Best-first Utility-guided Search

Wheeler Ruml and Minh B. Do

Embedded Reasoning Area Palo Alto Research Center {ruml, minhdo}@parc.com

Overview

- Overview
- Anytime Algs
- Bugsy
- Properties
- **■** Evaluation
- Gridworld
- MSA
- Planning
- **■** Summary

A* takes too long: we must trade cost for time.

Overview

■ Overview

- Anytime Algs
- Bugsy
- Properties
- **■** Evaluation
- Gridworld
- MSA
- Planning
- Summary

A* takes too long: we must trade cost for time.

$$U(s,t) = -w_f \cdot f(s) - w_t \cdot t$$

Overview

Overview

- Anytime Algs
- Bugsy
- Properties
- **■** Evaluation
- Gridworld
- MSA
- Planning
- Summary

A* takes too long: we must trade cost for time.

$$U(s,t) = -w_f \cdot f(s) - w_t \cdot t$$

Anytime algorithms are annoying to use and to design.

Utility-guided search is a promising alternative.

The Anytime Approach

- Overview
- Anytime Algs
- Bugsy
- Properties
- **■** Evaluation
- Gridworld
- MSA
- Planning
- Summary

The Anytime Approach

- Overview
- Anytime Algs
- Bugsy
- Properties
- **■** Evaluation
- Gridworld
- MSA
- Planning
- Summary

Requires a termination policy, assuming:

- relevant features for predicting progress are known
- training data available
- new instance is similar in relevant aspects to training
- relevant aspects are known

The Anytime Approach

- Overview
- Anytime Algs
- BUGSY
- Properties
- Evaluation
- Gridworld
- MSA
- Planning
- **■** Summary

Requires a termination policy, assuming:

- relevant features for predicting progress are known
- training data available
- new instance is similar in relevant aspects to training
- relevant aspects are known

Impossible to design optimally:

$$f = 5$$

$$d = 1$$

$$d = 2$$

$$d = 2$$

Must know the user's utility function!

Best-first Utility-guided Search, Yes!

- Overview
- Anytime Algs
- Bugsy
- Properties
- **■** Evaluation
- Gridworld
- MSA
- Planning
- **■** Summary

■ Want best-first search according to:

$$U(n) = \max_{s \text{ under } n} \left(-w_f \cdot f(s) - w_t \cdot t(s) \right)$$

Best-first Utility-guided Search, Yes!

- Overview
- Anytime Algs
- Bugsy
- Properties
- **■** Evaluation
- Gridworld
- MSA
- Planning
- **■** Summary

■ Want best-first search according to:

$$U(n) = \max_{s \text{ under } n} \left(-w_f \cdot f(s) - w_t \cdot t(s) \right)$$

- \blacksquare Approximate s under n by cheapest and nearest
 - lack f(cheapest) = f(n) = g(n) + h(n)
 - lacklosim f(nearest) seems straightforward in many domains
- Estimate d(n) and convert to t(n).
 - lack d(n) seems straightforward in many domains

Properties

- Overview
- Anytime Algs
- Bugsy
- Properties
- Evaluation
- Gridworld
- MSA
- **■** Planning
- Summary

Different from anytime algorithms

- no need for termination policy, training data
- can spend all effort pursuing one solution
- no fixed trade-off

Properties

- Overview
- Anytime Algs
- Bugsy
- Properties
- Evaluation
- Gridworld
- MSA
- Planning
- Summary

Different from anytime algorithms

- no need for termination policy, training data
- can spend all effort pursuing one solution
- no fixed trade-off

Properties

- Overview
- Anytime Algs
- Bugsy
- Properties
- Evaluation
- Gridworld
- MSA
- Planning
- Summary

Different from anytime algorithms

- no need for termination policy, training data
- can spend all effort pursuing one solution
- no fixed trade-off

Similar to weighted A* iff h = d.

- but intuitive meaning for weight
- otherwise, exploits additional information

Reasonable properties

- lacktriangle Complete if h and d are reasonable
- lacksquare Optimal if h and d are perfect

Empirical Evaluation

- Overview
- Anytime Algs
- BUGSY
- Properties
- Evaluation
- Gridworld
- MSA
- Planning
- **■** Summary

- Algorithms:
 - ♦ Bugsy
 - ◆ Anytime Replanning A* (ARA*), Likhachev et al. (2004)
 - ◆ Anytime A* (AA*), Hansen et al. (1997)
 - ◆ Greedy (Gr), Doran and Michie (1966)
 - ◆ A*, Hart et al. (1968)
- Wide variety of utility functions.
- Record CPU time and solution quality for every solution.
- Assume clairvoyant termination for anytime algorithms.
- Normalize utilities from 0-100.
- See paper for full results.

(These results are conservative.)

Gridworld Pathfinding

_	\sim		
	()\/e	erview	
_			

■ Anytime Algs

■ Bugsy

■ Properties

■ Evaluation

■ Gridworld

■ MSA

■ Planning

■ Summary

U()	Bugsy	ARA*	AA*	Gr	A*
time only	100	100	100	100	59
500 microsec	100	99	99	99	59
1 msec	99	98	99	98	59
5 msec	99	91	93	90	59
10 msec	99	82	86	80	59
50 msec	97	25	54	19	65
0.1 sec	97	60	63	19	82
cost only	98	98	98	19	98

Multiple Sequence Alignment

=	\sim			
	()	ver	110	A /
	\sim	VCI	v = v	/ν

[■] Anytime Algs

- **■** Evaluation
- Gridworld

■ MSA

- Planning
- Summary

U()	Bugsy	ARA*	AA*	Gr	A*
time only	100	100	100	100	54
0.1 sec	99	97	98	96	54
0.5 sec	92	83	88	76	52
1 sec	80	68	79	54	51
5 sec	75	68	71	25	73
10 secs	78	75	74	25	78
cost only	82	82	82	24	82

[■] Bugsy

[■] Properties

Temporal Planning

Overview	1
Anytime	Algs

■ Bugsy

 \blacksquare Properties

■ Evaluation

■ Gridworld

■ MSA

■ Planning

■ Summary

U()	Bugsy	ARA*	AA*	A*
	zenotravel-7			
500 microsec	100	69	0	81
1 msec	100	71	0	83
5 msec	100	74	0	85
10 msec	100	84	0	96
50 msec	91	91	0	100
0.5 sec	97	97	0	100
5 sec	99	99	0	100
	rovers-5			
500 microsec	100	67	0	62
1 msec	100	72	0	66
5 msec	100	77	0	71
10 msec	92	100	0	93
50 msec	78	100	0	93

Summary

- Overview
- Anytime Algs
- Bugsy
- Properties
- Evaluation
- Gridworld
- MSA
- Planning
- Summary

- Anytime algorithms are annoying to use and to design.
- Utility-based search is a promising and practical alternative.
- Extendable to solving deadlines and plan execution deadlines.
- lacktriangle There's information beyond g(n) and h(n), namely d(n).