Feedback Control for Real-Time Solving

Ying Lul, Lara S. Crawford 2*, Wheeler Ruml2 and Markus P.J. Fromherz 2

! Department of Computer Science, University of Virginia
Charlottesville, VA 22903
ying@cs.virginia.edu

2 Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, CA 94304
{lcrawford, ruml, fromherz}@parc.com

Abstract. Numerous solvers have been proposed to solve constraint sat-
isfaction problems (CSPs) or constrained optimization problems (COPs).
Research has demonstrated that solvers’ performance is instance-dependent
and that no single solver is the best for all problem instances. In this pa-
per, we further demonstrate that solvers’ relative performance is time-
dependent and that, given a problem instance, the best solver varies for
different solving time bounds. We investigate an on-line feedback con-
trol paradigm for solver or problem reconfiguration so that the solver
can reach the best possible solution within a specified time bound. Our
framework is unique in specifically considering the time constraint in the
feedback control of solving. With this augmented time-adaptivity, our
paradigm improves solver performance for real-time applications. As a
case study, we apply the feedback control paradigm to real-time perfor-
mance control of a multidimensional knapsack problem solver.

1 Introduction

Given a problem instance, some solvers or solver configurations perform vastly
better than others. In the literature, much research has tried to provide guidance
for matching the right solver to a problem instance. Minton [24] pointed out that
the performance of solvers is instance-dependent, i.e., for a given problem class
a solver can perform well for some instances, but poorly for others, which makes
the matching very difficult. Many authors have used off-line analysis (based on
statistics or problem characteristics available before actually beginning to solve
an instance) or probing to optimize algorithms or heuristics for a particular class
of problems or even a particular instance. Others have used information acquired
during a solving run to iteratively tune the solving process in a type of feedback
loop.

For many real-world problems, a hard or soft time constraint is imposed
on the solving process. The solvers have to be terminated within certain time

* Corresponding author.

bounds in order to provide acceptable service. Although previous work has al-
ways attempted to improve solving efficiency, it has almost never explicitly taken
the time bound into account when selecting solvers, heuristics, or parameter val-
ues. We demonstrate in this paper that the best solver choice is dependent on
the time constraint and propose an on-line feedback control framework that will
adapt the solving process to the problem instance as well as to the real-time
application requirement.

2 Related Work

There is a large body of literature on off-line adaptive problem solving. A number
of systems (see Minton [24], Gratch and DeJong [15,14], and Caseau, Laburthe,
and Silverstein [8]) have used off-line analysis to optimize algorithms or heuristics
for a particular class of problems. This approach can be seen as analogous to
designing an open-loop controller, in the sense that the selection and tuning
of algorithms, heuristics, and problem transformations are done in advance of
the solving and are not responsive to the on-line performance of the system.
The same is true for approaches such as that in Flener, Hnich, and Kizltan
[12], in which a model is built off-line defining the relationship between the
problem instance and the best set of heuristics to use. There are several similar
approaches to on-line algorithm or heuristic selection (see Allen and Minton [3]
and Lobjois and Lemaitre[23]). Although these approaches probe the problem
instance on-line to determine the best algorithm or heuristics to use, and thus
take performance feedback into account during this stage of solving, once the
selection is made, no further feedback is used. A similar approach can be applied
to algorithm parameter selection: in their Auto- WalkSAT algorithm, Patterson
and Kautz [27] use probing to identify the best noise parameter for a particular
algorithm /solver pair. Finally, instance-based solver or parameter selection need
not depend on probing. Nudelman and his co-authors [22,26] use a statistical
regression approach to learn which problem features can be used to predict the
run time of different solvers. They then use this prediction to select the fastest
solver in a portfolio for each instance.

There are a number of approaches that make more use of feedback-type in-
formation for algorithm or parameter selection or for search control. Borrett,
Tsang, and Walsh [5] use on-line performance feedback to switch between al-
gorithms. Ruan, Horvitz, Kautz, and their coauthors [20,29,30] use it as part
of a dynamic restart policy. Hoos [19] uses stagnation monitoring to dynami-
cally adjust the noise parameter in WalkSAT algorithms. In the evolutionary
algorithms community, a variety of techniques have been used to adapt genetic
operators and parameters based on various performance measures (Eiben, Hin-
terding, and Michalewicz [11]). Similar methods have been used with simulated
annealing (Wah and Wang [35]). There are also a variety of approaches that
dynamically build up estimates of value or cost functions to guide the search
(see, for example, Baluja, et al. [4], Boyan and Moore [6], Narayek [25], Ruml
[31], and Lagoudakis and Littman [21]. These functions are measurements of the

“goodness” of particular states or action choices, and are developed on-line using
accumulated performance data.

