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Abstract

This paper summarizes recent work reported at ICAPS on
applying artificial intelligence techniques to the controlof
production printing equipment. Like many other real-world
applications, such as mobile robotics, this complex domain
requires real-time autonomous decision-making and robust
continual operation. To our knowledge, this work repre-
sents the first successful industrial application of embedded
domain-independent temporal planning. At the heart of our
system is an on-line algorithm that combines techniques from
state-space planning and partial-order scheduling. For ex-
ample, our planning-graph-based planning heuristic takesre-
source contention into account when estimating makespan re-
maining. We suggest that this general architecture may prove
useful as more intelligent systems operate in continual, on-
line settings. Our system has enabled a new product archi-
tecture for our industrial partner and has been used to drive
several commercial prototypes. When compared with state-
of-the-art off-line planners, our system is hundreds of times
faster and often finds better plans.

Introduction
It is a sustaining goal of AI to develop techniques enabling
autonomous agents to robustly achieve multiple interacting
goals in a dynamic environment. This goal also happens to
align perfectly with the needs of many commercial manu-
facturing plants. In this paper, we focus on one particular
manufacturing setting: high-speed Xerox digital production
printing systems. Unlike traditional continuous-feed offset
presses, digital xerographic printers can treat each sheetdif-
ferently: printing a different image and performing differ-
ent preparatory and finishing operations. Often, a single
integrated machine can transform blank sheets into a com-
plete document, such as a bound book or a folded bill in a
sealed envelope. It is sometimes even possible to process
different kinds of jobs simultaneously on the same equip-
ment. Designing a high-performance yet cost-effective con-
troller for such machines is made more difficult by the cur-
rent trend towards increased modularity, in which each cus-
tomer’s system is unique and includes only those compo-
nents best-tailored to their needs. Xerox has been exploring
architectures in which systems can be composed of literally
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hundreds of modules, possibly including multiple special-
ized printing modules, working together at high speed.

In this paper, we demonstrate how techniques from AI
can be used to control such machines. Requests for printed
sheets become goals for the system to achieve, the various
actuators and mechanisms in the machine become actions
and resources to be used in achieving these goals, and sen-
sors provide feedback about action execution and the state
of the system. To provide high productivity (and thus high
return on investment) for the equipment owner, the planning
and control techniques must be fast and produce optimal or
near-optimal plans. To reduce the need for operator over-
sight and to allow the use of very complex mechanisms, the
system must be as autonomic as possible. Because opera-
tors can make mistakes and even highly-engineered system
modules can fail, the system must cope with execution fail-
ure and unexpected events. And because the system must
work with legacy modules in order to be commercially fea-
sible, its architecture must tolerate components that are out
of its direct control.

To meet these requirements, we have developed a novel
architecture for on-line planning, execution, and replan-
ning that synthesizes techniques from state-space planning
and partial-order scheduling. This integrated approach can
potentially benefit any AI system that needs to interleave
real-time decision making, planning, and execution, such
as robot navigation. Goals are planned for using heuristic
state-space planning, in order of arrival, without reconsider-
ing the plans selected for previous sheets. To maintain max-
imum flexibility, all action times are managed using tempo-
ral constraints instead of absolute times. The planner uses
no domain-dependent search control knowledge, allowing
us to use the same planner to run very different printing sys-
tems at full productivity. The domain model can be auto-
matically synthesized from models of the individual com-
ponents. We also developed new heuristic evaluation func-
tions for temporal planning that incorporate some of the ef-
fects of resource constraints. Although domain-independent
planning is often regarded as too expensive for use in em-
bedded real-time settings, our system achieves good perfor-
mance without any hand-coded control rules, despite the ad-
ditional requirements of reasoning with temporal actions and
resources. Indeed, as we summarize later in this paper, our
system outperforms state-of-the-art planners on this domain.



Figure 1: Side view of the four-engine prototype printer built
at PARC with over 170 individually controlled modules.

