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Abstract

We present the performances of thirteen aphasic patients on a picture-
naming task, and attempt to model these data using computer simulations.
We systematically manipulate the assumptions underlying several interac-
tive, two-step, spreading-activation models, including the proposals of Dell,
Schwartz, Martin, Saffran, and Gagnon (1997), Foygel and Dell (1999), and
Rapp and Goldrick (in press). Using a numerical regression procedure and
multiple views of each model’s possible output, we find that peripheral prag-
matic assumptions play a role equal to that of theoretically more central
model components. None of the models we consider can account for all of
the patients, leading us to conclude that one or more of the assumptions un-
derlying each model is flawed. We argue that there are strong limitations on
the conclusions that can legitimately be drawn from such simulation stud-
ies, but that close analysis of individual patients can allow sound testing of
potentially more accurate models.
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The promise of computational models of human language processing is widely recog-
nized. Not only does the act of constructing a simulation force one to specify one’s theory
precisely, but the resulting model can be quantitatively tested against empirical data. Fur-
thermore, the ease of simulation allows one to experiment with models that deviate from
normal behavior, and thereby form theories about the interactions between brain damage
and language processing. Data from aphasic patients can then be used to test the ade-
quacy of the combined model of normal processing and damage in aphasia. One could even
imagine using simulation results to provide insight into the breakdown occurring in specific
patients. Examples of recent computational investigations of low-level language processing
include the word reading models of Plaut, McClelland, Seidenberg, and Patterson (1996)
and Shallice, Glasspool, and Houghton (1995) and the word production models of Levelt,
Roelofs, and Meyer (1999) and Dell, Schwartz, Martin, Saffran, and Gagnon (1997).

In practice, a computational model is often constructed with the aim of testing claims
about one or two specific theoretical issues, such as the role of interaction between levels of
representation during word production. But the collection of theoretical principles that one
wishes to put to empirical test does not usually describe a complete mechanism suitable
for simulation. Details beyond the scope of the theory at stake must be filled in, such as
the exact semantic relations between words in the model. And details supposedly within
the purview of the theory must often be left out for the sake of reducing computation time,
such as the full inventory of a typical human lexicon. In this paper, we systematically
examine the role played by these seemingly minor assumptions by evaluating three closely
related models of word production. We present data from thirteen aphasic patients on a
picture naming task, and attempt to account for their performance using each of the three
models. By manipulating both the minor assumptions of the models, as well as those that
are usually interpreted as corresponding to important theoretical claims, we also generate
a range of models along the spectrum spanned by the original three.

We use as a starting point the model proposed by Dell et al. (1997), which assumes
that, in fluent aphasics, brain damage affects all parts of the lexical access system equally.
Ruml and Caramazza (2000) showed that this model involving global damage has difficulty
accounting for some of Dell et al.’s patient data, and we will see that it cannot match two
of the thirteen patients we present here. Given this mismatch, we construct two variations
of the theory which assume more localized damage. One of these is similar to the recent
proposal of Foygel and Dell (1999). However, we will see that this model too has difficulty
accounting for patient data. This suggests that some of the model’s more basic assumptions
require modification. Guided by proposals of Rapp and Goldrick (in press), we systemat-
ically construct five new models of aphasic naming, and test the ability of each one to fit
our patient data. Although a hybrid model in between the proposals of Foygel and Dell and
Rapp and Goldrick seems promising, none of the models we consider can account for all of
the patients. Our investigation highlights the dramatic effect that theoretically peripheral
assumptions can have on model performance, and we conclude that great care must be
taken when attempting to draw theoretical inferences from simulation studies.

A Model of Global Damage

We begin with the model of aphasic naming proposed by Dell et al. (1997). As we
noted, models of aphasia consist of a full model of normal processing with additional supple-
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Figure 1. The structure of part of the core model.

mentary assumptions regarding the reaction of the system to brain damage. A clear division
between the two is necessary in order for any of the insights gained through simulation of
aphasic behavior to help constrain theories of normal processing. We will discuss Dell et
al.’s model of normal processing in some detail, since it will serve as a core for most of the
other theories we consider in this paper. The other theories differ mainly in their approach
to modeling damage to the normal system.

The Model of Normal Performance

The core model of lexical access is based on notions taken from the theory of Gary
Dell (1986). The undamaged system is postulated to consist of three levels of interacting
representations: semantic, lexical, and phonological. Each level interacts only with the
adjacent levels. The model is connectionist in style, and its structure is indicated in Figure 1.
The representations in each level are represented by activation values, which are fractional
numbers. These values are updated during processing according to the activation levels of
neighboring representations, the decay of the original activation, and the influence of random
noise. More precisely, if a;(m) represents the activation level at time ¢ of a representation m
which interacts with a set of neighbors N, and R(z) represents a random sample drawn from
the normal distribution with mean zero and standard deviation z, and decay, connection,
initrinsic, and activation are parameters of the model, then

at+1(m) = old + incoming + noise

where
old= (1 — decay) x a;(m)
incoming = Y,y max(0, (connection x ay(n)))
noise = R(intrinsic) + (R(activation) x at(m)).

Negative levels of activation can exist at nodes, due to noise, but negative values do not
influence neighboring nodes. Since the sum of all the activation in the network is not



COMPUTATIONAL THEORIES OF APHASIA 4

Table 1: Parameters in the theory of normal naming performance and their default values.

Parameter Description Value

Nodes the number of nodes in the semantic, lex- 57, 6, and 10
ical, and phonological layers

Connectivity the nodes each node connects to see Figure 1 and text

Connection strength the coeflicient by which a given node’s 0.1

neighbors’ activation levels are multiplied
during spreading

Decay rate the coefficient by which a given node’s ac- 0.5
tivation is multiplied during spreading

Semantic jolt the activation level to which semantic 10
nodes are set to represent the model’s in-
put

Lexical jolt activation level to which the selected lex- 100
ical node is set

Spreading steps the number of time steps for which acti- 8

vation is spread through the network be-
fore lexical selection or phoneme selection
takes place

Intrinsic noise standard deviation of the distribution of 0.01
activation-independent noise
Activation noise standard deviation of the distribution of 0.16

noise that is proportional to a node’s ac-

tivation level
Note: the four noise and jolt parameters can be scaled together without changing the
behavior of the network, and so represent three rather than four true parameters.

constant, activation is best viewed as an attribute of each representation, rather than as
something which is routed through the network like a fluid flow. The activation levels of
representations in each layer are affected by representations in all adjacent layers because
each connection is bidirectional: if node a can send activation to node b, then b can also
send activation to a.

Lexical access is simulated in the model by setting the activation level of the semantic
representations associated with the target word to a predefined constant value. The activa-
tion levels of all representations in the network are then updated for eight time steps. After
this time, the activation level of the most active lexical representation is raised to a pre-
defined high level, corresponding to the notion of lexical selection. Activations are further
propagated for another eight time steps, after which the most active onset, vowel, and coda
phonemes are chosen as the output of the model. In this way, the model incorporates the
idea of two separate selection steps, one lexical, the next phonological. A summary of the
parameters of the model is given in Table 1.

Because of the contribution of noise to the activation levels, the selected lexical rep-
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Table 2: The lexicon of Dell et al.’s naming model.

Network 1 Network 2
Word Relation to Target Word Relation to Target
cat target cat target
dog semantic dog semantic
mat formal mat formal
hat formal rat mixed
log unrelated log unrelated
fog unrelated fog unrelated

resentation does not necessarily correspond to the target word, and even if it does, the
phonological representations that are eventually selected are not necessarily those associ-
ated with the selected lexical node. By simulating many complete trials, one can accumulate
an estimate of the probabilities of various kinds of responses. Dell et al. (1997) categorize
errors as semantic (related to the target in meaning), formal (phonologically related to
the target), mixed (both semantic and formal), unrelated (but a true word), and nonword
(or gibberish). The distribution of the model’s responses can be compared to the distri-
bution measured from a human experimental participant to determine whether the model
represents a mechanism sufficient to summarize human behavior.

Dell et al. followed a principled method for constructing the network and assigning
the connectivity pattern among the representations. To reduce the computational burden
of simulation, they chose a lexical layer of six words, and distinguished a particular word as
always playing the role of the target. (This amounts to an assumption that all targets lie
in typical semantic and phonological neighborhoods.) All words have a simple consonant—
vowel-consonant structure. The phonological layer follows immediately, being determined
by the lexical nodes and English pronunciation. To construct the semantic layer, Dell et
al. stipulate that all lexical representations are associated with ten semantic features, and
that semantically related words share three of their features.

To provide some assurance that this small network captures some of the relevant
properties of English, Dell et al. measure its error opportunities, that is, the probability
that a response of each possible type would result from selecting a random phoneme in the
model at each position. This represents the model’s behavior when it is generating random
phonologically-legal strings of phonemes.! They compare this distribution to an estimate of
random errors among English-speaking aphasic patients. In order to approximate the small
frequency of mixed errors, Dell et al. actually set up two separate network simulations, only
one of which contains a possible mixed error. The lexicons of the two networks are shown
in Table 2. Only one out of every ten trials uses the network with the mixed error, while
the other network is used the remainder of the time. This dual-network approximation of
a typical lexicon allows the possibility of an occasional mixed error. Although they do not
statistically test the similarity, Dell et al. are able to obtain error opportunities for their
simulation that are in general accord with their estimates for English. They also show that

"Phonological legality is assured due to the simple CVC structure of the entire lexicon.



COMPUTATIONAL THEORIES OF APHASIA 6

the model can generate an error distribution similar to that of control participants in a
picture-naming task.