Adaptive techniques have also been used to modify problem representations.
An “open-loop” off-line design approach for problem reformulation has been pro-
posed by Hnich and Flener [17]. Feedback approaches have been used as well.
For example, Pemberton and Zhang [28] have used (open-loop) phase transition
information and on-line branching estimation to identify complex search prob-
lems and transform them into easier searches producing suboptimal solutions.
Modification of penalty weights or chromosome representations in response to
performance has also been explored in the evolutionary algorithms community
(Eiben, Hinterding, and Michalewicz [11]).

In real time systems, though, time deadlines are a fact of life. None of the
approaches described above explicitly takes this time bound into account when
selecting solvers, heuristics, or parameter values. Some of these techniques rep-
resent anytime algorithms that can be stopped when a time bound is reached,
but the time bound is not considered earlier. The solver thus does not take
advantage of the known stopping time in order to make appropriate perfor-
mance/speed trade-offs. Techniques also exist to monitor anytime algorithms
and stop them when the solution improvement no longer justifies the additional
time expenditure (Hansen and Zilberstein [16]), but again, this approach does
not take a time bound explicitly into account in selecting or tuning the solver.
Very recently, Carchrae and Beck [7] demonstrated a feedback-based system that
switches among algorithms to get the best solution at a deadline. Their approach
has a number of similarities to ours. Our goal in the example described here,
however, is to use feedback to fine-tune algorithm or problem parameters rather
than to select the algorithms themselves, though both applications fit within our
general framework.

3 System Design

3.1 Solver Control

The generic framework for the feedback control of solving is shown in Figure 1
(see Crawford, et al. [10]). The control module is built upon a model or set of rules
reflecting the relationship between problem solving dynamics (y), the real-time
application requirement (i.e. the deadline T") and the choices for solvers, solver
configurations, and problem transformations. These choices define the control
parameters (u) of the solver. The model or rule base enables the prediction of
the solver behavior defined by these control parameters. Based on the predicted
behavior, the control module updates the control parameters (u), in order to
achieve the best suboptimal solution at the specified time bound.

3.2 Control Parameters

Control parameters u that could be used to change the solving performance in-
clude the choice of solvers, solver configurations or problem representations. For

problem

Ti Inslancei T solution

Control Module » Solver Module >

Fig. 1. Feedback control of solving framework.

example, some solvers may work better on under-constrained problems, while
others are better choices for over-constrained problems (Shang and Fromherz
[32]). In this case, the control parameter could be the choice of solvers. Another
example is a solver with a restart policy, for which it is useful to adopt differ-
ent restart cutoffs for problem instances with varied hardness levels. Previous
research by Horvitz, Ruan, Kautz, and their co-authors [20, 29, 30] has proposed
dynamic restart policies where the choice of cutoff is instance-based. In those
mechanisms, the control parameter would be the restart cutoff configuration.
Another possible control parameter is one defining a problem representation.
For example, Pemberton and Zhang’s e-transformation [28] makes use of a pa-
rameter € to define an off-line transformation of a tree search problem to one of
lower complexity (with a loss of optimality, of course). The value of € defines the
severity of the reformulation.

In this paper, we investigate problem representation as a key control param-
eter for solving constrained optimization problems under a time bound. A linear
constrained optimization problem is typically of the form:

maximize c¢i1Z1 + CT2 + -+ CpTn
respecting the constraints:

1171 + 612%2 + - -+ a1pTy + 01 <0

A21T1 + A22%o + -+ -+ G2pZy + by <0

Am1T1 + AmaTo + - + ATy + by <0 (1)

where z;, i € 1,2,---,n are variables whose value lies in some permissible set
{X}.

To simplify problem solving, sometimes it is desirable to reduce the problem
scale by problem transformation. The new problem representation should satisfy
the following two requirements. First, it is deduced from the original problem
but has smaller number of variables or constraints. Second, a solution to the new
problem can be transformed into a solution to the original problem.