Our work complements the trend in current planning re-
search to extend the expressiveness of domains that AI plan-
ners can handle. While PDDL (Fox and Long 2003) has
been extended to handle actions over continuous metric
quantities and goals with complex preferences, we empha-
size the middle ground between planning and scheduling.
Choice of actions to perform is important in our domain, but
managing resource conflicts is equally important. In particu-
lar, our domain emphasizes on-line decision making, which
has received only limited attention to date. Our objective
is to complete the known print jobs as soon as possible, so
taking too long to synthesize a slightly shorter plan is worse
than quickly finding a near-optimal solution. In contrast to
much work on continual planning (desJardinset al. 1999),
the tightly-constrained environment of a printing press de-
mands that we produce a complete plan for each goal before
its execution can begin. The current paper merely summa-
rizes our results; further details are available from Rumlet
al. (2005) and Do and Ruml (2006).

The Modular Printer Domain
A modular printer can be seen as a network of trans-
ports linking multiple printing engines. Figure 1 shows a
schematic side view of the four-engine prototype printer
built at PARC. It has over 170 independently controlled
modules and many possible paper paths linking the paper
feeders to the possible output trays. Multiple feeders allow
blank sheets to enter the printer at a high rate and multi-
ple finishers allow several jobs to run simultaneously. Hav-
ing redundant paths through the machine enables graceful
degradation of performance when modules fail. Each mod-
ule has a limited number of discrete actions it can perform,
and for many of these actions the planner is allowed to con-
trol their duration within a range spanning three orders of
magnitude.

Controlling these systems involves planning and schedul-
ing a series of requests which arrive asynchronously over
time. These printers run at high speed (up to several hun-
dred pages per minute) possibly for many hours. Each re-
quest completely describes the attributes of a desired printed

sheet. The plan for printing each individual sheet is a linear
sequence of actions. There may be many different sequences
of actions that can be used to print a given sheet. For exam-
ple, in Figure 1, a blank sheet may be fed from any of the
two feeders, then routed to any one of the four print engines
(or through any two of the four engines in the case of duplex
printing) and then to any finisher (unless the sheet is part
of an on-going print job). This on-line planning problem is
complicated by the fact that many sheets are in-flight simul-
taneously and the plan for the new sheet must not interfere
with those sheets. Moreover, plan synthesis and plan execu-
tion are interleaved in real-time. Since it is the wall clock
end time that we try to minimize, the speed of the planner
itself affects the value of a plan.

Currently, Xerox uses a constraint-based scheduler to
control its high-end and mid-range printers (Fromherzet al.
1999). The scheduler enumerates all possible plans when
the machine starts up and stores them in a database. When
printing requests arrive on-line, the scheduler picks the first
feasible plan from the database and uses temporal constraint
processing to schedule its actions. This decoupling of plan-
ning and scheduling is insufficient for complex machines for
two reasons. First, the number of possible plans is too large
to generate ahead of time, and indeed becomes infinite if
loops are present, as in the printer shown in Figure 1. Sec-
ond, the precompiled plans can be poor choices given the
existing sheets in the system. For example, sheets should be
fed from different feeders depending on when the previous
sheets were fed, how long they are, and how long they will
dwell in the print engines (which can be a function of sheet
thickness and material). For high performance, we must in-
tegrate planning and scheduling.

Modeling the Domain

The movement of a sheet and the marking actions can be di-
rectly translated from the printer model into traditional log-
ical preconditions and effects that test and modify attributes
of the sheet. Our action representation is similar to the dura-
tive actions in PDDL2.1 with two notable differences. First,
we allow actions with real-valued duration bounds. Thus,
one can specify upper and lower bounds and let the plan-
ner choose the desired duration of the action; this is critical
to modeling controllable-speed paper paths, which can be
very useful in practice. Second, we use explicit representa-
tion of resources. Actions can specify the exclusive use of
different types of resources for time intervals specified rel-
ative to the action’s start or end time. Executing one action
may involve allocating multiple resources of various types
such as:unit-capacity, multi-capacity, cyclic, andstatere-
sources. Detailed descriptions of these resource types are
given by (Rumlet al. 2005).

In addition to the static domain description, the on-line
sheet requests are modeled by initial and goal state pairs de-
scribing the starting and desired sheet configurations. Each
new initial/goal pair defines a new object (the sheet) and as-
sociated literals for the planner to track.
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Figure 2: The system architecture, with the planning system
indicated by the dashed box.

