evolutionary motion planning using follow boundary
repair for mobile robots. Journal of Systems Architecture, 47(7):635-647, 2001.
L. Podsedkowski, J. Nowakowski, M. Idzikowski, and I. Vizvary. A new solution for path planning in partially
known or unknown environments for nonholonomic mobile robots. Robotics and Autonomous Systems, 34:145-
152. 2001
M. Tao, A. Elssamadisy, N. Flann, and B. Abbott. Optimal route re-planning for mobile robots: A massively parallel
incremental A* algorithm. In International Conference on Robotics and Automation, pages 2727-2732, 1997.
K. Trovato. Differential A*: An adaptive search method illustrated with robot path planning for moving obstacles
and goals, and an uncertain environment. Journal of Pattern Recognition and Artificial Intelligence, 4(2), 1990.

... and many more

Robotics

SA3 - 140 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

Greedy On-Line Planning and Lifelong Planning
Theoretical Results

Related Work:

S. Carlsson, H. Jonsson, Computing a shortest watchman path in a simple polygon in polynomial time, in: S. Akl, F.
Dehne, J. Sack, N. Santoro (Eds.), Proceedings of the Workshop on Algorithms and Data Structures, Vol. 955 of
Lecture Notes in Computer Science, Springer, 1995, 122-134.
X. Tan, T. Hirata, Constructing shortest watchman routes by divide-and-conquer, in: K. Ng, P. Raghavan, N. Bala-
subramanian, F. Chin (Eds.), Proceedings of the International Symposium on Algorithms and Computation, Vol.
762 of Lecture Notes in Computer Science, Springer, 1993, 68-77.
S. Ntafos, Watchman routes under limited visibility, in: Proceedings of the Canadian Conference on Computational
Geometry, 1990, 89-92.
X. Deng, T. Kameda, C. Papadimitriou, How to learn an unknown environment I: the rectilinear case, Journal of the
ACM 45(2), 1998, 215-245.
F. Hoffman, C. Icking, R. Klein, K. Kriegel, A competitive strategy for learning a polygon, in: Proceedings of the
Symposium on Discrete Algorithms, 1997, 166-174.
V. Lumelsky, Algorithmic and complexity issues of robot motion in an uncertain environment, Journal of Complex-
ity 3, 1987, 146-182.
A. Blum, P. Raghavan, B. Schieber, Navigating in unfamiliar geometric terrain, SIAM Journal on Computing 26(1),
1997, 110-137.
C. Icking, R. Klein, E. Langetepe, An optimal competitive strategy for walking in streets, in: C. Meinel, S. Tison
(Eds.), Proceedings of the Symposium on Theoretical Aspects of Computer Science, Vol. 1563 of Lecture notes in
Computer Science, Springer, 1999, 110-120.
X. Deng, C. Papadimitriou, Exploring an unknown graph, in: Proceedings of the Symposium on Foundations of
Computer Science, 1990, 355-361.
S. Albers, M. Henzinger, Exploring unknown environments, in: Proceedings of the Symposium on Theory of Com-
puting, 1997, 416-425.

... and many more

SA3 - 141 of 141Greedy On-Line Planning; (c) Sven Koenig; Georgia Tech; January 2002.

http://www.cc.gatech.edu/fac/Sven.Koenig/greedyonline

Lifelong Planning Techniques - Our Work

Please see

We gratefully acknowledge funding from NSF and IBM.
The views and conclusions contained in this material are those of the authors and should not be interpreted as representing the official policies,

either expressed or implied, of the sponsoring organizations and agencies or the U.S. government.

