A Seed-Growth Heuristic for Graph Bisection

Joe Marks
MERL-A Mitsubishi Electric Research Laboratory
Cambridge, MA 02139, USA

e-mail: marks@merl.com

Wheeler Ruml
Division of Engineering and Applied Sciences, Harvard University
Cambridge, MA 02138, USA

e-mail: ruml@eecs.harvard.edu

Stuart M. Shieber
Division of Engineering and Applied Sciences, Harvard University
Cambridge, MA 02138, USA

e-mail: shieber@eecs.harvard.edu
and

J. Thomas Ngo
Interval Research Corporation
Palo Alto, CA 94304-1216, USA

e-mail: ngo@interval.com

Abstract

We present a new heuristic algorithm for graph bisection, based on an implicit notion of clus-
tering. We describe how the heuristic can be combined with stochastic search procedures and
a postprocess application of the Kernighan-Lin algorithm. In a series of time-equated compar-
isons with large-sample runs of pure Kernighan-Lin, the new algorithm demonstrates significant
superiority in terms of the best bisections found.

1 Introduction

Given a graph G = (V, E) with an even number of vertices, the graph-bisection problem is to divide
V into two equal-size subsets X and Y such that the number of edges connecting vertices in X to
vertices in Y (the size of the cut set, notated cut(X,Y)) is minimized. This problem is NP-complete
[7]. Graph bisection and its generalizations' have considerable practical significance, especially in
the areas of VLSI design and operations research.

The benchmark algorithm for graph bisection is due to Kernighan and Lin [13]. (The effi-
cient implementation of this heuristic technique was described by Fiduccia and Mattheyses [5], so
the algorithm is sometimes referred to as the Kernighan-Lin-Fiduccia-Mattheyses algorithm.) The
Kernighan-Lin (KL) algorithm improves an initial random bisection by making a sequence of locally
optimal vertex swaps between the subsets X and Y. The vertex-swap operation is also the primi-
tive perturbation operator used in applications of simulated annealing to graph bisection [14, 15].
In spite of the folk wisdom that simulated annealing is capable of avoiding the local minima that
often plague greedy heuristics like the KL algorithm, Johnson et al. [12] found that the relative
performance of the two algorithms depends on the nature of the graphs being bisected: simulated

IMore general classes of graph-partitioning problems arise when V can be divided into more than two subsets,
when the strict equality constraint on the sizes of the subsets is relaxed, and when weights are associated with the
vertices and edges to be used in the constraint-satisfaction and cut-set-size computations.

annealing has an advantage on sparse, relatively uniform graphs, but KL is better for graphs with
structure.?

Recently, more aggressive attempts have been made to exploit the structure that is often found
in graphs of practical significance. The common theme of these attempts is clustering: by grouping
together vertices in tightly connected subgraphs, clusters of vertices can be treated as individual su-
pernodes during the application of standard heuristics like KL or simulated annealing. The various
incarnations of the clustering idea appear to show a marked superiority over the original KL algo-
rithm [2, 3, 4, 6, 9, 11, 16, 17, 18], though the degree of superiority is unclear because the reported
empirical results tend to sell the KL algorithm short, as we will argue below.

The algorithm we describe in this paper can be considered a synthesis of ideas from previous
work: it includes a very simple implicit clustering heuristic, employs a stochastic search strategy (like
simulated annealing or a genetic algorithm [8]), and uses the KL algorithm for final refinement of
the computed bisections. When compared fairly with the KL algorithm (i.e., giving each algorithm
equal time and ensuring that a large sample of KL runs is considered), the new algorithm exhibits
significant superiority on a variety of test graphs.

In the following sections we describe the algorithm, present an empirical analysis of its behavior,
and conclude with a discussion of future work.