Many approaches exist for such a problem transformation. Three simple pos-
sibilities are variable grouping, constraint grouping and variable removal. In
variable grouping, two or more variables are grouped together and considered
as one new variable. This type of problem transformation leads to the same as-
signments for the variables in one group. For example, assume that we group

variables z; and zs in Equation 1 together and consider the group as a new
variable g;. Then the original problem becomes

maximize (c1 +¢2)g1 + 323+ + Cpn
such that

(a11 + a12)g1 4+ a1323 + -+ a1pxn + b1 <0
(@21 + a22)g1 + a23x3 + - - + a2,2n + b2 <0

(aml + am2)gl + am3Ts + -+ GpnTn + by <0

Constraint grouping combines two or more constraints together. That is, a
new constraint will be used to replace the old constraints in such a way that
the satisfaction of the new constraint leads to the satisfaction of all the old
constraints. For instance, the grouping of the first two constraints in Equation
1 may result in the following new constraint (assume the permissible values of
the variables are positive),

maz(ai1, a1)x1 + - - - + maz(ain, a2n)Tn + max(by,by) <0

Variable removal fixes the assignments of some variables so that the number
of unknown variables is smaller after the problem transformation.

Other, more complex approaches to problem transformation along these lines
can also be envisioned; for example, hierarchical approaches to variable grouping
in which the problem is decomposed into a number of smaller subproblems. In
all the grouping approaches, whether of variables or constraints, care must be
taken when choosing how to define the groups, as this choice can affect solver
performance significantly.

3.3 Control Module

In the feedback control framework, the control module leverages a model or set
of rules to predict the solving behavior with different control parameter choices.
Therefore, a good model that accurately reflects the solving dynamics is the
key to good control parameter selection. In this paper, we propose a general
modeling framework. Given a solver with a defined set of parameter choices
U =uy,us,...,uy, we will first apply it to a group of representative benchmark
problem instances Py, Ps, ..., Py. The solving performance on those instances
will then be used to generate the model (see Figure 2). This approach is similar
to that taken by Nudelman et al. [26], but with the differences that we are aiming
to predict solution quality at a time bound rather than solver run time (to the
optimal solution), and that we use data acquired during the solving process in
the predictions.

Benchmark problem
instances

Solver Module | JOC———_>> | Modeing
,

VoD, %52)s oo, ¥R, vyt), o
1,2, M

yi(k+n) =f(y(1), (), ..., y(K))

Fig. 2. Modeling framework.

As shown in Figure 2, a model (represented by f;) is generated for each solver
configuration (defined by control parameter u;)*. The control module will then
use the models (f1, f2,---, fn, assuming there are N different solver configu-
ration choices) to predict the solving behavior on any given problem instance
and try to choose the best parameters for solving the problem instance. As the
control module will use the dynamic solving information y(k), such as subopti-
mal solutions obtained, to make the best parameter choice, parameter changes
may be required on-line. For example, the control module could choose some
u(1) € U at the first sampling interval and later switch to other configurations
u(2),u(3),---,u(k) € U if switching is predicted to produce better solving per-
formance.

When changing parameters from one configuration to another, one of two
types of switch strategies can be applied. These are constructive and restart
strategies. A constructive strategy uses the dynamic information obtained with
one configuration to adapt or modify the starting point of the solving with the
new configuration, while with a restart strategy, when the configuration switches
from uq to ua, say, the solving process for vy will pause and the process for ug will
start from scratch or restart from where it was paused. An intelligent constructive
strategy has the potential to improve the performance of the new configuration,
but may be difficult to build, depending on the type of parameters u being used,
and may require a solver-specific approach. With the simple restart strategy, on
the other hand, the solving process of each configuration is independent, which
leads to a simpler control system whose dynamics will be much easier to model.
Hence, in our general feedback control framework, we have chosen the restart
switching strategy.

For prediction and control in this framework to be feasible, two assumptions
must be made. First, we assume that the solver performance on the modeling
problem instances can be used to predict the performance on new instances.

! This paper only considers the case where there is a limited discrete number of control
parameter choices. The modeling framework for control with a continuous choice
of parameters requires a somewhat different modeling approach or a method for
interpolating among models and is a topic for future work.

Second, if the solver behavior on two problem instances are the same from the
beginning of the solving, then the solver is assumed to be very likely to continue
performing similarly on the two for the rest of the solving process.

Based on these assumptions, a brute force prediction and control algorithm
can be designed from a simple model. Let S be the set of M modeling problem
instances. The modeling process solves them until the specified time bound (T')
with each solver (defined by the parameter configuration u; € U). The subopti-
mal solutions reached by each solver at every sample interval are recorded. We
use y;;(k) to represent the suboptimal solution reached by the i** solver at the
k*h sampling interval for modeling problem P;. Note that the same parameter
configuration is used throughout a solving run (there is no switching).