Assumptions Regarding Damage

Since the model’s error distribution depends on its parameters, changing the param-
eters can cause the model to emit errors following a different distribution. Dell et al. (1997)
propose what they call the globality assumption: that the damage to the lexical access
system in aphasia can be modeled as changes to their simulation’s connection and decay
parameters. By changing these parameters throughout the network, this model of brain
damage embodies the claim that the variety of patterns of errors observed in aphasic pa-
tients can be explained by uniform damage to all parts of the system simultaneously. Dell et
al. propose that fluent aphasic patients can be modeled by finding, for each patient, values
for connection and decay that cause the model to match that patient’s error distribution.
Although Dell et al. also propose a related model of single-word repetition performance, in
this paper we will focus on error patterns during picture naming.

Patient Data

To allow the testing of Dell et al.’s theory using additional data beyond that presented
in their original paper, we gathered data from thirteen fluent aphasic patients. They were
recruited from area clinics and hospitals and agreed to participate in a research study. Each
patient was compensated $10/hour for participation. Patients with dysarthria of speech or
production deficits resulting in unintelligible jargon were excluded from participation. All
the patients included in this study suffered a left cerebrovascular accident. Patient E.A. has
been previously reported by Shelton and Weinrich (1997) and patient 1.O.C. by Shelton,
Fouch, and Caramazza (1998). The group included three different subjects with the initials
J.R.

The patients were given a screening battery (Harvard Cognitive Neuropsychology
Laboratory Screening Battery, unpublished) designed to assess a wide variety of language
skills.? Background information for each patient is provided in Table 3, along with the
percentage of correct responses on tests measuring auditory comprehension, phrase repeti-
tion, and object naming. These tests involve the use of simple stimuli and are very similar
to tests found on clinical assessment tools such as the Boston Diagnostic Aphasia Exam
(Goodglass & Kaplan, 1983).

Each patient was administered the Philadelphia Naming Test (P.N.T.) (Roach,
Schwartz, Martin, Grewal, & Brecher, 1996) in a similar manner. Pictures were presented
one at a time and patients were asked to name them and were encouraged to provide a
response (i.e., they were encouraged to respond, even incorrectly, rather than say “I don’t
know”). Patients were given ten practice pictures prior to the test trials. For each patient,
naming data were tape-recorded and scored for accuracy and error type following the ses-
sion. The number of sessions a patient took to complete the 175 test pictures for naming
varied from one session to four sessions. Patients who had a great deal of difficulty naming

2E.A.’s scores are from sections of the Boston Diagnostic Aphasia Exam. In previous work, E.A. has been
described as nonfluent, based on the number of words he produces in conversational speech and discourse
production tasks. However, he does not have any articulatory problems and he rarely makes distortion
errors, so he would be classified as fluent according to Dell et al.’s criteria.
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Table 3: Patient background information and correctness on certain language tasks.

Auditory Phrase Object
Patient Aget Education} Post Onsetf  Comp. Rep. Naming

AB. 73 12 3 1.0 1.0 1.0
EM. 65 > 16 2.5 1.0 .80 1.0
TH. 63 13 17 1.0 - -
R.C. 62 12 4 1.0 .61 .92
LS. 52 16 3 1.0 1.0 .90
JRI3 59 16 3 1.0 .92 .62
L.T. 53 16 8 mo. 1.0 - 90
MM. 72 16 2 1.0 - .70
JR.2 43 16 5 1.0 - 7
P.C. 51 15 11 mo. .92 40 .80
JR.1 50 12 3 - - -
EAI 65 15 18 .81 .25 47
1.LO.C. 55 14 1.5 1.0 - 10

tin years. Ifrom the B.D.A.E. — not available.

tended to become frustrated after approximately forty to fifty trials and we discontinued
testing for that day when their frustration became apparent.

The scoring procedures for naming were identical to those described by Dell et al.
(1997).2 An answer was considered correct only if it matched the pictured item perfectly
(e.g., ‘ape’ was not considered correct for ‘monkey’). Errors were scored according to the
criteria established by Dell et al. and could be semantic (e.g., bowl — cup), formal (e.g.,
cane — cab), mixed, both semantically and phonologically related to the target (e.g., foot —
finger), unrelated (e.g., clown — house), or nonword (e.g., pyramid — kuramids). ‘Other’
errors included descriptions or definitions of the item (e.g., tractor — farmers use it), no
respounse errors, visual errors, naming parts of objects (e.g., nurse — a particular dress that
girls wear) or any other error type that did not fit in the 5 categories described above.

Patient Performance.

Table 4 summarizes each patient’s responses on the P.N.T. (The data are presented in
percentage terms in later tables.) Inspection of the data reveals a wide range in performance,
from near perfect (A.B.) to quite poor (I.0.C.). The large number of ‘other’ errors for 1.0.C.,
J.R.1, and E.A. result from these patients’ tendencies to provide descriptions of items that
they could not name. Almost all the ‘other’ errors for these patients were descriptions. In
fact, the majority of ‘other’ errors for all patients involved descriptions of the items they
could not name (e.g., hose — a thing you use to spray water with).

There are two obvious differences between the behavior of our patients and those
reported by Dell et al. First, several of our patients did not make any formal and/or
nonword errors. The patient with the highest frequency of nonwords was R.C., with 7
of 169 codable responses (4%). Second, there are several patients (T.H., J.R.3, M.M.)

3Nadine Martin kindly helped score several difficult responses.
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Table 4: Picture naming performance of the patients on the Philadelphia Naming Test.

Patient Naming response
Corr. Sem. Phon. Mixed Unrel. Non. Other

AB. 167 3 0 1 0 2 2
E.M. 165 2 0 0 0 4 4

T.H. 161 10 0 3 0 0 1

R.C. 148 10 0 3 1 7 6
L.S. 147 14 0 2 0 1 11
JR.3 146 17 0 7 1 0 4
LT. 144 11 3 4 0 2 11
M.M. 136 18 0 4 0 0 17
JR.2 117 13 1 5 0 5 34
P.C. 101 19 8 8 22 4 13
J.R.1 79 6 1 2 0 0 87
E.A. 59 39 6 14 19 2 36
1.0.C. 29 6 0 1 0 0 139

Table 5: The mixed errors of T.H., J.R.3, and M.M.

Patient Target Response
T.H. plant — flowers
microscope — magnifying glass
ruler — tape measure
J.R.3 plant — flowers
vest — suit
crown — queen
boot — foot
scale — weigh
ruler — measure
garage — car
M.M. skull — skeleton
ghost — goblin
pear — peach
garage —» carport
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Table 6: Picture naming performance of the patients, scored according to Mitchum et al. (1990).

Patient Naming response
Corr. Sem. Phon. Mixed Unrel. Non. Misc. No Resp.

AB. 167 4 0 0 0 2 2 0
E.M. 165 4 0 0 0 2 3 1
T.H. 161 13 0 0 0 0 1 0
R.C. 148 13 0 0 1 7 3 3
L.S. 147 16 0 0 0 1 9 2
JR.3 146 24 0 0 1 0 4 0
L.T. 144 14 1 1 2 2 9 2
M.M. 136 22 0 0 0 0 17 0
JR.2 117 18 0 1 0 5 29 5
P.C. 101 28 0 0 29 4 13 0
JR1 79 7 0 1 1 0 86 1
E.A. 59 49 0 4 25 2 30 6
1.O.C. 29 6 0 1 0 0 136 3

who made mainly semantic errors, with some mixed errors (which bear a semantic and
phonological relationship to the target), no formal or nonword errors, and few unrelated
errors. The error pattern cannot be attributed to level of correctness since T.H. performed
quite well (making only 14 errors), whereas M.M. performs much worse (making 39 errors).
For M.M. and J.R.3, all the ‘other’ errors were fairly detailed circumlocutions, and T.H.’s
one ‘other’ error was naming of a part of the picture (bride — veil). Although these
patients did commit some ‘mixed’ errors, a closer examination of these errors reveals how
little phonological overlap many of them shared. Table 5 presents the mixed errors from
these three patients and demonstrates that the target and error shared little phonological
overlap. The errors are classified as mixed errors according to Dell et al.’s scoring system,
which measures phonological overlap as “...target and error started or ended with the same
phoneme; had a phoneme in common at another corresponding syllable or word position,
aligning words left to right; or had more than one phoneme in common in any position
(excluding unstressed vowels)” (p. 809).

Other scoring systems define phonological similarity as having 50% overlap between
target and response, and it is often the convention when scoring naming errors that phono-
logical errors share a proportion of overlap greater than one phoneme. To assess the effect of
this phonological criterion, we rescored the patient responses using the system of Mitchum,
Ritgert, Sandson, and Berndt (1990). As shown in Table 6, T.H., J.R.3, and M.M. make
few, if any, mixed errors under the stricter criterion. In particular, T.H. would have made
almost only semantic errors. His three mixed errors share very little phonological overlap
(plant — flowers, sharing only |/| in the second position; microscope — magnifying glass,
sharing only |m/| in the first position; ruler — tape measure, sharing only |er| in the final
position) and his single ‘misc’ error, as we mentioned, could be interpreted as semantic in
nature (bride — veil). The same is true for both J.R.3 and M.M., although these patients
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Table 7: Verb responses during picture naming.

Target Response
rake — sweep
toilet — flush
bed — sleep
ear — hear
skis — skiing
letter — write
bench — sit down
scissors — cutting
pillow — sleep
cane — limping
grapes — eat
fork — eat

made a number of ‘other’ errors as well (especially M.M.).%

Another feature of the patients’ responses is the surprisingly large number of times
patients produced a verb in response to the noun targets (see also Berndt, Haendiges,
Mitchum, & Sandson, 1997). This happened especially frequently with E.A. (11 verb re-
sponses in 175 targets), but was also noted in responses from J.R.3 (three verb responses)
and J.R.1 (one verb response). Some examples of these errors are shown in Table 7. These
verb responses are surprising because Dell et al.’s theory models brain damage as abnormal
values for parameters within the lexical network, and syntactic processes are assumed to
operate normally. In particular, selection of lexical nodes is assumed to respect syntactic
class, and non-noun responses can arise only indirectly, via errors during phoneme selection.
(Dell et al. (1997) used this assumption to derive predictions regarding overabundance of
nouns among patients’ phonological errors, but did not address how their theory might
account for a dearth of nouns.) Of course, these responses from our patients are either
semantic or mixed errors, and are likely have a semantic basis rather than a phonological
basis. Although these verb responses seem to call into question the relevance of Dell et
al.’s theory, such errors are still perfectly scorable, and we will disregard the grammatical
class issue. There is another, perhaps more serious problem with the model’s relation to
the patient data.