2 Algorithm Description

Our algorithm is based on a simple seed-growth heuristic.> We start with two disjoint, equal-size
subsets of the vertex set to seed the two partitions, and add the remaining vertices one at a time
into alternate partitions, at each step choosing the vertex to be added in a greedy manner. When
adding to partition X we choose a vertex a that minimizes cut({a},Y) — cut({a}, X); intuitively,
we minimize the number of edges added to the cut set separating X and Y while maximizing the
number of edges barred from future addition to the cut set. Thus the notion of clustering is implicit
in this heuristic, as compared to heuristics in which explicit clusters are computed and manipulated
[2,3,4,6,9, 11, 16, 17, 18].

More formally, the algorithm can be given by the following pseudocode. (All underlined quantities
are parameters of the heuristic that can be varied. The values given in the paper are those that gave
the best empirical results in an initial set of experiments.)

Input: An undirected graph G = (V, E). |V] is assumed to be even.

Output: A partition of V into subsets X and Y of size |2L|

Procedure:
1. Let the seed sets s, and s, be randomly chosen disjoint subsets of V' such that
|sz| = [sy| = [0.01 V]].
2. X < 385;Y < 5.
3. Repeat substeps (a) and (b) until all the vertices in V have been assigned to X or Y:

(a) Find an unassigned vertex a € V such that cut({a},Y) — cut({a}, X) is minimal.
X «+ X U{a}.

(b) Find an unassigned vertex b € V such that cut({b}, X) — cut({b},Y") is minimal.
Y « Y U{b}.

One application of the seed-growth heuristic is not likely to be particularly useful (on average
it will be worse than a single application of the KL algorithm), but the O(|]V| + |E|) seed-growth

2The conclusions that Johnson and his colleagues drew from their thorough empirical analysis are more complicated
and informative than this simple précis suggests, but the statement is approximately true.
3This heuristic bears some resemblance to the epitaxial-growth heuristic of Donath [4].

heuristic—which is roughly five times faster than an efficient implementation of the KL algorithm on
standard test graphs—can be rendered effective by running it many times as part of a general search
procedure. One such search procedure, a form of parallel hill climbing, is given here, though others
(e.g., simulated annealing and genetic algorithms) might also be used effectively in combination with
the seed-growth heuristic. The KL algorithm can be used as a postprocess to achieve final refinement
of promising bisections found by the search procedure.

Input: An undirected graph G = (V, E).
Output: A partition of V into subsets X and Y of size |2L|

Procedure:

1. Randomly choose a set P of 100 pairs (s, sy) of seed sets using Step 1 of the seed-growth
heuristic.

2. Compute the corresponding bisection (X,Y’) for each seed-set pair (s;,sy) € P using
Steps 2 and 3 of the seed-growth heuristic.

3. For each bisection (X,Y") that scores in the top 20%, use the KL procedure to separately
compute a refined bisection (X", Y"), leaving the original unchanged. Record the best
refined bisection found as B.

4. Repeat substeps (a) through (e) 2,500 times (or until the alloted computation time has
expired):

(a) Randomly pick a seed-set pair (s;,sy) € P according to a distribution which makes
the best seed set 4 times as likely to be chosen as the worst, with uniform increments
in between.

(b) Randomly select a vertex in one of s, or s, and replace it with another randomly
chosen seed vertex from V' — s, U sy; call the resulting seed-set pair (s, s;)-

(c) Compute the corresponding bisection (X', Y") using Steps 2 and 3 of the seed-growth
heuristic.

(d) Add (s;,s;) to P. If its bisection scores in the top 20%, use the KL procedure
to separately compute a refined bisection, and update B if this refined bisection is
better.

(e) Remove the worst seed set from P.
5. Return B.

Because this algorithm combines parallel hill climbing (PHC), the seed-growth (SG) heuristic,
and the KL algorithm, we will refer to it as PHC/SG+KL.

3 Empirical Analysis

Heuristic algorithms for graph partitioning like the one described here cannot be evaluated in a
purely analytic fashion; empirical analysis is the only way to ascertain such an algorithm’s utility.
Unfortunately, empirical analysis of algorithm performance is often done poorly, which sometimes
leads to erroneous conclusions. In the following subsection we discuss two common errors that
are often committed in the empirical analysis of graph-partitioning algorithms. We then present
empirical results for our algorithm.