When solving a new problem instance p, we will use a distance metric to
evaluate how similar the performance on p is to that on each modeling instance
P;. The distance to P; at time interval k, D;(p, k), is calculated based on the
performance on p by the solvers (defined by wui,us---,un) and their known
performance on P;. Assume that at time interval k, the algorithm has spent &;
sampling intervals on the solving process with configuration u;, where Zil k; =
k, and generated outputs y;(1),yi(2), - . -, ¥:(k;). Then we calculate D;;(p, k;), the
distance between p and P; with solver u; at time interval k as follows:

ki
Dij(p ki) = 3 Iyis(m) — yi(n)| (2)
n=1

All experience is weighted equally. From 2 the distance metric D;(p, k) is derived:

N
Dj(p, k) = 3 Dis(p: ki) 3)

At each sampling interval, the algorithm calculates D;(p, k) for every P; €
S and finds the modeling problem that is the smallest distance from p. That
is, it finds the problem P, that yields the minimum distance Dy (p, k) =
min({D;(p, k)|P; € S}). Then, the algorithm uses the solvers’ performance on
instance P,p; to predict how they would perform on p if allowed to run for the
rest of the sampling intervals. Then, for the next sampling interval, the algorithm
chooses the solver configuration u(k + 1) whose predicted final result at deadline
T is best. The above process is repeated at each interval. At the beginning of
a solving run, a minimum number of sampling intervals of each configuration
will be run to ensure accurate prediction. For the sake of reducing switching in
difficult cases, the feedback process continues until a specified time, at which
point one solver configuration will be chosen for the rest of the solving.

4 Case Study

As a case study, we apply the proposed feedback control paradigm (Section 3)
to the real-time performance control of a multidimensional knapsack problem

solver. The real-time solving performance of this type of problem is important
because many practical real-time problems such as resource allocation in dis-
tributed systems, capital budgeting, and cargo loading can be formulated as
multidimensional knapsack problems.

4.1 Multidimensional Knapsack Problem Solver

The 0-1 multidimensional knapsack problem (MKPOQ1) can be stated as:
_ | maximize c - x subject to

MEPOL= {Am <bandz € {0,1}"
where c € N, A € N™*™ and b € N™.

There are a number of approaches to solving the MKPO01 problem in the
literature. A standard was set by Chu and Beasley [9], who obtained good results
using a genetic-algorithm-based heuristic method. Their problem set was made
publicly available in the OR-Library [2], and has been a benchmark problem set
for testing other algorithms. Their paper also provides a useful survey of MKP01
solvers at that time. Many other heuristic solvers have been proposed since then
(for example, Holte [18], Fortin and Tsevendorj [13], and Vasquez and Hao [33]),
some placing emphasis on solution quality and some focusing on solving speed.

We will here apply the feedback control paradigm to a MKPO1 solver devel-
oped by Vasquez, Hao, and Vimont [33, 34]. This solver takes a hybrid approach
that combines linear programming with an efficient tabu search algorithm. It
gave results on the OR-Library benchmarks [2] that the authors claim were
the best known at the time. Other solvers could of course be used as targets
for real-time performance control; we chose this one based on its final solution
quality.

The main idea of the hybrid solver is to perform a search around a solution
of the fractional relaxed MKPO1 problem with additional constraints. Starting
from the obvious statement that each solution of MKPO1 satisfies the property:
1-z =3 Tz; =k, where k is a positive integer, they add this constraint to the
fractional relaxed MKPO1 to obtain a series of problems like:

maximize c¢- x s.t.

MEKP[k] =< Az <band z € [0,1]" and

l-z=keN

These M K P[k] are solved and their fractional solutions, T[y), are used as
starting points for tabu searches. They are solved in order of most promising to
least promising k. In Vasquez and Vimont [34], kg, the first value used, is the
rounded sum of the elements of the optimal solution T of the relaxed MKPOL.
That is, ko = [1 - Z], where

T = argmaxc-r s.t.

Az < b,z €[0,1]"

The region around Z[,) is the first to be tabu searched. Next, regions around
Z(pp, k= ko—1,ko+1, ko —2, ko +2, - - - are sequentially tabu searched. According
to Vasquez and Vimont [34], this search order ensures the exploration of the
hyperplanes 1.z = k in the decreasing order of z|;) = c.Z[y), the optimal values
of MK P[k].