Relating the Patients to the Model

Since Dell et al.’s model always produces three phonemes, its responses can always be
scored, and it cannot simulate trials on which patients offer a description of the stimulus or
decline to provide a response. This poses problems when evaluating the model’s ability to
account for the patient data, especially patients such as I1.0.C. and J.R.1, for whom 79% and
50% of responses were in the ‘other’ category, respectively. Directly comparing the model’s

“Many of the patients also completed repetition of the target items, including E.M., R.C., J.R.3, M.M.,
J.R.2, P.C., and E.A. All of the patients except R.C. repeated the items perfectly.
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output to the patients’ error patterns would cause it to fail any statistical test of fit, since it
cannot account for events it cannot generate. If we assume that unscorable responses arise
due to a mechanism in the lexical access system that is missing from the model, then we
must find a way of determining which portion of a patient’s performance, if any, the model
should be expected to account for. (Patients with damage outside of the lexical access
system would certainly be outside the scope of the model.) Without an explicit theory of
the interaction of the hypothesized missing mechanism with the rest of the model, one might
prefer to test the model using only those patients who make no unscorable responses, in
the hope that the mechanism plays no role in those patients’ behavior. Unfortunately, such
patients are so rare that this would render the model useless. No such patients were among
the twenty-three reported by Dell et al. or the thirteen presented here. So practicality
demands that we somehow relate the model to error patterns containing ‘other’ responses.

Perhaps the simplest approach to dealing with the unscorable trials is to ignore them
and test the model on its ability to match each patient’s distribution over the remaining
response categories. This assumes that the mechanism responsible for the ‘other’ responses
is independent of the portions of lexical access that are implemented in Dell et al.’s model,
in the specific sense that the distribution over the scorable response categories would be
the same if the mechanism did not exist. (Of course, we are already assuming that the
mechanism is not involved during the scorable trials themselves, since it is not part of the
model.) The situation is as if there were a process that blocked a certain percentage of
attempts at lexical access, on trials chosen randomly without regard for the response that
would have been generated otherwise. By making this independence assumption, we can
remove the unscorable trials without adjusting the remaining counts. (Alternatively, one
could allow the model an extra free parameter which allowed it to perfectly match any
patient’s number of ‘other’ responses.)

While simple, the independence assumption may seem implausible. One might sus-
pect that patients generate circumlocutions or fail to respond only in those cases in which
they believe that they haven’t correctly retrieved the desired word. If patients tend to be
correct in their self-diagnosis, then their ‘other’ trials would have tended to be distributed
over only the error response categories had the hypothesized mechanism not been present.
The independence assumption will therefore ask the model to generate correct responses
too frequently. However, the proper redistribution of counts seems difficult to determine,
since we don’t know whether patients are preferentially able to detect failures in situations
that would otherwise lead to a certain type of error. Similarly, we don’t know how providing
the explicit instruction to provide a response, even if it may be incorrect, might influence
the situations in which the mechanism comes into play. In the absence of these kinds of
information, we will use the independence assumption and renormalize the patient data
while ignoring unscorable responses.

To mitigate the effects of our ignorance, one might choose to disregard patients who
make ‘other’ responses very frequently. If the truly correct reweighting of response frequen-
cies were very different from that accomplished by the independence assumption, then the
error patterns of patients who make many unscorable responses will be distorted. There is
a chance that an incorrectly reweighted distribution will cause the model to fail to match
a patient whose true distribution of errors (in the absence of the ‘other’ mechanism) would
have been successfully fit. In view of this possibility, we will follow Dell et al. and seg-
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regate those patients whose ‘other’ frequencies are greater than 15% (J.R.2, J.R.1, E.A.,
and I.O.C.). We will include them in our experiments, but present analyses both with and
without them.

Evaluation of the Global Damage Model

To test the ability of Dell et al.’s model of global damage to account for the patients,
we need to find, for each patient, those values of connection and decay that cause the model’s
error distribution to come as close as possible to that patient’s. By ‘close,” we will mean
having the greatest chance of having been sampled from the same underlying multinomial
distribution. This can be measured using the X? statistic. If P represents the distribution
of a patient’s responses over n possible categories, and M represents the distribution of the
responses generated by the model, then

n

Z Z (observed;; — expected;;)?

X*(M,P) =
(M, P) ezpected,

je{M,P} i=1
where
observed;; + observed;p
total

Its value can be compared to the distribution of x2 to derive a significance level.

We began this process by systematically varying the parameter values and running
the simulation at each combination. We varied the value of decay from % to 1, in incre-
ments of 13z, and the logarithm (base 10) of connection from -1 to -4, in increments of 7=
(corresponding to connection values from 0.1 to 0.0001). At each of the 4,225 combinations,
we ran the simulation until the widest 95% confidence interval on any error type was 2%.
This required from 200 to 9,600 trials, depending on the resulting distribution. Then, start-
ing from the best combination we found, we used the numerical optimization algorithm of
Ruml! and Caramazza (2000) to fine-tune the fit. This automated regression procedure uses
estimated confidence intervals to quickly identify promising parameter values. Although
the stochastic nature of the simulation implies that it is impossible to guarantee that a
particular fit is optimal, Ruml and Caramazza showed that their algorithm does at least as
well as manual fitting of Dell et al.’s model.

The fits found by the algorithm are shown in Table 8. The table shows the error
distribution of each patient, and underneath, the distribution produced by the simulation.
The parameter settings used are shown underneath each patient’s initials. The four patients
who made many ‘other’ responses are grouped at the bottom of the table. The last two
columns give the X2 value of the fit and its significance, p, the probability that a fit with
that X2 value (or larger) would have occurred if the patient and model were following
the same distribution.® We also present a second measure of fit, the root mean squared

difference (RMSD). Given two probability distributions M and P over a set of n response
types,

expected,;; = total; X

1 n
RMSD(M, P) = ,| = > (M; — P;)2.
i=1
SWe assume five degrees of freedom. Since two parameters were estimated from the data, this is conser-
vative and we may fail to reject some mismatches.
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Table 8: Fits of the global damage model to the patients.
Patient and Naming response Fit
parameter values Corr. Sem. Phon. Mixed Unrel. Non. RMSD X2 P

AB. 97 .02 .00 .01 .00 .01

conn .0138, dec .52 .96 .02 .00 .00 .00 .01 .004 1.6 .898
EM. .96 .01 .00 .00 .00 .02

conn .0107, dec .50 .95 .03 .01 .00 .00 .02 .011 3.5 .618
TH. .93 .06 .00 .02 .00 .00

conn .0931, dec .72 .93 .05 .00 .02 .00 .00 .006 1.2 942
R.C. .88 .06 .00 .02 .01 .04

conn .0583, dec .71 .85 .08 .02 .02 .00 .03 .017 5.2  .395
L.S. .90 .09 .00 .01 .00 .01

conn .0806, dec .74 .91 .06 .00 .02 .00 .01 .012 2.6  .760
JR.3 .85 .10 .00 .04 .01 .00

conn .0937, dec .81 .84 10 .01 .03 .00 .02 .013 84 .134
LT. .88 .07 .02 .02 .00 .01

conn .0586, dec .70 .88 .07 .01 .02 .00 .02 .005 1.3 939
M.M. .86 A1 .00 .03 .00 .00

conn .0898, dec .79 .86 .08 .01 .03 .00 .02 .014 5.3 .382
P.C. .62 A2 .05 .05 .14 .02

conn .0649, dec .77 .51 12 12 .03 .06 A7 .086 51.1 .000
JR.2 .83 .09 .01 .04 .00 .04

conn .0938, dec .81 .83 10 .01 .03 .00 .03 .005 0.6  .987
JR.1 .90 .07 .01 .02 .00 .00

conn .0583, dec .70 .90 .06 .01 .02 .00 .01 .006 1.3 .932
E.A. 42 .28 .04 10 .14 .01

conn .0898, dec .87 .46 14 .14 .04 .06 A7 104 77.8  .000
L.LO.C. .81 A7 .00 .03 .00 .00

conn .0937, dec .81 .84 .10 .01 .03 .00 .02 .032 29 711
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Table 9: Summary of the performance of the global damage model.

Patient VAF by category Summary VAF
Group Corr. Sem. Phon. Mixed Unrel. Non. Mean Wtd. Y. X? Failures
Ruml et al. .83 .80 -1.5 .65 b9 -12 -1.8 .56 80 1/9 (2/13)
Dell et al. 98 -40 91 A1 .55 .83 49 .87 276 5/21
Combined 97 A1 .85 21 .56 .76 b7 .87 356  6/30 (7/34)

RMSD is perhaps more intuitive that X2, as it correlates with the average difference between
the probabilities of the model and patient in each category. Its value can range from zero
through one, where zero implies identical distributions. Unfortunately, RMSD cannot be
used as the basis of a goodness of fit test, the way X? can.