On-linePlanner
1. plan the next sheet
2. if an unsent plan starts soon, then
3. foreach plan, from the oldest through the imminent one
4. clamp its time points to the earliest possible times
5. release the plan to the printer controller

PlanSheet
6. search queue← {final state}
7. loop:
8. dequeue the most promising node
9. if it is the initial state, then return
10. foreach applicable operator
11. undo its effects
12. add temporal constraints
13. foreach potential resource conflict
14. generate all orderings of the conflicting actions
15 enqueue any feasible child nodes

Figure 3: Outline of the hybrid planner

A Hybrid Planning Architecture
Fundamentally, a modular printer resembles any manufac-
turing plant, with raw materials (blank sheets) entering atthe
plant’s inputs, getting routed through different machinesthat
can change the properties of the materials, and the final prod-
ucts (printed sheets) being collected at the outputs. This do-
main also has certain properties of package routing or logis-
tics problems. While our on-line planning framework was
inspired by these problems, this mix of goal-decomposable
planning with cross-goal resource constraints is quite com-
mon, and we believe our framework can be applied in a wide
range of on-line continual decision-making settings. Multi-
robot coordination is one example.

Figure 2 shows the core architecture of the planner and
how it communicates with the printer controller. The major
components are outlined below. The overall objective is to
minimize the end time of all known sheets, ranging over all
current print jobs. We approximate this by optimally plan-
ning one sheet at a time. Figure 3 gives a sketch of the plan-
ning algorithm, which we refer to below.

Temporal and Plan Management
Printer control is a rich temporal domain with real-time con-
straints between wall-clock time and the plans for individual
sheets, between plans for different sheets, and between the
planner and the printer controller. Thus, fast temporal con-

straint propagation, consistency checking, and querying are
extremely important in our planner. We maintain the tem-
poral constraints using a Simple Temporal Network (STN)
(Dechteret al. 1991), represented by the box namedSTNin
Figure 2. Essentially, the network contains a set of tempo-
ral time pointsti and constraints between them of the form
lb ≤ ti − tj ≤ ub. The time points managed by the STN
include action start and end times and resource allocation
start and end times. Temporal constraints maintained in the
STN are (i) constraints on wall-clock action start time; (ii)
action start and end times should be within the action du-
ration range; (iii) constraints between action start time and
resource allocation by that action; and (iv) conflicts for var-
ious types of resources. For propagation, we use a variation
of the arc consistency algorithm described in (Cervoniet al.
1994).

Because we use anA∗ search strategy that maintains mul-
tiple open search nodes, there is a separate STN for each
node. Temporal constraints are added to the appropriate
STN when a search node is expanded. Whenever a new con-
straint is added, propagation tightens the upper and lower
bounds on the domain of each affected time point.

Lines 1–5 in Figure 3 correspond to the plan manager.
After planning a new sheet, the plan manager checks the
queue of planned sheets to see if there are any that could
begin soon (line 2). If there are, those plans are released to
the printer controller to execute. New temporal constraints
are added that freeze the starting time of actions belonging
to plans sent to the controller. Those constraints can cause
significant propagation and in turn tighten the starting times
of actions in the remaining plans.

The large number of potential plans for a given sheet
and the close interaction through resource conflicts between
plans for different sheets means that it is better to process
scheduling constraints during the planning process. The
planner uses state-space regression to plan each sheet, but
maintains as much temporal flexibility as possible in the
plans in the STN using the partial orders between differ-
ent actions in plans for different sheets. Therefore, it can
be seen as a hybrid between state-space search and partial-
order planning. Our approach is perhaps similar in spirit to
that taken by the IxTeT system (Ghallab and Laruelle 1994).

Planning Individual Sheets
When planning individual sheets, the regressed state repre-
sentation contains the (possibly partially-specified) state of
the sheet.A∗ search is used to find the optimal plan for
the current sheet, in the context of all previous sheets. Be-
cause the plan must be feasible in the context of previous
plans, the state contains information both about the current
sheet and previous plans. More specifically, the state is a
3-tuple〈Literals, STN, R〉. Literals describes the regressed
logical state of the current sheet. We represent separately
those literals that are currently true and those that are un-
known, with false literals being represented implicitly. The
STNcontains all known time points for the state and the
current constraints among them. This includes constraints
between different plans, between actions in the same plan,
as well as against the wall-clock time. Finally, the resource
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profileR is the set of current resource allocations, represent-
ing the commitments made to plans of previous sheets and
the partial plan of the current sheet. After the optimal plan
for a sheet is found, the resource allocations andSTNused
for the plan are passed back to the outer loop in Figure 3 and
become the basis for planning the next sheet.