To reduce the search space, the algorithms impose a geometric constraint on
the tabu search neighborhood, so that the local search is limited to a sphere of
fixed radius around the fractional optimum Z[;). Therefore, each binary configu-
ration z reached by the local tabu search satisfies the following two constraints:

N1-z=k

2) |z, 2| = i 175 — 2wy < Omae

4.2 Control Approach

To control the performance of the aforementioned hybrid solver in the context of
a fixed time bound, several control parameters could be effective. First, the choice
of the geometric constraint §,,,, on the tabu search neighborhood will have an
important impact on its performance. We believe that the best choice of &4z is
problem instance dependent and application requirement dependent. Therefore,
on-line feedback tuning may be required to reach the optimal configuration.
Allocating the time that the algorithm will run on each hyperplane is another
place where the feedback control could be beneficial. Instead of strictly following
the search order kg, ko — 1, ko + 1, ko — 2, ..., it would be desirable to have some
dynamic mechanism to identify unpromising hyperplanes and switch to possible
better hyperplanes, so that a better suboptimal solution can be reached within
the time bound.

In this paper, we consider the case where the time bounds imposed on solving
are quite tight, and we have therefore chosen problem representation as the
control parameter. To reduce the scale of the problem, we changed the problem
representation by grouping several variables together. The solver performance
on the new problem representation will be quite different with different grouping
strategies. Although any grouping strategy might speed the solving process, some
will cause big performance degradations in terms of the suboptimal solutions
for the transformed problem. Instead of grouping variables together randomly,
our algorithm groups pairs of variables with small values of the relative price

heuristic:
Cj

A
Grouping with this heuristic allows for trading off between solution quality and
solving speed.

To demonstrate that the optimal solver configuration is time-dependent, we
describe experiments with the mk_gkl11.dat benchmark (proposed by Glover and
Kochenberger [1]). This benchmark problem instance includes 2500 variables
and 100 constraints. Through variable grouping, we generated four new problem
representations, in which the number of variables are 2000, 1500, 1000 and 500
respectively. For each representation, we used a reimplementation of the hybrid
solver to solve the problem. Solution qualities (as fractions of the relaxed MKP01
solution) over time for one particular problem instance are shown in Figure
3. One can see that different time bounds lead to different optimal problem
representation choices. For instance, if the solver is only allowed 50 seconds to
solve the problem, the optimal problem representation should be the one with

1000 variables. For a 100-second time bound, the optimal choice becomes the
representation with 2000 variables.

Solver Performance With Different Problem Representations

0.999 "
'

-

0098 ovvorrbisst b []

0.997f :

0.996]__

0.995

B
0904 ©
o — 2500
0.993f - - 2000

: - 1500

Quality Relative to Upper Bound

: ~++ 1000
0992F © e

0.991

0 100 400 500

2 0
Time (Seconds)

Fig. 3. The hybrid solver performance with different problem representations.

Previous work (Vasquez and Hao [33]) has demonstrated that the required
solving time for a problem instance depends on its size, the number of variables
and constraints in the instance. We further investigated whether other static fea-
tures have an impact on the solver performance and can thereby provide a hint
on selecting the control parameter (the problem representation, in this case).
If offline analysis can be helpful in optimizing the solving process, the dynamic
reconfiguration and switching overhead will be reduced. Several features of the
knapsack problem were analyzed for their ability to predict how well the solver
will perform (at the deadline) with each of the two problem representations. Ex-

b

ample features included the tightness ratio sw~*—— where i = 1,2, ..., m, and the

j=1 @ij
relative price ﬁ Linear regression results indicate that only the tightness
i=1 "b;
ratio of the problenf instance has an obvious effect on the solver performance,
while other static features do not seem to yield any consistent indication of how
the solver will perform.

This static feature analysis further demonstrates that static information
alone is not enough for guiding the parameter choice. Experiments also show
that for problem instances with the same tightness ratio the solver performance
can still be quite different. Therefore, in this example our focus is on problem
instances with the same tightness ratio and size (the number of variables and
constraints in the instance). For such a group of problem instances, we build a
dynamic model that can be used as a basis for making problem representation
choices solely using solver runtime information.

We propose to use the solver runtime information (y) and the real-time appli-
cation requirement (deadline T') to determine the right problem representation
choice, using the feedback control paradigm. The best suboptimal solutions z* (k)
reached at each sampling interval (i.e. the system performance outputs y(k)) are
used for predicting the system performance and choosing the problem repre-

sentation 2. We consider two different problem representations as our control
parameter choices, U = {u1, uz}. One representation requires no problem trans-
formation and presents the hybrid solver with the original problem, while the
other representation transforms the problem through variable grouping.