All but one of the nine patients (11%) were matched by the model (two out of thirteen
(15%) if we include the four patients who made many unscorable responses). In most cases,
the fits were quite good, with the smallest p of any successful fit 0.134. Although the
RMSD for the fit to I.O.C. is relatively high, the small number of codable responses means
that the differences between the distributions are not significant. Patients P.C. and E.A.
pose problems for the model, however. The model’s matches for the two patients exhibit
many more formal and nonword responses than the patients do, and too few unrelated word
responses. One might discount the model’s failure to fit E.A., since that patient did not
provide a codable response in 21% of the trials, but P.C.’s responses were uncodable only
7% of the time. It seems that these patients’ combination of semantic and unrelated errors,
appearing with a low nonword and formal error rate, cannot be generated by Dell et al.’s
model of global damage in aphasia. These results are consistent with the analysis of Ruml
and Caramazza (2000), who showed that five of the twenty-one patients reported by Dell
et al. (1997) are inconsistent with the global damage model, and that the model always
assumes a high frequency of nonword errors for any patient with low correctness.

Although testing the model’s consistency with individual patients is important, it
provides only one perspective on the model’s performance. We might also want to quantify
how well the model is accounting for particular categories of errors when we look across
patients. For this task, we can use the ‘variance accounted for’ metric (VAF). Intuitively,
VAF is a measure of the error of the model in comparison to merely predicting the mean
of the patient data. Formally,

3 (data — model)?
>~ (data — mean)?

VAF(M,P) =1—

A VAF of 0.5 would mean that the model’s error is half of the error we would measure
when guessing the mean, while a negative VAF would mean that the model is performing
worse than guessing the mean. One would not expect to achieve a VAF of 1.0, due to the
sampling error in the patient data, and the metric is perhaps best used to compare models,
rather than to test the adequacy of a single proposal.

Table 9 presents the VAF of the global damage model for each category, on both
our patients and those presented by Dell et al. (Fits to Dell et al.’s patients were taken
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from Ruml! and Caramazza (2000).) The four patients who made many ‘other’ responses
were not included in the analysis. In addition, we can calculate summary VAFs, either by
taking the mean of the category VAFs or by recalculating VAF using data from all categories
(interpreting mean in the equation above as the mean of each category as appropriate). The
first method weights all response categories equally, while the second implicitly weights each
category according to its variance, with high-variance categories such as correct or unrelated
receiving more weight than the formal or mixed categories. The table also indicates the sum
of the X? values for the patients and summarizes the number of patients that the model was
unable to match (p < 0.05, with figures in parentheses including the four patients who made
many ‘other’ responses). As the rows of the table show, the model behaves very differently
on the two groups of patients. Generally speaking, it performs worse on our patients that
on those reported by Dell et al.. As might be expected from the use of X? as the fitting
criterion, the model does best in the correct category, which is where the majority of patient
responses fall. But for each patient group, there is at least one category in which the model
does worse than guessing the mean. When considering all patients, the model seems to have
the most trouble in the semantic and mixed categories.

Possible Error Patterns

One might wonder whether the patients that the model failed to fit, P.C. and E.A., are
somehow extraordinary, and whether their performance on the P.N.T. is dramatically incon-
sistent with the results of patients tested by Dell et al. (1997). To address this question, we
can look at the distribution of the two patient groups in the space of possible error patterns.
We can also include points corresponding to the distributions that can be generated by the
model, to give us a sense of where the patients lie in relation to the model. Of course, we
cannot view the six-dimensional space of response distributions directly, so instead we will
examine the error patterns two categories at a time. (This scatterplot technique was also
used by Ruml and Caramazza (2000).)

Various combinations of categories are shown in Figure 2. The axes of each plot refer
to particular response categories, and each mark on a particular plot refers to an error
pattern containing responses of those types with the corresponding frequencies. The other
categories of each pattern are not reflected in that plot. The small dots represent error
patterns generated by the model during the systematic testing of the parameter settings
and the subsequent fitting of the patients. Since we varied the parameters throughout their
permissible ranges, the distribution of points should indicate the entire variety of patterns
the model can generate. Note that, since the relationship between parameter values and
the resulting error mix is not straightforward, many different parameter values can yield
similar distributions, resulting in clumping in the figure. This is an artifact of the systematic
sampling and does not necessarily reflect an important feature of the model. Only the
boundary of the region containing dots is relevant for our purposes here. The performances
of patients tested and reported by Dell et al. (1997) are plotted using circles. Patients
we have reported in this paper are plotted using triangles, except for the four who made
many unscorable errors, who are plotted using x’s. Since model and patient points that
are close together in a particular plot may represent error patterns that differ significantly
in response categories that are not shown, these plots present a generous estimate of the
coverage of the model. Outliers are labelled with the patients’ initials to aid in matching
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Figure 2. Possible combinations of error frequencies under the global damage model.
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across the different projections.

In the upper left panel, for instance, we see that, while most patients have a high level
of correctness, a few have levels of correctness of about 60% or less, including some patients
reported by Dell et al.. While the model can only generate error mixes in which lowered
correctness is accompanied by a proportional increase in nonword errors, several patients,
including P.C. and E.A. as well as Dell et al.’s J.F. and W.R., do not follow this trend.
Although P.C. and E.A. are outliers in many of the plots, they are joined by other patients
reported by Dell et al., such as W.R., J.F., A.F., and G.L. While our patients represent
important test cases, they can also be seen as fleshing out trends that would be only weakly
suggested if we plotted Dell et al.’s data alone. These scatter plots also ensure that the
errors we have detected in the fits of the model to patients do not reflect a systematic minor
dislocation of the model’s space of possible error patterns. Rather, we can see that the
model’s space of possibilities needs to be extended much further along several dimensions.

Other Evidence

The failure of the global damage model to fit E.A. or P.C. and the discrepancies
between the locations of the patients and the boundaries of the model’s capabilities sug-
gest that one or more of the model’s assumptions are invalid. But which assumption (or
assumptions) should be changed? Ruml and Caramazza (2000) and Rapp and Goldrick
(in press) have suggested that an explanation of naming deficits in fluent aphasics solely
in terms of global damage is precluded by patients who make semantic errors only in one
output modality. Consider patient R.G.B. (Caramazza & Hillis, 1990), for example. He
produced 68% correct responses during picture naming, with the remainder semantic errors
(either substitutions or descriptions). R.G.B. produced a similar pattern of performance
in naming in response to tactilely presented objects and in response to aurally presented
definitions. In these and other oral production tasks such as oral reading and spontaneous
speech, R.G.B. made many semantic errors but no formal errors. In contrast, R.G.B. per-
formed very well in written naming tasks and never made semantic errors. Furthermore, he
performed flawlessly in all word comprehension tasks. The reverse pattern of dissociation
to that shown by R.G.B. has also been observed (patient S.J.D., Caramazza & Hillis, 1991;
patient R.C.M., Hillis, Rapp, & Caramazza, 1999).

Such patients, exhibiting an absence of semantic errors in one output modality com-
bined with intact comprehension, invite the conclusion of intact semantic processing. Such
circumscribed deficits appear incompatible with global damage. We can conclude, there-
fore, that the globality assumption must be false, and that the assumptions requiring global
damage to account for aphasic performance seem good candidates for modification.

A Model of Representation Decay

In light of the evidence for localized damage to the lexical access system, we will
modify Dell et al.’s model of aphasic naming to allow different parameter values at differ-
ent levels of the network. If we retain the assumption that connection and decay are the
theoretically interesting parameters that serve to relate the model of normal processing to
the behavior of aphasic patients, then we derive a model in which connection and decay
are both allowed to vary in different parts of the model. Unfortunately, we cannot test
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Figure 3. Possible combinations of error frequencies under either of the representation decay models.

this model, since it has five adjustable parameters (a decay at each of the three levels, and
two connections between them) and we are trying to match six-dimensional distributions
(that sum to one). So we will restrict our attention to models that have two adjustable
parameters, comparable to Dell et al.’s model. (We will return to the issue of degrees of
freedom later, in the final section of the paper.) First, we will consider the model in which
we allow the values of decay at each level of processing to be specified independently, while
keeping connection at its default value throughout the model. Then in the next section,
we will allow the value of connection to vary. By keeping the non-adjustable parameters at
their default values, we reduce the number of model components that are varied between
models, allowing direct comparisons of closely-related models.

The effect of increasing decay should be to quickly reduce the amount of activation
at a level of representation. This implies that intrinsic noise and the activation acquired
from neighboring representations should play larger roles. (Indeed, Dell et al. (1997) show
that increasing decay throughout the network gives effects very similar to those obtained
by increasing intrinsic noise.)

We simulated two variants of the model of representation decay, each involving only
two of the three levels. In the first variant, the values of decay of the semantic and lexical
levels are allowed to vary, and in the second, the values for the lexical and phonological
levels are allowed to change. For both models, we systematically varied the parameters
between % and 1 in steps of 6%1. This gave us at least 1,089 combinations for each variant.
The results were disappointing. Neither model was capable of producing a wide variety of
errors.

Two plots of the possible combinations of error frequencies are shown in Figure 3.
Combinations from both variants are shown in both plots. Increasing decay for any single
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layer alone has very little effect on the performance of the model. Increasing decay for
both the phonological and lexical layers in tandem causes an increase in nonword errors,
up to a maximum of about 7%. Presumably, this reflects the low activation levels at the
phonological layer, caused by increased decay at that level and lack of reinforcing activation
from the lexical layer. This allows misselection of phonemes, resulting in nonwords. The
most interesting response occurs when increasing decay at the lexical level when it is already
high at the semantic level. This causes a rapid increase in the number of formal errors,
accompanied by some semantic, mixed, and unrelated errors, but no nonwords. This reflects
the influence of activation maintained at the phonological level feeding back to the lexical
layer and influencing lexical selection. This feedback has an exaggerated effect, due to the
paucity of activation at the lexical level and lack of reinforcement from activation at the
semantic level. The low number of nonwords is a result of the normal functioning of the
phonological representations. Enough activation is maintained after lexical selection that
misselections at that level are unlikely. Consistent with this explanation, similar behavior
was observed when increasing decay at the semantic level when it was already weak at the
lexical level.