KL: 20 runs X: 20 runs % improvement

over KL
Graph | min avg | min avg | min avg
test4 | 1,376 2,098.8 | 1,295 1,612.2 | 5.9 23.2
testb | 2,257 4,393.8 | 2,138 2,606.3 | 5.3 40.7
test6 | 1,309 1,723.7 | 1,233 1,326.2 | 5.8 23.1
test2 | 1,274 1,512.7 | 1,281 11,3574 | -0.6 10.3
test3 | 1,147 2,829.1 | 1,013 1,693.1 | 11.7 40.2
19ks | 1,461 2030.7 | 1,368 1,625.5 | 6.4 20.0
primaryl 368 463.2 300 375.5 | 18.5 19.0
bm1 326 436.9 303 3786 | 7.1 13.3
primary2 | 1,636 2,160.1 | 1,285 1,766.7 | 21,5 18.2

Table 1: Kernighan-Lin and Algorithm X: an empirical comparison. Algorithm X runs five times
more slowly than the Kernighan-Lin (KL) algorithm.

3.1 Caveats

Consider the evidence presented in Table 1. (This example is based on an empirical analysis reported
by Wei and Cheng [18].) The table contains the average and minimum cut-set sizes of 9 graph
bisections, computed from 20 runs of the KL algorithm and 20 runs of Algorithm X.* Although
Algorithm X is five times more expensive than the KL algorithm, one might be tempted to conclude
that the extra expense is indeed worthwhile, because its performance appears to be significantly
better. However, the difference in performance is due solely to the extra time afforded Algorithm X,
because Algorithm X merely returns the best of five runs of the KL algorithm! The moral is clear:
Given the high variance of the distribution of results generated by the KL algorithm, any analysis
that does not give equal time to KL will result in an inappropriate comparison.

The nature of the distribution of KL results provides a further opportunity for misleading anal-
ysis. Figure 1 shows the distribution of 10,000 values returned by the KL algorithm for graph bm1,
which is derived from a circuit in the standard UCLA benchmark suite. Suppose that Algorithm Y
also generates a distribution of results with better mean but smaller variance: for instance, let us
assume that it essentially always finds a bisection with cut-set size between 300 and 350 for this
graph. If one compares the best result from m runs of Algorithm Y with the best result from n
runs of the KL algorithm to determine which algorithm is better (where m and n have been chosen
to equate overall running times, of course), the answer one gets will be affected by the magnitude
of n. By inspection, roughly 1% of the values in the histogram for KL are less than 300. A simple
probabilistic analysis shows that n must be around 690 in order for KL to have at least a 50% chance
of being declared the better algorithm by virtue of finding the best bisection. Therefore, if one can
wait the hour or so required for 1,000 runs of KL—as is typical for many applications involving
graph partitioning—KIL should be considered the better algorithm on the basis of this empirical
evidence: it will very likely find a bisection with a smaller cut set than Algorithm Y. When absolute
performance is what matters most, several tens or even hundreds of runs of the KL algorithm may
be required to do it justice; a statistical analysis of the distribution of results for a given graph
can be used to estimate an appropriate minimum number of runs, if such an estimate is needed
[17]. Conversely, any comparisons with KL that involve as few as 10 or 20 runs—especially against
algorithms with good average performance but low variance—would appear to be suspect, though
such comparisons are not uncommon [3, 11, 18, 19].

4The graphs were derived from circuit hypergraphs widely used as benchmarks in the VLSI CAD community. They
are available at http://vlsicad.cs.ucla.edu/ cheese/benchmarks.html.

350

300

250

200

Count

150

100 +

50

200 250 300 350 400 450 500 550 600 650
Solution Cost

Figure 1: Histogram of solutions computed by the KL algorithm for graph bm1.