4.3 Experimental Results

We implemented a benchmark generator according to the algorithm described
in Chu and Beasley [9]. We then used it to generate problem instances that have
n = 500 objects, m = 30 constraints and 0.25 tightness ratio. For these problem
instances, we investigate two different problem representations. One representa-
tion will change the number of objects to n = 420 (chosen for demonstration
purposes) by grouping 80 pairs of small relative price objects together. The other
representation will retain the original problem formulation with n = 500 objects.
The objective is to achieve the best suboptimal solution at a specified time bound
with the Vasquez and Hao hybrid solver by solving the given problem instance
with the feedback-chosen problem representation.

1100 problem instances were generated, with 1000 of them used as modeling
instances to guide the feedback solving of the final 100 validation problem in-
stances. The modeling and feedback control were done as described in Section 3.
The sampling interval (feedback update period) was set to 10 iterations. The
minimum number of intervals for each problem formulation was set to 40 (400
iterations) and the number of intervals after which the feedback was turned off
and a single formulation was selected was 400 (4000 iterations). Two experiments
were carried out, where different modeling and validation problem instances were
chosen from the 1100 problem instance set. For reasons of simplicity, we chose
10000 solving iterations as the time bound, where a solving iteration is defined
as the time interval between two successive moves of the local tabu search for the
hybrid solver. Sample control traces, showing the controller’s choice of problem
representation at each iteration, are given in Figure 4.

To assess the the performance of the solver with and without feedback, we
performed a paired comparison between the feedback-controlled solver and the
no-feedback solver using each of the two problem formulations (420 and 500
variables). For this comparison, the two experiments (with different modeling
and validation sets) were combined. Figure 5 shows the distribution of the dif-
ferences in quality at the deadline between the feedback and no-feedback cases.
Quality is measured as a fraction of the upper bound provided by the solution to
the relaxed problem. The boxes indicate the central 50% of the data, while the
whiskers denote the extent of the data. The gray bars show the 95% confidence
interval around the mean.

The figure shows that with feedback control of the choice of problem rep-
resentation, the solver performed better on average at the deadline than with

2 Other possible dynamic information that could be used for feedback control includes
the constraint violation vy, = }2;,. ,~, (ai.x — bi) and the time since the last im-
provement in the solution (stagnation).

Sample Control Trace Sample Control Trace Sample Control Trace
10000 10000 10000

9000 9000 9000
8000 8000 8000
7000 7000 7000
6000 6000 6000
5000

5000 5000

Iteration
Iteration
Iteration

4000f - f----- 4000f - - - - - - 2000f - f--- -~

3000 3000 3000

2000 I 2000 2000 I

1000 1000 1000 5]

400 500 400 500 400 500
Problem Formulation Problem Formulation Problem Formulation

Fig. 4. Typical sample traces showing the feedback control switching between the two
problem representations. The horizontal dashed line indicates the point beyond which
no further switching was permitted.

either of the fixed problem representations. The improvement was small, but
statistically highly significant (p < 0.01 in a binomial test for equal or better
performance).

5 Conclusions and Future Work

In conclusion, we have here demonstrated an approach for using feedback control
to improve the quality of the solution obtained when solving a problem under a
strict time bound. The algorithm makes use of a model based on solution profiles
to dynamically predict solver performance and choose solver control parameters
accordingly. We have presented a case study application of this approach to solv-
ing the 0-1 multidimensional knapsack problem with the hybrid solver described
by Vasquez, Hao, and Vimont [33, 34]. In this application, small solution quality
improvements at the time bound were seen.

There are several issues still to be addressed with the feedback method de-
scribed here. The modeling and prediction technique used can incur a large
overhead if the size M of the modeling set is big. Thus, in the future it will be
essential to carry out research on how to reduce the size of the modeling problem
set by, for example, removing redundant similar-performance problems. Another
future research topic is how to generate the modeling problem set so that it in-
cludes “representative” problems. The modeling set should be able to self-evolve
during the solving process when new performance unique problem instances are
identified. Further, analyzing the underlying reasons why two problems have
similar performance profiles is a very interesting research topic. It would also be
useful to explore how the models used here could transfer to broader problem
classes. Other modeling and prediction methods are of course possible, as well,
and bear further investigation.