One unusual feature of our planning approach is that we
seamlessly integrate planning and scheduling. Starting times
of actions are not fixed but merely constrained by temporal
ordering constraints in the STN. Note that in line 14 of Fig-
ure 3, we insist that any potential overlaps in allocations for
the same resource be resolved immediately, resulting in po-
tentially multiple children for a single action choice. This al-
lows temporal propagation to update the action time bounds
and guide plan search. While the plan for a single sheet is a
totally-ordered sequence of actions, there are partial orders
between actions that belong to plans of different sheets to
represent the resource conflict resolutions.

Objective Function and Heuristic Estimation
Our overall objective is to minimize the earliest possible end
time of the plan for the current sheet. To support this, the pri-
mary criterion evaluating the promise of a partial plan (line
8 in Figure 3) is the estimate of the earliest possible end
time of the partial plan’s best completion. To estimate this
quantity, we compute a simple lower bound on the additional
makespan required to complete the current regressed plan.
This heuristic value is indicated in Figure 4 byestimated re-
maining makespan. It is inserted before the first action in the
current plan (t4) and after the plan’s earliest start time (t2).
By adding the constraintt2 < t3, the insertion may thus
change the end time of the plan. It may also introduce an in-
consistency in the temporal database, in which case we can
safely abandon the plan. Given that the current plan should
end after the end time of all previous sheets in the same print
job (t5 < t6), our objective function is to minimizet6 with-
out causing any inconsistency in the temporal database. We
break ties in favor of smaller predicted makespan (t6 − t3)
and then larger currently realized makespan (t6−t4). This is
analogous to breaking ties onf(n) in A∗ search with larger
g(n), and encourages further extension of plans nearer to a
goal. Because our heuristic is admissible, the plan found is
optimal according to our objective function.

To estimate the duration required to achieve a given set
of goalsG from the initial state, we do dynamic program-
ming over the explicit representation of the bi-level temporal
planning graph, in a manner similar to the Temporal Graph-

Plan system (Smith and Weld 1999). To compute more ef-
fective heuristic estimates in the presence of significant re-
source contention, we take into account resource mutexes.
For details, see Do and Ruml (2006).

Experience in Practice
We had several surprises while developing this system. First,
we discovered that the forward state-space planning ap-
proach that has dominated the planning competitions is not
effective for our domain. Our sheet ordering constraint
(‘page 1 finishes before page 2’) allows powerful propaga-
tion during plan regression. This underscores how one’s ob-
jective function, together with domain-specific constraints,
can interact with different planning algorithms to determine
the most suitable planning approach. We also found that,
for on-line continual settings, having a very fast and robust
temporal reasoner is key. This is especially true when the
planner needs to communicate with the physical modules
through other controller components that can incur various
network and setup delays. The expressiveness of temporal
constraints was important for cleanly representing our ob-
jective and tie breaking criteria and allowing us to handle
controllable-duration actions. In addition to planning for
normal operation, exceptions happen frequently in the phys-
ical world and thus we needed to design the planner so that
it can handle the most frequent exceptions. Finally, given
the emphasis on algorithms in planning research, we were
surprised by the importance of modeling. After settling on
a language similar to PDDL2.1, we found there were many
different ways to represent our domain. We experienced sce-
narios where using extra predicates sped up the planner by
a factor of 10 for some printers. Therefore, achieving peak
performance required attention to both good planner imple-
mentation and careful modeling of the problem that fit well
with the chosen algorithm.

In collaboration with Xerox, we have deployed the plan-
ner to control three physical prototype multi-engine printers
(one with the schematic view shown in Figure 1). These
deployments have been successful and the planner has also
been used in simulation to control hundreds of hypothetical
printer configurations. The planner is written in Objective
Caml, a dialect of ML, and communicates with the job sub-
mitter and the printer controller using ASCII text over sock-
ets. The planner can also communicate with a plan visual-
izer to graphically display the plans. The shortest single plan
for the machine shown in Figure 1 has 25 actions. Given that
there are many sheets in the printer at any given time and the
planner can plan ahead, the plan manager consistently man-
ages dozens of plans and hundreds of actions. During plan-
ning, the planner needs to do temporal reasoning regarding
the conflict between actions in the current plans and hun-
dreds of actions in previous plans. Even so, the planner con-
sistently on average produces plans within the 0.27 seconds
required to keep the printer running at full productivity (220
pages/minute). For one of the most complex current Xerox
commercial products, the planner can regularly find the op-
timal plan within 0.01 seconds and can plan ahead hundreds
of sheets. The ability to use domain-independent planning
techniques allows us to use the same planner for very differ-