3.2 Results

Table 2 contains an empirical comparison of the KL and PHC/SG+KL. The algorithms were tested
on three classes of problems: 18 graphs derived from VLSI benchmark circuit hypergraphs, 6 uni-
form random graphs, in which each possible edge is generated with fixed probability, and 6 geometric
random graphs, in which vertices are randomly placed on a unit square and connected to all neigh-
bors within a fixed radius. One would expect the geometric random graphs, but not the uniform
ones, to exhibit exploitable structure [12]. The names for the random graphs indicate the expected
probability of existence of a possible edge.? The values we use were chosen to match the range
of edge probabilities in the circuit graphs, which we take as representative of important practical
problems.
For each graph in our test suite, the following data are presented:

1. Graph cardinality: The number of vertices in the graph (|V]).
2. Mean degree: The average number of edges incident upon a vertex in the graph.
3. Edge probability: The probability of a possible edge appearing in the graph.

4. Running time: The running time allowed for each algorithm on the graph, in seconds on a
DEC AlphaStation 500/500. This was computed by timing 2,500 iterations of the PHC/SG
algorithm (as explained below, this variant is just PHC/SG+KL without the KL refinement
steps). The running times range from 2.5 seconds for graph fract to 8.3 minutes for graph
testb.

5. Number of KL runs: The number of runs of the KL algorithm that will take an amount of
time equivalent to that required for the PHC/SG algorithm.

6. Average minimum cut-set size for KL: The average minimum cut-set size found over 25 tests
of k runs each, where k is the number of runs required for time equivalence with the PHC/SG
algorithm.

5As Johnson et al. explain, for a geometric random graph with expected degree d, one uses a radius of y/d/(|V|x).

Graph KL PHC/SG+KL
Name V| deg p(edge) Time | Runs Mean o Mean o Impr.
test4 1,515 166.8 0.11017 212.8 | 553.0 1263.1 114 1245.5 9.2 14
tests 2,595 211.3 0.08146 499.3 | 566.0 2032.2 33.5 1953.1 9.3 3.9
test6 1,752 139.8 0.07983 228.5 | 639.8 1207.8 9.5 1188.4 3.5 1.6
fract 149 11.7 0.07881 2.5 | 481.4 55.0 0.0 55.0 0.0 0.0
test2 1,663 126.8 0.07630 206.0 | 603.4 1242.8 11.6 1243.2 17.5 -0.0
test3 1,607 81.4 0.05071 114.1 | 586.4 911.3 17.1 828.2 1.9 9.1
balu 801 38.6 0.04828 31.5 | 4624 584.8 0.8 584.1 0.3 0.1
19ks 2,844 130.8 0.04600 317.7 | 568.7 1177.7 58.1 985.7 373 16.3
primaryl 833 15.0 0.01806 15.1 | 430.6 281.4 17.3 218.0 1.4 22.5
bm1 882 14.2 0.01611 15.3 | 418.5 275.0 19.0 212.9 4.1 22.6
primary2 3,014 24.7 0.00820 79.6 | 490.8 1322.9 81.7 585.4 27.0 55.7
struct 1,952 8.8 0.00449 22.4 | 226.5 367.2 16.6 331.8 7.5 9.6
industry3 15,406 23.3 0.00152 408.7 | 295.6 6827.2 294.8 990.0 132.2 85.5
9234 5,866 5.5 0.00093 53.9 | 201.5 667.1 25.6 189.1 18.9 71.7
s13207 8,772 6.5 0.00074 93.6 | 203.2 803.4 40.2 201.3 269 74.9
38584 20,995 13.7 0.00065 383.8 | 240.5 35184 171.3 554.3 728 84.2
s15850 10,470 6.3 0.00060 107.5 | 181.1 985.9 435 252.7 34.1 74.4
38417 23,949 7.2 0.00030 291.7 | 195.8 22804 73.0 546.6 71.6 76.0
geo-0.01 1,000 9.4 0.00942 13.3 | 232.3 45.8 6.5 39.0 0.0 14.8
geo-0.02 1,000 18.6 0.01858 20.9 | 280.4 186.0 0.0 186.0 0.0 0.0
geo-0.04 1,000 36.4 0.03643 37.0 | 388.9 583.0 0.0 583.0 0.0 0.0
geo-0.06 1,000 53.2 0.05321 53.5 | 452.5 1274.0 0.0 1274.0 0.0 0.0
geo-0.08 1,000 72.3 0.07234 71.6 | 551.1 2041.0 0.0 | 2041.0 0.0 0.0
geo-0.10 1,000 85.3 0.08535 80.6 | 509.9 3094.0 0.0 | 3094.0 0.0 0.0
unif-0.01 1,000 10.0 0.01001 13.9 | 227.1 1359.8 5.2 1351.6 5.2 0.6
unif-0.02 1,000 20.2 0.02021 23.1 | 239.6 3423.6 9.1 3410.9 8.0 0.4
unif-0.04 1,000 39.6 0.03968 41.3 | 250.5 7622.8 10.2 | 7608.4 9.6 0.2
unif-0.06 1,000 59.7 0.05979 62.2 | 265.2 12180.5 13.3 | 12166.8 10.5 0.1
unif-0.08 1,000 80.1 0.08016 79.3 | 253.3 168389 17.2 | 16814.7 144 0.1
unif-0.10 1,000 99.2 0.09933 101.0 | 266.6 21309.2 14.6 | 21301.6 104 0.0