The choice of problem granularity as control variable should also be explored
further. Though a performance improvement was observed with the knapsack

Paired comparison

0.001

>
z
£
]
=
&
=1
5 olm Il
9
=1
(9]
-
[
et
b=
=)
-0.001
Fb - 420Fb - 500
Pair

Fig. 5. Performance of the solver under feedback control, as compared to using each of
the problem representations without control. The data plotted is the difference between
the solution quality for the feedback case and the no-feedback case. The boxes indicate
the region where 50% of the data points lie, and the whiskers show the extent of the
data. The gray bars show the 95% confidence interval around the mean.

problem, it was not a very large one. It is possible that other classes of problems
might lend themselves better to the approach of controlling the granularity by
aggregating variables. Additionally, though we explored different ways to do the
variable grouping, there may be better heuristics to use than relative price, and
some of the other approaches to reducing granularity might be more fruitful than
variable grouping.

Here we explored the use of on-line feedback control to choose solver and
problem parameters. It would be interesting to integrate this technique with
an off-line modeling and prediction approach based on, for example, problem
instance features, such as that used by Nudelman and his co-authors [26,22].
Such a combined approach might further improve performance at the deadline.

Feedback control of solving in response to a time deadline is a complex prob-
lem with many interacting variables, including choice of solver, choice of control
parameters, choice of modeling and prediction techniques, and choice of control
logic. If these obstacles can be overcome, however, the benefits of being able to
provide high-quality solutions in real-time settings would be many.

6 Acknowledgments

The authors would like to thank Yi Shang, Hai Fang, Tarek Abdelzaher, John
Stankovic, and Gang Tao for suggestions and helpful discussions. This work was
partially supported by DARPA under contract F33615-01-C-1904.

References

N

10.

11.

12.

13.

14.

15.

16.

17.

18.

Large benchmark, http://hces.bus.olemiss.edu/tools.html.

OR-library, http://mscmga.ms.ic.ac.uk/jeb/orlib/mknapinfo.html.

J. A. Allen and S. Minton. Selecting the right heuristic algoithm: runtime perfor-
mance predictors. In Advances in Artificial Intelligence. 11th Biennial Conference
of the Canadian Society for Computational Studies of Intelligence, pages 41-53,
Toronto, Ontario, May 1996.

. S. Baluja, A.G. Barto, K.D. Boese, J. Boyan, W. Buntine, T. Carson, R. Caruana,

D.J. Cook, S. Davies, T. Dean, T.G. Dietterich, P.J. Gmytrasiewicz, S. Hazlehurst,
R. Impagliazzo, A.K. Jagota, K.E. Kim, A. McGovern, R. Moll, A.W. Moore,
E. Moss, M. Mullin, A.R. Newton, B.S. Peters, T.J. Perkins, L. Sanchis, L. Su,
C. Tseng, K. Tumer, X. Wang, and D.H. Wolpert. Statistical machine learning for
large-scale optimization. Neural Computing Surveys, 3:1-58, 2000.

J. E. Borrett, E. P.K. Tsang, and N. R. Walsh. Adaptive constraint satisfaction:
the quickest first principle. Technical Report CSM-256, University of Essex De-
partment of Computer Science, 1995.

J. A. Boyan and A. W. Moore. Learning evaluation functions to improve optimiza-
tion by local search. Journal of Machine Learning Research, 1:77-112, 2000.

Tom Carchrae and J. Christopher Beck. Low-knowledge algorithm control. In
Proceedings of AAAI-04, pages 49-54. AAAT Press / The MIT Press, 2004.

Y. Caseau, F. Laburthe, and G. Silverstein. A meta-heuristic factory for vehicle
routing problems. Constraint Programming, 1999.

P.C. Chu and J.E. Beasley. A genetic algorithm for the multidimensional knapsack
problem. Journal of Heuristics, 4:63-86, 1998.

Lara S. Crawford, Markus P.J. Fromherz, Christophe Guettier, and Yi Shang. A
framework for on-line adaptive control of problem solving. In CP’01 Workshop on
On-line Combinatorial Problem Solving and Constraint Programming, December
2001.

A. E. Eiben, R. Hinterding, and Z. Michalewicz. Parameter control in evolutionary
algorithms. IEEE transactions on evolutionary computation, 3:124-141, 1999.

P. Flener, B. Hnich, and Z. Kiziltan. A meta-heuristic for subset problems. In
Practical Aspects of Declarative Languages. Third International Symposium, PADL
2001, pages 274-287, Las Vegas, NV, March 2001.

Dominique Fortin and Ider Tsevendorj. Global optimization and multi knapsack:
a percolation algorithm. Technical Report 3912, Institut National de Recherche en
Informatique et en Automatique (INRIA), 2000.