LPG SGPlan Hybrid
# Span Time Span Time Span Time
1 9.3 0.01 8.3 0.45 8.3 < 0.001

2 13.3 0.02 9.3 308.46 9.4 < 0.001

3 26.6 0.08 - - 9.9 0.02
4 15.2 0.07 - - 10.6 0.02
5 21.3 0.12 - - 11.1 0.03
6 22.4 0.23 - - 11.8 0.03
7 30.3 8.73 - - 12.3 0.04
8 19.6 52.55 - - 13.0 0.06
9 24.2 16.69 - - 13.5 0.07

10 23.0 20.02 - - 14.2 0.07
11 29.7 40.14 - - 14.7 0.08
12 18.3 138.53 - - 15.4 0.09
13 42.6 29.09 - - 15.9 0.18
14 34.9 427.41 - - 16.6 0.21
15 35.3 18.95 - - 17.1 0.28

Table 1: Comparison of LPG, SGPlan, and our hybrid plan-
ner, showing the makespan of the plans found (‘Span’) and
planning times (‘Time’) in seconds for problems with vari-
ous numbers of sheets (‘#’).

ent configurations, without needing any hand-tuned control
rules.

Although our planner has features (e.g., variable action
durations) beyond even the latest PDDL standard, compar-
ison to PDDL-style planners remains important to validate
our planner architecture. While our domain must be sim-
plified to fit the limitations of PDDL, we observe that even
these simplified problems are not easy to solve by state-of-
the-art academic planners such as SGPlan (Chenet al. 2006)
and LPG (Gereviniet al. 2003), winners of the last sev-
eral international planning competitions. Since both plan-
ners cannot solve any problem for the machine shown in
Figure 1, we tested them on a much simpler machine with
14 modules and four print engines. While we only tested a
monochrome job with up to 15 simplex sheets, this already
stretched the limits of LPG and SGPlan. Our planner can
plan ahead hundreds of sheets for this machine. As can be
seen in Table 1, SGPlan took more than 5 minutes to find
a two-sheet plan that only took our planner less than 0.001
sec to find. Compared to SGPlan, LPG is much faster, al-
though the quality of the plan LPG finds is much worse. On
average, LPG returns plans with 86% longer makespan and
is about 400 times slower than our planner. For the objec-
tive function of minimizing wall-clock finishing time (which
combines planning time and plan makespan), our planner
is more than 1000x better than both planners for this small
printer configuration.

In addition to being faster, our hybrid planner is also more
predictable. LPG’s planning time has much higher variance
and it sometimes takes longer to plan for a smaller job than
a bigger one. For example, it took LPG 22 times longer
to plan for the 14-sheet job in Table 1 than it did for the
15-sheet job. This makes it unsuitable for real-time on-line
planning, which depends on accurate estimation of planning
times for efficient temporal event management.

Conclusions
We described a real-world domain that requires on-line plan-
ning and scheduling and we formalized it using a tempo-
ral extension of STRIPS that falls between partial-order
scheduling and temporal PDDL. We presented a hybrid
planner that uses state-space regression on a per-sheet basis,
while using a temporal constraint network to maintain flex-
ibility through partial orderings representing resource con-
flicts between plans for different sheets. Our system has
successfully controlled three hardware prototypes and out-
performs state-of-the-art planners in this domain.

Our work provides an example of how AI planning and
scheduling can find real-world application not just in ex-
otic domains such as spacecraft or mobile robot control, but
also for common down-to-earth problems such as printer
control. The modular printer domain is representative of
a wider class of AI applications that require continual on-
line decision-making. Through a novel combination of
fast state-space planning and flexible temporal coordina-
tion, we have shown how AI techniques can successfully en-
able robust, high-performance, autonomous operation with-
out hand-coded control knowledge.
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