The restricted range of errors possible under this model of representational decay
would make any attempt at fitting patient data futile. (Of course, this does not imply that
some form of decay deficit might not be involved in some forms of lexical access deficits.
All that the above suggests is that a simple representational decay model cannot account
for all the forms of naming deficits.) Instead, we will turn our attention to the other model
of localized damage, in which the value of connection is varied.

A Model of Transmission Impairment

Under this model, which has been proposed by Foygel and Dell (1999), decay remains
fixed, and the value of connection used between the semantic and lexical layers can be
different from the value used between the lexical and phonological layers.® Damage is
therefore hypothesized to consist of localized impairments in the transmission of information
between different representations. This should allow, for instance, errors at lexical selection,
while preserving correct selection of the corresponding phonemes. This expectation is based
on the intuition that damage localized to the connections between two layers will not prove
very damaging to the functioning of the non-involved layer. We now evaluate the ability of
this new model to fit the data from our patients.

Fits to Patient Data

In order to start the parameter optimization algorithm in an appropriate part of the
parameter space, we systematically sampled the model’s behavior, as we did with the model
of global damage. We varied the logarithm (base 10) of connection on the links between the
semantic and lexical layers from -1 to -4, in increments of % (corresponding to connection
values of 0.1 to 0.0001), and similarly for the value of connection on the links between the
lexical and phonological layers. We kept the value of decay at its default value. For each
patient, we then fine-tuned the fit.

5Foygel and Dell use a decay value of 0.6, while we keep decay at 0.5 for consistency with Dell et al.
(1997). This seems to be the only difference between their proposal and the model we investigate here.
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Table 10: Fits of the transmission damage model to the patients.
Patient and Naming response Fit
parameter values Corr. Sem. Phon. Mixed Unrel. Non. RMSD X? p

AB. 97 .02 .00 .01 .00 .01

top .0806, bot .0054 .96 .02 .00 .00 .00 .01 .002 0.2 .999
EM. .96 .01 .00 .00 .00 .02

top .0505, bot .0060 .96 .01 .00 .00 .00 .02 .002 0.8 .980
TH. .93 .06 .00 .02 .00 .00

top .0076, bot .0379 .93 .05 .01 .01 .01 .00 .008 6.0 311
R.C. .88 .06 .00 .02 .01 .04

top .0075, bot .0087 .87 .06 .02 .01 .01 .04 .011 7.4 190
L.S. .90 .09 .00 .01 .00 .01

top .0072, bot .0115 .90 .06 .01 .01 .01 .01 .013 6.9 .226
JR3 .85 .10 .00 .04 .01 .00

top .0049, bot .0583 .84 .07 .05 .01 .03 .00 .031 24.7 .000
LT. .88 .07 .02 .02 .00 .01

top .0067, bot .0107 .88 .06 .02 .01 .02 .01 .010 8.6 .128
MM. .86 A1 .00 .03 .00 .00

top .0058, bot .0149 .85 .08 .03 .01 .03 .00 .021 15.4 .009
P.C. .62 12 .05 .05 .14 .02

top .0034, bot .0104 .63 13 .10 .01 11 .02 .028 19.8 .001
JR.2 .83 .09 .01 .04 .00 .04

top .0056, bot .0093 .81 .08 .04 .01 .03 .03 .023 18.7 .002
JR.1 .90 .07 .01 .02 .00 .00

top .0067, bot .0264 .90 .06 .02 .01 .02 .00 .010 4.1  .535
E.A. 42 .28 .04 .10 .14 .01

top .0018, bot .0104 .41 .16 .19 .02 .20 .02 .089 80.0 .000
L.LO.C. .81 A7 .00 .03 .00 .00

top .0052, bot .0205 .82 .10 .04 .01 .04 .00 .037 5.7 .333
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Table 11: Summary of the performance of the transmission damage model.

Patient VAF by category Summary VAF
Group Corr. Sem. Phon. Mixed Unrel. Non. Mean Wtd. Y. X? Failures
Ruml et al. .99 .75 -2.0 -.42 .85 .92 17 .87 90 3/9 (5/13)
Dell et al. .95 .33 .99 -.67 .78 .62 43 .84 450 10/21
Combined .95 .02 .87 -.57 .79 .69 49 .86 540 13/30 (15/34)

The fits found by the regression algorithm are shown in Table 10. The listed parameter
settings correspond to values of connection for links between the top two layers and the
bottom two layers. Three of the nine patients (33%) failed to match at a 0.01 significance
level (five of thirteen (38%), if we include the other four patients). In addition to P.C.
and E.A., patients J.R.3, M.M., and J.R.2 could not be simulated. The model seemed to
consistently make fewer mixed and semantic errors than the patients, and more phonological
errors.

Foygel and Dell (1999) present fits of their transmission impairment model to the
patients of Dell et al. (unnormalized data). For eight of the twenty-one fits (38%), the
corresponding X? values are above 12.8, which corresponds to a significance of 0.025. Five
of the twenty-one values (24%) indicate a failure to fit at the 0.01 significance level. Using
normalized data, our regression algorithm was unable to obtain substantially improved fits,
failing on 10 patients at a significance of 0.05. For fourteen of their patients (66%), the
model of global damage provides a better fit.

Table 11 gives another view of the model’s performance, showing the summary and
category VAFs of the model for both our patients and Dell et al.’s. As with the model of
global damage, the performance of the model is different across the two groups of patients,
although the mixed errors of both groups seem hard to account for. Even when considering
all patients, the transmission impairment model has a negative VAF for the mixed error
category. This behavior is hidden by the weighted VAF score, which is comparable to that
for the global damage model even though this model failed to fit twice as many patients.

Possible Error Patterns

A different view emerges when we view the transmission impairment model’s space of
possible errors. In Figure 4, we plot the model’s coverage of the space of possible response
distributions, exactly as we did in Figure 2 for the global damage model. By comparing
the two sets of plots, one can see that, in several ways, the transmission impairment model
gives broader coverage. In the upper left panel, for instance, we see that the relationship
between the frequencies of correct and nonword responses is now much looser, indicating
that the model can generate few nonword errors even while generating many errors of
other types. The systematic parameter adjustments cause striping in the plot, showing us
how adjustment of the connection value between the semantic and lexical layers allows the
frequency of word errors to be varied without increasing the number of nonword errors.
The model’s ability to generate mixed errors seems sharply curtailed, however. It cannot
generate more than about 2% mixed errors, at any level of correctness, as shown in the
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Figure 4. Possible combinations of error frequencies under the transmission damage model.
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panels to the lower left. The upper middle panel also shows that the model cannot make a
large enough proportion of its incorrect responses semantic errors.

These limitations of the model would not have been clear had we used a single projec-
tion of the data. Rather than presenting a collection of multiple projections using various
pairs of response categories, we might have chosen a single plane, perhaps using principal
components analysis (PCA), that would combine information from all categories. Even
though such a slice through the six-dimensional space might be the best possible single
projection in terms of capturing the maximum possible variance among the possible error
patterns, it would not necessarily capture the relationships between the model and patient
data. In Figure 5, we give a simple illustration of how a single projection may obscure
additional dimensions along which a model and patient data differ. We plot the model and
patient distributions in three-dimensions, rather than two as we did in Figures 2 and 4. In
the upper left panel, the major axes are the correct and nonword categories. Subsequent
panels show the effect of rotating the plot to reduce the contribution of the nonword dimen-
sion and increase the contribution of the mixed dimension. In effect, we are interpolating
between the upper left and middle left panels of Figure 4. The axis lines give a rough indi-
cation of the contributions of the three dimensions (although, as in other figures, the scales
of the axes have been normalized). It is clear that including more than two dimensions in
a single projection does not necessarily combine the insights available when looking from
multiple views.

Although the transmission impairment model seems to allow a wider range of possible
error patterns than the other models we have considered so far, especially in the semantic
and nonword dimensions, its inability to match patient data suggests that further modi-
fications are necessary. One possibility is that the model of damage is not the problem,
but rather the underlying model is flawed. We turn now to models incorporating different
assumptions regarding normal processing,.

A Model of Reduced Interactivity

An alternative model of aphasic naming has recently been proposed by Rapp and
Goldrick (in press). They consider several models based on the same notion of activation
spreading through a network that Dell et al.’s model uses, but varying in the degree to
which the levels of representation interact during processing. Using three patients, two of
whom made the large majority of their errors as semantic errors, they found that, while
the feedback of activation from the phonological representations to the lexical level was
necessary to account sufficiently for mixed errors, it was easy to have too much feedback,
resulting in a preponderance of formal and nonword errors. They propose a model in which
interaction is restricted, and suggest that it can account for their patients’ performance.

Rapp and Goldrick’s restricted interaction model differs from Dell et al.’s in five ways:

limited feedback: Not only is the value of connection on links from lower levels to higher
ones smaller than the value in the opposite direction, but the links feeding back from
the lexical to the semantic level are entirely absent.

damage via noise: Damage is modeled by varying the amount of noise in the activation
functions of representations in a given layer, rather than by changing decay or con-
nection.
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no ambient noise: The activation function doesn’t include any intrinsic noise, whose vari-
ance is specified on an absolute scale. Rather, noise at each node is always proportional
to that node’s current activation.

larger lexicon: Only a single network structure is used, and it contains twenty-nine words
rather than six. Rapp and Goldrick find that their single large lexicon allows an
improved approximation to English error opportunities over Dell et al.’s switching
between two small lexicons, particularly with regard to differences in phonological
overlap within and between semantic categories.

concepts: The model contains a layer of representation above the semantic layer, corre-
sponding to concepts. Processing therefore includes an additional preliminary selec-
tion step, in which, after input to the semantic layer, the most active conceptual
representation is chosen. Processing then proceeds to lower levels, as usual, with
selection at the lexical and phonological levels.

Although Rapp and Goldrick consider only the first of these assumptions to be theoretically
central, we will test all of them, with the exception of the conceptual representation and
its additional selection step.” Since Rapp and Goldrick’s central argument concerns the
importance of limited feedback, we will investigate that feature first.