J. Gratch and G. DeJong. COMPOSER: a probabilistic solution to the utility
problem in speed-up learning. In Proceedings of the Tenth National Conference on
Artificial Intelligence, pages 235—240, San Jose, CA, July 1992.

J. Gratch and G. DeJong. A decision-theoretic approach to adaptive problem
solving. Artificial Intelligence, 88(1-2):101-142, 1996.

E. A. Hansen and S. Zilberstein. Monitoring the progress of anytime problem-
solving. In 13th National Conference on Artificial Intelligence, Portland, OR, Au-
gust 1996.

B. Hnich and P. Flener. High-level reformulation of constraint programs. In Pro-
ceedings of the Tenth International French Speaking Conference on Logic and Con-
straint Programming, pages 75-89, 2001.

Robert C. Holte. Combinatorial auctions, knapsack problems, and hill-climbing
search. In Proceedings of AI’2001, the Fourteenth Canadian Conference on Artifi-
ctal Intelligence. Springer, 2001.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Holger H. Hoos. An adaptive noise mechanism for WalkSAT. In Proceedings of
AAAI-02, pages 655—660. AAAT Press / The MIT Press, 2002.

E. Horvitz, Y. Ruan, C. Gomes, H. Kautz, B. Selman, and M. Chickering. A
Bayesian approach to tackling hard computational problems. In Proceedings of the
Seventeenth Conference on Uncertainty and Artificial Intelligence, Seattle, WA,
August 2001.

M. G. Lagoudakis and M. L. Littman. Learning to select branching rules in the
DPLL procedure for satisfiability. In LICS 2001 workshop on theory and appliations
of satisfiability testing (SAT 2001), 2001.

Kevin Leyton-Brown, Eugene Nudelman, and Yoav Shoham. Learning the em-
pirical hardness of optimization problems: the case of combinatorial auctions. In
Constraint Programming 2002, 2002.

L. Lobjois and M. Lemaitre. Branch and bound algorithm selection by perfor-
mance prediction. In Proceedings of the Fifth National Conference on Artificial
Intelligence, pages 353-358, Madison, WI, July 1998.

S. Minton. Automatically configuring constraint satisfaction programs: a case
study. Constraints, 1(1-2):7-43, 1996.

A. Narayek. An empirical analysis of weight-adaptation strategies for neighbor-
hoods of heuristics. In Proceedings of the fourth metaheuristics international con-
ference, pages 211-216, 2001.

Eugene Nudelman, Alex Devkar, Yoav Shoham, and Kevin Leyton-Bown. Under-
standing random SAT: Beyond the clauses-to-variables ratio. In Proceedings of
Constraint Programming 2004, 2004. to appear.

D. J. Patterson and H. Kautz. Auto-walksat: a self-tuning implementation of walk-
sat. Electronic Notes in Discrete Mathematics, 9, 2001.

J. C. Pemberton and W. Zhang. e-transformation: exploiting phase transitions to
solve combinatorial optimization problems. Artificial Intelligence, 81(1-2):297-325,
1996.

Y. Ruan, E. Horvitz, and H. Kautz. Restart policies with dependence among
runs: a dynamic programming approach. In Proceedings of the Eighth Interna-
tional Conference on Principles and Practice of Constraint Programming (CP-
2002). Springer-Verlag, 2002.

Y. Ruan, E. Horvitz, and H. Kautz. Hardness-aware restart policies. In IJCAI-08
Workshop on Stochastic Search Algorithms, Alcapulco, Mexico, 2003.

W. Ruml. Incomplete tree search using adaptive probing. In Proceedings of the
Seventeenth International Joint Conference on Artificial Intelligence, pages 235—
241, Seattle, WA, August 2001.

Yi Shang and Markus P.J. Fromherz. Experimental complexity analysis of contin-
uous constraint satisfaction problems. Information Sciences, 153:1-36, 2003.
Michel Vasquez and Jin-Kao Hao. A hybrid approach for the 0-1 multidimen-
sional knapsack problem. In Proceedings of the Seventeenth International Joint
Conference on Artificial Intelligence, pages 328-333, Seattle, WA, August 2001.
Michel Vasquez and Yannick Vimont. Improved results on the 0-1 multi dimen-
sional knapsack problem. In Sizteenth Triennial Conference of the International
Federation of Operational Research Societies (IFORS 2002), 2002.

B. W. Wah and T. Wang. Tuning strategies in constrained simulated annealing
for nonlinear global optimization. International Journal of Artificial Intelligence
Tools, 9(1), 2000.