Table 2: Kernighan-Lin and PHC/SG+KL: an empirical comparison.

7. Standard deviation of minimum cut-set size for KL: The standard deviation of the minimum
cut-set size found over the 25 tests.

8. Average minimum cut-set size for PHC/SG+KL: The average minimum cut-set size found
over 25 runs of the PHC/SG+KL algorithm.

9. Standard deviation of minimum cut-set size for PHC/SG+KL: The standard deviation of the
minimum cut-set sizes found over the 25 tests.

10. Improvement over KL: The average improvement of the PHC/SG+KL algorithm over the KL
algorithm, expressed as a percentage of the average minimum cut-set size for KL.

In all cases, PHC/SG+KL generates solutions that are at least as good as those from the large-
sample, time-equated tests of KL. The reduction in the size of the cut set ranges from none to
85%.

The results for PHC/SG+KL may appear ordinary relative to the results that have been reported
recently for various clustering heuristics.® However, this is due in large part to the better results
we report for KL because of the large number of KL runs we use, over 300 on average. Recall that
Table 1 shows the improvement one can get by taking the best of 100 runs of the KL algorithm
versus the best of 20 runs; moreover, the best of 300 runs is quite an improvement, on average, over
the best of 100 runs. Thus, our results cannot be directly compared to those previously published.
Preliminary experiments with an implementation of one of the so-called spectral methods for graph-
bisection [1, 10] indicates that it fares worse than time-equated KL. We hope to complete a full
comparison with other algorithms in the near future.

An interesting aspect of the data is the variation in relative performance of the algorithms:
although PHC/SG+XKL is superior to KL across the board, the degree of superiority differs markedly.
For some graphs (balu, Test02, Test04, and Test06) the improvement is very small, yet for others
(primary?2, s28584, and industry3, for example) the improvement is substantial. We will investigate
these differences further below.

For hybrid algorithms that involve the KL algorithm as a postprocess, the following question
naturally arises: How much work is the KL part doing? Table 3 presents results of the PHC/SG
algorithm, which is the same as PHC/SG+KL, but without the KL postprocess refinement in steps
3 and 4d. PHC/SG still returns substantially better results than KL for many graphs, but it does
not exhibit the consistent superiority of PHC/SG+KL. One possible explanation could be that 2,500
iterations is simply not long enough for the search procedure to discover effective seed sets. We can
examine the progress of the search to test this hypothesis.