We modified the network to conform to Rapp and Goldrick’s restricted interaction
assumption, removing the links from the lexical level to the semantic level, and reducing
the strength of the connections from the phonological level to the lexical level. To maintain
this assumption of reduced feedback, we constrained the value of connection on links from
the phoneme layer back to the lexical layer to always be a fixed fraction of the value used
in the forward direction. We will call this fraction the feedback attenuation. Since these
reduced feedback assumptions underlie both normal and aphasic processing, we investigated
the behavior of the network using both models of localized damage we previously considered
(representational decay and transmission impairment) as well as Rapp and Goldrick’s idea
of noisy representations.

Reduced Feedback and Transmission Impairment

First, we will consider the transmission impairment notion of damage, in which the
values of connection are decreased. We again systematically sampled the behavior of the
model with different combinations of connection values for the links from the semantic
layer to the lexical layer, and from the lexical layer to the phoneme layer. The feedback
attenuation was set to %.

The resulting error patterns seemed identical to those obtained from the original
network under the same damage assumptions (Figure 4). The similarity of the results with
the fully interactive model confirms Rapp and Goldrick’s observation that feedback links can
be included in a model without necessarily playing a large role in determining its behavior.
Predictably, similar results were obtained with the feedback attenuation at % However,

"We exclude investigation of the additional layer because of the multiple additional assumptions it in-
volves. While Rapp and Goldrick introduced their conceptual layer for the purposes of investigating a
particular patient, it is more important to us to remain as similar as possible to the other models we are
comparing against so we can isolate the factors underlying differential performance.
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when we set the feedback attenuation to only 1(1)—0, (meaning that activation spreads one
hundred times more easily from the lexical to phoneme layers as in the opposite direction),
the model’s performance deteriorated completely, producing only errors at all parameter
settings. We hypothesize that this is caused by the diminution of activation in the absence
of reinforcing interaction, resulting in the pronounced relative effects of background noise.
(We will test this hypothesis later in this paper, by removing background noise.)  For
our purposes of fitting patient data, it seems this combination of processing and damage
assumptions shows little promise beyond models we have already tested.

Reduced Feedback and Representational Decay

Although the assumption of damage as representational decay did not seem promising
earlier, combining it with reduced interactivity yielded a model with more interesting be-
havior, although again the model did not seem suitable for matching patient performance.
We allowed the values of decay to vary for the representations at the lexical and phonological
levels. Feedback attenuation was kept at 11—0.

Results from systematically varying the two parameters are shown in Figure 6. Either
one of phonological or lexical decay alone yields many nonword errors, and both together
result in complete breakdown. A very small amount of lexical decay alone results in some
semantic and unrelated errors, but no more than 8%, and many formal errors are present
as well. The model’s performance does not look promising. (Simulations with the feedback
attenuation at % or 1(1)—0 were also disappointing, yielding mostly nonword errors at most
parameter settings.)

But increasing decay is a rather roundabout way of introducing errors into the model’s
performance. As we mentioned earlier, this increases the effects of noise and spreading
activation, the effects of which can be difficult to predict. Rapp and Goldrick suggest a
more direct and intuitive method for introducing errors, which we investigate next.

Reduced Feedback and Noisy Representations

Rapp and Goldrick model aphasic naming by increasing the noise level at the concep-
tual, lexical, and phonological levels. Because our model does not include their additional
layer of atomic conceptual representations, and in order to continue constraining our models
to have only two adjustable parameters, we will only consider adding noise to the lexical
and phoneme layers. (We carried out limited simulations adding noise only at the semantic
level, but only very few semantic errors could be generated without a large number of non-
word errors.) We systematically varied the standard deviation of the noise between one and
five times its default value. We only changed the noise component which is proportional to
the given node’s activation; the ambient noise remained at its default level.

First, we experimented with adding noise to a single layer only. Adding noise to the
phonological layer predictably results in formal and nonword errors. (This happened at
many settings of feedback attenuation). We obtained more formal than nonword errors,
which differs from the results reported by Rapp and Goldrick. They obtained almost exclu-
sively nonword errors with noise at the phonological level, probably because their network’s
lexicon contained many more phonemes than Dell et al.’s, which implies that a larger per-
centage of the possible combinations of phonemes would result in a nonword error. They
may also have used a more aggressive feedback attenuation. Adding noise at the lexical level
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resulted in mostly semantic errors. Increasing the feedback attenuation (from 0.1 to .3) in-
creased the formal errors, while lowering the attenuation (from 0.1 to .001) also reduced
correctness (but with a wider variety of errors).

We then investigated the behavior of the model when noise is added at both the
lexical and phonological levels simultaneously. This model differs from Rapp and Goldrick’s
central proposal in only three ways: it retains the lexicon and ambient background noise
assumptions of Dell et al., and it does not incorporate a conceptual level of representation.
We systematically varied the two noise parameters (lexical and phonological) at several
values of feedback attenuation (0.46, 0.32, 0.22, 0.16, 0.1, 0.05, and .001). At the extreme
values (0.46, .01, 0.05, and .001), the range of possible patterns did not look promising.
At very low levels of feedback, in particular, the highest achievable level of correctness was
very low. At the three intermediate levels of feedback, the behavior of the model seemed
promising. Figure 7 shows the possible combinations of error frequencies when using a
feedback attenuation of 0.22. As Rapp and Goldrick have noted, by using noise at the
semantic level alone, the model can produce error patterns with up to 10% semantic errors
and no formal errors. The model has a very tightly restricted range of both unrelated and
mixed errors for a given level of correctness however.

We fit the model of restricted interaction with noisy representation damage to our
patients, using all three intermediate values of feedback attenuation. The most promising
model was that at the 0.22 level of feedback. The resulting fits are shown in Table 12. The
parameter settings are listed as multiples for the default noise level (ie, 2 represents twice
the normal noise). Two of the nine patients (22%) were not matched (four of thirteen (31%)
if we include the four patients who made many ‘other’ responses). This seems comparable to
the fit of the other promising model we have seen so far, the original fully-interactive model
under the assumption of transmission impairment, which failed on three of our patients (five
when including the ‘other’ four). To gain more confidence in our estimate of the model’s
ability, we also fit the model to the patients of Dell et al. (1997). The resulting fits are
shown in Table 13. The model failed to match six of the twenty-one patients, which seems
improved from the transmission impairment model (which failed on ten of the patients).

Table 14 presents a VAF analysis of the noisy representations model. As with the
original transmission damage model (Table 11), the model of noisy damage does least well
in accounting for mixed errors. It also seems to have general trouble modeling semantic
errors, doing only a bit better than guessing the mean. The VAF scores are remarkably
little improved over the original transmission damage model, considering the improvement
in fitting the patient data.

The other levels of feedback attenuation performed slightly worse. The 0.32 level also
failed to fit five of our thirteen patients, and failed on thirteen of Dell et al.’s twenty-one
patients, for a total failure rate of é—i. The 0.16 level model failed on only three of our
patients, but eight of Dell et al.’s, for a total rate of ;—}l. It seems as if the 0.22 level is
representative of the model’s capabilities.

Reduced Ambient Noise

Given the relative success of a model of damage incorporating noise proportional to
each node’s activation level, one might wonder whether the intrinsic noise component of the
activation is now redundant and dispensable. We modified the restricted interaction model
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Table 12: Fits of the restricted-interaction model to the patients under the assumption of noisy

representations. Feedback attenuation was 0.22.

Patient and Naming response Fit
parameter values Corr. Sem. Phon. Mixed Unrel. Non. RMSD X2 P

AB. 97 .02 .00 .01 .00 .01

word 1.12, phon 1.87 .97 .01 .01 .00 .00 .00 .007 4.8 442
EM. .96 .01 .00 .00 .00 .02

word 1.06, phon 2.25 .94 .01 .03 .00 .00 .02 .016 6.7 .245
T.H. .93 .06 .00 .02 .00 .00

word 1.75, phon 1.00 .92 .06 .01 .01 .00 .00 .004 1.8 .870
R.C. .88 .06 .00 .02 .01 .04

word 1.75, phon 2.31 .85 .06 .05 .01 .00 .03 .022 10.3  .067
L.S. .90 .09 .00 .01 .00 .01

word 2.09, phon 1.12 .87 .10 .01 .01 .00 .00 .013 3.5 .617
JR.3 .85 .10 .00 .04 .01 .00

word 2.09, phon 1.00 .87 .09 .02 .01 .00 .00 016 121 .033
L.T. .88 .07 .02 .02 .00 .01

word 2.00, phon 1.81 .86 .08 .03 .01 .00 .01 .010 3.3 .651
M.M. .86 A1 .00 .03 .00 .00

word 2.12, phon 0.49 .87 .10 .01 .01 .00 .00 .008 3.8 .5b76
P.C. .62 12 .05 .05 .14 .02

word 4.50, phon 1.25 .52 .19 .16 .02 .06 .04 .076 373 .000
JR.2 .83 .09 .01 .04 .00 .04

word 2.19, phon 2.09 .81 .10 .05 .02 .01 .02 .023 11.3 .045
JR.1 .90 07 .01 .02 .00 .00

word 1.94, phon 0.88 .90 .08 .01 .01 .00 .00 .006 1.0 .962
E.A. 42 .28 .04 .10 .14 .01

word 5.12, phon 0.97 .47 21 .19 .02 .08 .04 .078 57.0 .000
1.O.C. .81 A7 .00 .03 .00 .00

word 2.50, phon 0.19 .82 13 .03 .02 .01 .00 .019 1.7 .890
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Table 13: Fits of the restricted-interaction model to Dell et al.’s patients under the assumption of
noisy representations. Feedback attenuation was 0.22.