Figure 2 shows a trace of the progress of the three algorithms on graph test3. FError bars
represent standard deviations over 25 runs, calculated separately above and below the mean. It is
clear from the plot (which is typical of those graphs for which PHC/SG is not markedly superior
to KL) that the search procedure is still making progress when it is cut short after 2,500 itera-
tions. Furthermore, this close analysis reveals that the KL refinement is effective even without the
search procedure (although it does improve detectably with additional time). Although our pre-
vious comparison, allowing time for hundreds of runs of KL, more closely reflects applications in
which quality is paramount, there are situations in which computation time is the limiting resource.
Figure 3 summarizes the performance of the three algorithms on the circuit-derived graphs when
given just enough time for PHC/SG+KL to initialize its population (about 4% of the times listed
in table 2). Each result is plotted according to the graph’s edge probability. Solution costs have
been normalized against KL, so —10 refers to a 10% reduction in the size of the cut set. The plot
highlights a significant feature of our algorithm: there seems to be a correlation between the edge
probability in the graph and the improvement it exhibits over the Kernighan-Lin algorithm. Figures

SUnfortunately a direct comparison with other algorithms on the circuit graphs based on published figures is not
currently possible, because the common convention is to report cut-set size in terms of nets (edges in a hypergraph)
rather than edges in the graph derived from the original hypergraph, which is what we have done here for consistency
with other presentations [2, 9, 12]. Furthermore, we bisect the graph on the basis of the number of vertices in each
half of the bisection, not the weighted sum of the areas associated with them.

Graph KL PHC/SG
Name V| deg p(edge) Time | Runs Mean o Mean o Impr.
test4 1,515 166.8 0.11017 212.8 | 553.0 1263.1 114 1267.9 19.6 -0.4
testb 2,595 211.3 0.08146 499.3 | 566.0 2032.2 33.5 2116.8 75.5 -4.2
test6 1,752 139.8 0.07983 228.5 | 639.8 1207.8 9.5 1220.7 15.1 -1.1
fract 149 11.7 0.07881 2.5 | 481.4 55.0 0.0 55.0 0.0 0.0
test2 1,663 126.8 0.07630 206.0 | 603.4 1242.8 11.6 1260.4 18.7 -14
test3 1,607 81.4 0.05071 114.1 | 586.4 911.3 17.1 862.5 21.8 5.4
balu 801 38.6 0.04828 31.5 | 462.4 584.8 0.8 585.9 0.6 -0.2
19ks 2,844 130.8 0.04600 317.7 | 568.7 1177.7 58.1 1203.2 158.6 -2.2
primaryl 833 15.0 0.01806 15.1 | 430.6 281.4 17.3 224.8 4.6 20.1
bm1 882 14.2 0.01611 15.3 | 418.5 275.0 19.0 219.2 4.9 20.3
primary2 3,014 24.7 0.00820 79.6 | 490.8 1322.9 81.7 745.4 41.0 43.7
struct 1,952 8.8 0.00449 22.4 | 226.5 367.2 16.6 347.7 10.7 5.3
industry3 15,406 23.3 0.00152 408.7 | 295.6 6827.2 294.8 2788.6 198.1 59.2
9234 5,866 5.5 0.00093 53.9 | 201.5 667.1 25.6 287.3 33.3 56.9
s13207 8,772 6.5 0.00074 93.6 | 203.2 803.4 40.2 3356 318 58.2
38584 20,995 13.7 0.00065 383.8 | 240.5 35184 171.3 | 1935.5 155.3 45.0
s15850 10,470 6.3 0.00060 107.5 | 181.1 985.9 435 4717 34.7 52.2
s38417 23,949 7.2 0.00030 291.7 | 195.8 22804 73.0 1377.5 94.8 39.6
geo-0.01 1,000 9.4 0.00942 13.3 | 232.3 45.8 6.5 40.2 14 12.3
geo-0.02 1,000 18.6 0.01858 20.9 | 280.4 186.0 0.0 186.0 0.0 0.0
geo-0.04 1,000 36.4 0.03643 37.0 | 388.9 583.0 0.0 585.4 3.1 -0.4
geo-0.06 1,000 53.2 0.05321 53.5 | 452.5 1274.0 0.0 1276.0 2.3 -0.2
geo-0.08 1,000 72.3 0.07234 71.6 | 551.1 2041.0 0.0 | 2041.0 0.0 0.0
geo-0.10 1,000 85.3 0.08535 80.6 | 509.9 3094.0 0.0 | 3094.8 2.2 -0.0
unif-0.01 1,000 10.0 0.01001 13.9 | 227.1 1359.8 5.2 1392.4 5.5 -24
unif-0.02 1,000 20.2 0.02021 23.1 | 239.6 3423.6 9.1 3480.7 8.8 -1.7
unif-0.04 1,000 39.6 0.03968 41.3 | 250.5 7622.8 10.2 | 7718.0 9.0 -1.2
unif-0.06 1,000 59.7 0.05979 62.2 | 265.2 12180.5 13.3 | 12297.0 17.2 -1.0
unif-0.08 1,000 80.1 0.08016 79.3 | 253.3 16838.9 17.2 | 16963.2 15.3 -0.7
unif-0.10 1,000 99.2 0.09933 101.0 | 266.6 21309.2 14.6 | 21465.4 16.2 -0.7