Patient and Naming response Fit
parameter values Corr. Sem. Phon. Mixed Unrel. Non. RMSD X2 P

WB. 94 .02 .01 .01 .00 .01

word 1.34, phon 2.00 .93 .03 .02 .01 .00 .01 .006 2.1 .828
T.T. 95 .01 .01 .02 .00 .00

word 1.62, phon 1.62 .93 .04 .01 .01 .00 .00 017 9.2 .100
J.Fr. .93 .01 .01 .02 .00 .02

word 1.37, phon 2.25 .90 .03 .04 .01 .00 .02 .018 10.2  .069
V.C. .92 .02 .01 .01 .00 .03

word 1.37, phon 2.25 .90 .03 .04 .01 .00 .02 .014 4.9 422
LB. .82 .04 .02 .01 .01 .09

word 1.75, phon 2.87 .77 .05 .09 .01 .01 .08 036  10.7 .057
JB. .83 .06 .01 .03 .01 .06

word 1.94, phon 2.37 .81 .07 .06 .02 .01 .03 023 10.8 .056
JL. .85 .03 .01 .03 .01 .06

word 1.94, phon 2.62 .78 .07 .08 .01 .01 .05 .042 17.2 .004
G.S. .73 .02 .06 .01 .02 .15

word 1.81, phon 3.31 .67 .05 A2 .02 .01 .14 036 10.6 .059
L.H. .71 .03 .07 .01 .02 15

word 1.81, phon 3.31 .67 .05 12 .02 .01 14 .028 7.7 174
J.G. .59 .06 .09 .04 .03 .20

word 2.22, phon 3.56 .57 .07 14 .02 .02 19 025 104 .065
E.G. 94 .03 .00 .02 .00 .01

word 1.69, phon 1.72 .91 .05 .02 .01 .00 .01 017 9.6 .086
B.Me. .89 .03 .01 .05 .01 .00

word 2.47, phon 1.25 .81 13 .03 .02 .01 .01 .056 28.5 .000
B.Mi .88 .05 .01 .02 .01 .01

word 2.00, phon 1.81 .86 .08 .03 .01 .00 .01 .016 7.5 187
JA. 88 .05 .00 .03 .01 .03

word 1.87, phon 2.25 .84 .07 .05 .01 .01 .02 .029 14.9 .011
AF. .78 .02 .03 .06 .04 .07

word 2.25, phon 2.62 .73 .09 .09 .02 .01 .06 046  41.1 .000
N.C. .80 .03 .07 .01 .00 .09

word 1.47, phon 2.91 .80 .03 .09 .01 .00 .07 .008 1.2 .942
IL.G. .77 .10 .06 .03 .01 .03

word 2.25, phon 2.12 .78 A1 .06 .02 .01 .03 .008 2.2 818
HB. .61 .06 13 .02 .01 18

word 1.87, phon 3.62 .61 .05 .14 .01 .01 18 .005 0.4 .994
JF. .66 .16 .01 13 .01 .03

word 3.25, phon 1.25 .67 18 .09 .02 .02 .02 .053 73.3 .000
G.L. .29 .04 .22 .03 .10 .32

word 4.37, phon 3.87 .29 .10 .19 .02 .08 .32 .030 9.1 .106
W.R. .08 .06 .16 .05 .35 .30

word 14.40, phon 3.87 .20 13 .22 .02 15 .27 104 742 .000
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Table 14: Summary of the performance of the restricted-interaction model with noisy representa-
tions.

Patient VAF by category Summary VAF
Group Corr. Sem. Phon. Mixed Unrel. Non. Mean Wtd. Y. X? Failures
Ruml et al. .84 .45 -6.2 14 .69 .71 -.56 .63 84 2/9 (4/13)
Dell et al. 96 -.34 .46 -.27 .64 .99 41 .88 356 6/21
Combined 95 .036 .34 -.17 .65 .99 A7 .87 440 8/30 (10/34)

Table 15: Summary of the performance of the restricted-interaction model without ambient noise
and with noisy representations.

Patient VAF by category Summary VAF
Group Corr. Sem. Phon. Mixed Unrel. Non. Mean Wtd. Y. X? Failures
Ruml et al. .76 .05 -5.6 .098 .63 51 -.59 .53 86 2/9 (3/13)
Dell et al. 94 1.2 .67 -.33 .39 .92 .23 .83 462 9/21
Combined 93 -.62 .54 -.22 A3 .93 .33 .82 548 11/30 (12/34)

with noisy representations by removing the ambient noise (represented by the coefficient in-
trinsic in the activation function). Damage was modeled as before, using noise proportional
to each node’s activation, added at different rates at the lexical and phonological levels. We
considered feedback attenuations of 0.32, 0.22, 0.16, and 0.1.

The best of this family of models seemed to be the one with a feedback attenuation
of 0.1 (which is lower than the 0.22 we found when including ambient noise.) The possible
error patterns are shown in Figure 8. The lack of intrinsic noise seemed to allow a sharper
dissociation between error patterns with only semantic errors and only phonological errors.
More precisely, the range of possible frequencies of semantic errors that could be generated
without producing many formal errors was larger than when using intrinsic noise, and the
highest attainable percentage of semantic errors was also higher. As one might expect, since
there was less background noise, more noise was also required to achieve a given level of
nonword errors.

Unfortunately, these features did not improve the model’s ability to match the per-
formance of patients. The model failed to match two of our patients (three out of the full
thirteen: J.R.3, P.C., and E.A.), and nine of Dell et al.’s (T.T., J.L., J.G., B.Me., J.A,
AF. JF., G.L., and W.R.). For our patients, the model’s inability to produce many unre-
lated errors was a severe problem. For Dell et al.’s data, the model’s deficiencies were less
obvious, although the frequency of semantic errors seems involved. Table 15 gives the VAF
scores, which are marginally worse than those of the same model with noise. Again, the
mixed error category is troublesome, although semantic even more so.

Models incorporating more feedback (corresponding to feedback attenuations of 0.32,
0.22, and 0.16) matched slightly fewer patients.
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A Larger Network

The remaining difference between the models of Dell et al. (1997) and Rapp and
Goldrick (in press) that we will address is that of the different lexicons. (As we mentioned
above, we will not address the addition of a conceptual layer.) Rapp and Goldrick point
out that the maximum frequency of mixed errors that can be generated by any model using
Dell et al.’s network structures is 10%, since of the two small networks they use, only the
one which is used 10% of the time contains a word both semantically and phonologically
related to the target. Since both Dell et al. and Rapp and Goldrick construct their lexicons
by attempting to match the error opportunities of English (as we discussed earlier), one
might think that any differences would be insignificant. In our limited experiments using
Rapp and Goldrick’s single large network with the assumption of restricted feedback and
noisy representations, we were unable to replicate the level of performance we had achieved
using Dell et al.’s lexicons.

When using ambient noise, limiting feedback substantially (with a feedback attenua-
tion of 0.1, for instance) resulted in an inability to produce correct responses. When using
more feedback (attenuations of 0.32 or 0.22), we were unable to fit at least seventeen of the
thirty-four patients, including at least six of our own. At all parameter settings, the model
produced many more mixed errors than it had when using the Dell et al. lexicons. Without
ambient noise (as in Rapp and Goldrick’s proposal), we failed to fit at least sixteen patients
(using feedback attenuations of 0.32 and 0.1).

These disappointing results may be merely an artifact of our limited experimentation,
but they certainly indicate that the model’s behavior is very sensitive to the lexicon used in
the simulation. Such details, which are typically subordinated as implementational, have as
much impact on model performance as the more theoretically central assumptions, such as
the functional impact of brain damage on the lexical system. While the qualitative shape
of the model’s space of generable patterns remained roughly similar with the larger lexicon,
the exact shape and size of the model’s coverage changed dramatically. Figure 9 provides a
direct comparison, with results using Dell et al.’s networks on the left, and using Rapp and
Goldrick’s lexicon on the right. The frequency of mixed errors, for instance, tended to be
much greater, while maintaining a similar relationship with unrelated errors.

Summary of Empirical Results

We have now traversed the spectrum from the fully-interactive model of Dell et al.
(1997), which assumed global damage, to the restricted feedback model of Rapp and
Goldrick (in press), which postulated localized noisy representations. Table 16 shows a
summary comparison of the models, indicating whether the hypothesized damage affected
transmission of activation (conn), maintenance of activation (decay), or noise in the repre-
sentations themselves (noise). The table also shows the two types of quantitative evaluation
statistics we considered: variance accounted for (VAF, both averaged over categories and
computed as a single weighted sum) and the number of patients each model failed to fit (x?
test, p < 0.05, figures in parentheses include patients who made many ‘other’ responses).
We found that:

1. A model incorporating global damage fails on six of the thirty patients, and is
incompatible with documented cases of local damage.
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Table 16: Summary of the models considered in this paper.

Damage VAF
Network Type Location Ambient noise Cat. Wtd. Failures
conn, decay global .57 .87 6 (7)
Dell et al. conn upper, lower .49 .86 13 (15)
2 x 6-word sem, lex poor
decay lex, phon yes poor
Dell et al. conn upper, lower poory
2 X 6-word, decay lex, phon poor
no lex—sem noise lex, phon AT .87 8(10)
1o 33 82 11(12)
Rapp and Goldrick noise lex, phon yes ~ 17
29-word no ~ 16

tor similar to fully interactive, depending on feedback attenuation

2. A model incorporating representational decay did not exhibit sufficient variety of
possible error patterns to make patient fitting worthwhile.

3. A model of transmission impairment similar to that of Foygel and Dell (1999) fails
on thirteen of the thirty patients.

4. A model with reduced feedback seems to perform best when used with a noisy
representation brain damage assumption. A model with these features fails on only eight
of the patients.

5. Additional models incorporating further assumptions of Rapp and Goldrick, such
as a lack of ambient noise or a larger lexicon, matched fewer patients.