Table 3: Kernighan-Lin and PHC/SG.

1900 T T .
Mean of 25 runs of PHC/SG ——
1800 | Standard deviation +— |
3 Mean of 25 runsof KL -~
Standard deviation ——
1700 | Mean of 25 runs of PHC/SG+KL ----- .
Standard deviation —=—
1600 f i

5 1500 | 1

E

@ 1400 |

g

« 1300 fi]

<] s

i :

O 1200t |]
1100 |
1000 r]

900 | Foo pro
800

0 20 40 60 80 100 120 140 160 180
Running Time (in seconds)

Figure 2: Performance of the three algorithms on graph test3.

4-6 summarize the information presented previously in tables 2 and 3 and confirm that the edge
probability correlation holds when the algorithms are given abundant computation time, and for all
three classes of graphs examined.

4 Conclusions

The PHC/SG+KL algorithm is undoubtedly an improvement over the KL algorithm, but it remains
to be seen how effective it is relative to other recently reported algorithms that use explicit clustering
heuristics. Our agenda for future work includes a thorough time-equated empirical comparison of
the most promising clustering-based heuristics for graph bisection, including PHC/SG+KL, and an
attempt to discover further correlates between quantitative measures of a graph’s structure and the
performance of different algorithms.

Furthermore, we plan to generalize the PHC/SG+KL algorithm to other graph-partitioning
problems. In commonly encountered problems of practical significance, more than two partitions
are permitted, the requirement of exact equality of partition sizes is relaxed, and the vertices and
edges are weighted. The simple nature of the seed-growth heuristic should allow for straightforward
generalization to these cases.

5 Acknowledgments

This material is based upon work supported in part by the National Science Foundation under
Grant Nos. IRI-9350192, and TRI-9618848. We also thank Jason Cong, M’Lissa Smith, and Chuck
Alpert for generously providing us with benchmark circuits, and Sandy Staff for help in compiling
our bibliography and obtaining reprints.

Figure 3:

Cost of Best Solution (% difference from KL)

Performance of the three algorithms on the circuit graphs when given very little time.

Cost of Best Solution (% difference from KL)

150

100

50

-50

-100

20

-80

-100

PHC/SG ——
KL ——
PHC/SG + KL +=—
w31 11 I g1 38] T
SN [t - :
b &
e I
%f %)
.]
6
b
0 0.02 0.04 0.06 0.08 0.1 0.12

Edge Probability in Graph

PHC/SG ——
KL +——
PHC/SG + KL ~e—

B

B —o———

EHo+
B8 —H——i1

3
&

o

0.02

0.04

0.06
Edge Probability in Graph

0.08

0.1 0.12

Figure 4: Summary of the three algorithms on the circuit graphs.