Discussion

We systematically explored several of the assumptions included in current compu-
tational models of aphasic picture-naming. These included both assumptions regarding
interaction during lexical access and assumptions about the effects of brain damage on the
performance of a model of normal behavior. We reported the picture-naming performance
of thirteen patients, and used those data, in addition to the patterns from twenty-one pa-
tients reported by Dell et al., to test the models. (We did not consider data from additional
tasks, such as word repetition, or more detailed analyses, such as investigations of a mixed
error effect or a grammatical class effect.) No model that we tested could account for all
the patients. However, one of the models, a novel intermediate position between propos-
als of Dell and his collaborators and Rapp and Goldrick, seemed able to match a greater
number of patients than the other psychologically plausible models we tested that were
closer to those endpoints. Our empirical approach combined multiple views of the possible
error patterns a model could generate, along with a formal numerical regression procedure
for matching patients’ patterns. We showed that both of these methods are crucial for
achieving a balanced view of a model’s performance, and that evaluations based on single
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projections or summary statistics such as variance accounted for (VAF) can fail to detect
the shortcomings of a model.

Limitations of Simulation Studies

It is important to note that the conclusions one can draw from the performance of
these models are quite limited. In particular, the apparent increase in matching ability of
the hybrid model we investigated here must be weighed against the fact that the model
still fails to match many patients, and is thus inadequate. One cannot dismiss its failures
by appealing to the intuitive overall closeness of the fits. If we were to rely on intuition,
when would a mediocre fit become a failure to match? If we are to allow our model to
be falsifiable, then we must choose a criterion, in our case, a significance level for a 2
test. If certain failures could be directly traced to specific simplifying assumptions, then
the direction of further work would become obvious, but this would not excuse the model
or provide support for the remaining assumptions.

Pragmatically speaking, the fact that the hybrid model performs better than any
other psychologically plausible model we tested suggests that its assumptions may prove
useful in constructing a model that can account for all of the patients. This is the true
value of simulation work such as ours, or that of Dell et al. or Rapp and Goldrick. As with
regression more generally, replicating a trend in a data set is provocative, and in engineering
or finance, such partial solutions can be useful end products. But in a scientific setting,
an inaccurate model cannot form the basis of further theoretical claims or inferences. It is
not clear that such ‘partial matches’ as we have achieved can provide support for any of
a model’s assumptions. For instance, if we did not have additional evidence ruling out a
theory of aphasia stipulating global damage throughout the lexical system, the simulation
results we have seen would lead us to favor the global damage model over the restricted
interaction model. It matches more patients than any other model we tested, has a higher
mean category VAF, and its weighted overall VAF is likely statistically indistinguishable
from the competing model. A suggestive model that is inconsistent with patient data
can only help direct future work, and as this example illustrates, partial success may be
misleading. It is in this sense that our conclusions, and those of other researchers, must by
necessity be limited.

Even if a model were to succeed in accounting for the patient data, however, one would
need to be cautious in claiming support for particular assumptions as opposed to others.
We have shown, for instance, that although Rapp and Goldrick’s proposal for reduced
feedback seems promising, the performance of a model incorporating that assumption still
depends crucially on the damage assumptions and lexicon that accompany it. In our limited
experiments, using a larger lexicon that more closely approximates English resulted in
poorer performance. The notion of reduced feedback seems appealing, but even if a model
including it were to match the data, one could not claim that those fits supported that
assumption. Rather, the entire model, including both the theory of normal processing
and the assumptions regarding brain damage, would be validated. Since any of the many
assumptions involved could have aided the data-fitting process as easily as hindering it, it
would still have remained unclear whether a more accurate model would have continued to
enjoy empirical support.

This suggests an important principle for computational modeling: the impact of the
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theoretically uninteresting assumptions should be evaluated as carefully as the model com-
ponents that correspond to the central issues under examination. Such tedious and sys-
tematic experiments deserve the same respect as traditional sensitivity analysis in mathe-
matical modeling. Without them, it is premature to draw conclusions in favor of particular
assumptions. When a complete examination of the basic assumptions proves impractical
to perform, the dependence of the model’s performance on all of its components should be
explicitly acknowledged.

The Importance of Single-Patient Analysis

Of course, an attempt to account for a patient is predicated on the assumption that the
patient’s behavior falls within the scope of the model. Even aside from the issue of whether
aspects of naming behavior such as grammatical class or descriptive responses are relevant,
many studies (including this one) attempt to use data from patients whose impairments are
not well understood. If a patient has brain damage to mechanisms other than those involved
in lexical access, and that damage affects naming behavior, then modeling that patient’s
behavior is at best irrelevant, and could possibly be misleading. One might mistakenly
modify the structure of the lexicon to correct for a patient’s difficulty in visual analysis.
Conversely, if the patient’s damage is clearly confined to the lexical access system, or if it
extends beyond the lexical system only to mechanisms that can safely be assumed to be
irrelevant for the tasks at hand, then failure to match must compel rejection of the model
as inconsistent with the data. This consideration requires that patients whose performance
is used for testing models of naming each be tested extensively on other related tasks to
rule out, or at the very least delineate, damage to other relevant systems. The requirement
that is used in this paper and by other researchers stipulates only that a patient’s output
be fluent. This methodological gap opens the possibility that only a subset of the patient
groups currently used by researchers for model evaluation is actually relevant.

This situation also provides a good example of the importance of closely examining
the match of a model to each patient, as we did with the x? tests. Unlike metrics such
as VAF that collapse data across patients, the x? test can point us to particular patients
whose performance cannot be explained by the model. In our examination of the global
damage model, for instance, we found that the lowest category VAF was for semantic errors.
But for P.C., the most troublesome patient for the model, the semantic category was the
best fit category (Table 8). As this shows, particular mismatches are obscured by group
behavior in a global measure such as VAF. Since the frequency of any particular pattern of
patient performance should have no bearing on its ability to disconfirm a theory, metrics
with this character are not as useful as those that can detect failures on individual patients.
Once we have identified specific problematic patients, we can then reassess the patient’s
deficits to be sure the model is applicable, and begin the process of uncovering systematic
discrepancies across multiple tasks that could lead to theoretical revisions. Collapsing data
across patients can obscure those patients that provide the most informative test of a model.
(For a more general discussion of the limitations of grouped analysis in neuropsychology,
see Caramazza (1986).)
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Testing More Complex Models

In this paper, we have limited ourselves to considering models with two adjustable pa-
rameters. We imposed this constraint on ourselves to avoid making the data fitting problem
trivial. Decisions regarding degrees of freedom are not obvious, however. Certainly, damage
to brain areas involved in lexical access can come in many forms, and our models may need
to reflect this. Fortunately, the same neuropsychological analysis that we advocated previ-
ously for ensuring patient relevancy can be helpful here. By localizing the damaged module
or pathway in each patient, we constrain the degrees of freedom we have for model fitting.
Once we know that a patient has damage only to certain representations, we must allow
changes to our computational model of normal performance only in those representations
or pathways connected to them. It is suddenly irrelevant for the purpose of fitting that
patient how many parameters the model has for manipulating other features of the lexical
system. The model would account for that patient only if it could generate the patient’s
behavior with any abnormal parameter settings confined to the functional areas that are
damaged in that patient. In this way, patients with more clearly defined deficits should play
a dominant role in computational modeling of aphasia, since they narrow down the number
of parameters that can be adjusted in a modeling attempt. Rapp and Goldrick’s work, for
example, benefits from such localization constraints. Although they allow noise at each of
their four different levels of representation, they only have one or two free parameters at a
time, since the functional locus of the damage in the patients they consider has already been
localized. When combined with the formal regression approach of Ruml and Caramazza
(2000), these a priori constraints would allow sound evaluation of very complex models of
naming in aphasia.

Inferences in the opposite direction, from models to patients, would require even more
stringent tests. If a model that assumed damage to one area of the lexical system were to
fit a particular patient better than a model postulating damage in a different location, this
cannot tell us anything about the locus of damage in that patient unless we understand the
implications of every possible way that the models can be damaged. First, we would have to
be confident that the first model can reproduce the new patient’s behavior when damaged
in the same unknown way that the patient is actually damaged. This assurance could
only be gained by extensive prior comparisons with a diverse set of patients whose loci of
damage are known. In addition, we would need to be certain that neither model can produce
behavior similar to the patient’s when damaged in any alternative way (or combination of
ways). (This was not the case in the present study, for instance, in which we have seen
theoretically divergent assumptions about brain damage result in fits to particular patients
that are of similar quality.) Without such detailed knowledge, we cannot be sure that the
hypothesized damage that yields the best fit of the model corresponds to the patient’s actual
damage. Again, evidence from additional related tasks may be of assistance in narrowing
down the number of hypotheses that are consistent with the patient’s behavior. (Although,
of course, such evidence cannot be used during model regression without a commensurately
elaborate model that can generate behavior on multiple tasks).
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Conclusions

Our systematic exploration of the spectrum of two-step spreading-activation models
yielded a new hybrid model which seems to perform slightly better than models closer
to proposals of Foygel and Dell (1999) and Rapp and Goldrick (in press). It contains
the lexicon and intrinsic noise assumptions of Dell et al. (1997) and Foygel and Dell, and
the restricted feedback and damage assumptions of Rapp and Goldrick. We used both
a numerical regression algorithm to test the model’s fit to patient picture-naming data,
and multiple views of its generable response patterns to gain a more intuitive sense of its
limitations. It is important to note that no model that we tested could account for all of the
patients. Our results are therefore only suggestive of directions for further work, and cannot
support strong theoretical inferences. Furthermore, we found that supposedly peripheral
modeling assumptions can play at least as large a role in determining model behavior as the
assumptions corresponding to the theoretical issues under investigation. We believe that
broad neuropsychological assessments of patients can provide constraining evidence that,
when used in tandem with close analysis of a model’s fit to each patient, will enable sound
evaluation of more accurate models in the future.
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