10

25 ‘

PHC/SG +——
PHC/SG + KL ~——

20 t+ KL —— |
-
v
S 15 E
s 10 | 1
3%
& 5t i
c
K=l
5
8 0 £ &
J4
o
B 5t |
z
(@]

-10 +]

-15 L L L L L L L L

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

Edge Probability in Graph

Figure 5: Summary of the three algorithms on geometric random graphs.

PHC/SG ——
KL ——
25| PHC/SG + KL +e— T

ol] |

05]

Cost of Best Solution (% difference from KL)
=
6]

1k i

-15 I I I I I I I I
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Edge Probability in Graph

Figure 6: Summary of the three algorithms on uniform random graphs.

11

References

[1]

[2]

[5]

[6]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

E. R. Barnes. An algorithm for partitioning the nodes of a graph. SIAM Journal of Algebraic
and Discrete Methods, 3(4):541-550, 1982.

T. Bui, C. Heigham, C. Jones, and T. Leighton. Improving the performance of the Kernighan-
Lin and simulated annealing graph bisection algorithms. In Proceedings of the 26th ACM/IEEE
Design Automation Conference, pages 775-778, 1989.

J. Cong and M. Smith. A parallel bottom-up clustering algorithm with applications to cir-
cuit partitioning in VLSI design. In Proceedings of the 30th ACM/IEEE Design Automation
Conference, pages 755—760, Dallas, TX, June 1993.

W. E. Donath. Logic partitioning. In B. Preas and M. Lorenzetti, editors, Physical Design
Automation of VLSI Systems, pages 65-86. Benjamin/Cummings, 1988.

C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for improving network partition-
ing. In Proceedings of the 19th Design Automation Conference, pages 175181, Las Vegas, NM,
1982.

J. Garbers, H. J. Prémel, and A. Steger. Finding clusters in VLSI circuits. In Proceedings of
the IEEFE International Conference on Computer-Aided Design, pages 520-523, Santa Clara,
California, Nov. 1990.

M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NP-complete graph problems.
Theoretical Computer Science, 1(3):237-267, 1976.

D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-
Wesley, New York, 1989.

M. K. Goldberg and M. Burstein. Heuristic improvement technique for bisection of VLSI
networks. In Proceedings of the IEEE International Conference on Computer Design, pages
122-125, Port Chester, NY, 1983.

L. Hagen and A. B. Kahng. Fast spectral methods for ratio cut partitioning and clustering.
In Proceedings of the IEEE International Conference on Computer-Aided Design, pages 10-13,
1991.

L. Hagen and A. B. Kahng. A new approach to effective circuit clustering. In Proceedings of the
IEEE/ACM International Conference on Computer-Aided Design, pages 422-427, Santa Clara,
California, Nov. 1992.

D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon. Optimization by simu-
lated annealing: An experimental evaluation; part I, graph partitioning. Operations Research,
37(6):865-892, Nov.-Dec. 1989.

B. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs. The Bell
System Technical Journal, 49(2):291-307, Feb. 1970.

S. Kirkpatrick. Optimization by simulated annealing: Quantitative studies. Journal of Statis-
tical Physics, 34:975-986, 1984.

S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi. Optimization by simulated annealing.
Science, 220:671-680, May 1983.

B. Krishnamurthy. An improved min-cut algorithm for partitioning VLSI networks. IEFEE
Transactions on Computers, C-33:438—-446, 1984.

12

[17] T.-K. Ng, J. Oldfield, and V. Pitchumani. Improvements of a mincut partition algorithm. In
Proceedings of the IEEFE International Conference on Computer Design, pages 470-473, Santa
Clara, CA, 1987.

[18] Y.-C. Wei and C.-K. Cheng. A two-level two-way partitioning algorithm. In Proceedings of the
IEFEE International Conference on Computer-Aided Design, pages 516519, Santa Clara, CA,
Nov. 1990.

[19] Y.-C. Wei and C.-K. Cheng. Ratio cut partitioning for hierarchical design. IEEE Transactions
on Computer-Aided Design, 10(7):911-921, July 1991.

13

