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Abstract

We evaluate the computational model of lexical access proposed by Dell,
Schwartz, Martin, Saffran, and Gagnon (1997). They argue that fits of their
model to naming data obtained from normals and brain-damaged patients
support assumptions regarding interactivity in the lexicon, global damage in
aphasia, and continuity between normal and aphasic naming behavior. Our
investigation reveals that the model fits the empirical data poorly and that
the claims Dell et al. make on the basis of the model’s performance would not
follow even if the model were accurate. Although we improve the model’s
fit using a novel automatic regression procedure, it cannot account for five
of Dell et al.’s twenty-one patients (24%), and we show that its limitations
are inherent in its design. We argue that claims such as those made by Dell
et al. can only be addressed by considering evidence from multiple related
tasks and by comparing multiple computational models.

(CAUTION: THIS IS A PREPRINT.
PLEASE CHECK ANY QUOTATIONS AGAINST THE PUBLISHED VERSION.)

When one names an object, the semantic specification of the name of the object is
mapped to the sequence of phonemes that is that word’s pronunciation. This cognitive
process, known as lezical access, is quick, automatic, and usually successful, but very occa-
sionally it can result in slips of the tongue: groups of phonemes representing words that are
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semantically or phonologically related to the intended word, or even an unrelated word or
gibberish. Studies of naming errors from spontaneous speech and controlled experimental
tasks have revealed patterns that should be accounted for by theories of the cognitive mech-
anisms used by the human brain to perform lexical access (Levelt, 1989).! In this paper,
we will evaluate the lexical access model proposed by Dell, Schwartz, Martin, Saffran, and
Gagnon (1997), which was designed specifically to explain errors during picture naming and
word repetition.

Dell et al. present their theory as a computational model, allowing them to compare
their model’s precise numerical predictions to experimental data. The model is part of a
family of related theories proposed by Gary Dell and his collaborators to explain a wide
variety of phenomena observed in speech production (Dell, 1986, 1988, 1990; Dell, Juliano,
& Govindjee, 1993; Dell & O’Seaghdha, 1991; Martin, Weisberg, & Saffran, 1989). We
distinguish here between the abstract theoretical principles which have remained relatively
constant over all these models, and the particular implemented computational models them-
selves, which, to date, have each been evaluated only on specific individual tasks. The model
we consider here, for example, only accounts for error frequencies during picture naming,
leaving aside such data as substitution errors during spontaneous speech. If this particular
model should prove accurate, there is hope that it can be integrated with the others to
make progress towards a single unified theory of language production.

Dell et al.’s theory of lexical access makes three particularly interesting and controver-
sial claims. First, it postulates extensive interaction between representations, accomplished
by explicit bidirectional communication. As in many other models of lexical access, Dell
et al. specify a semantic input representation, a phonological output representation, and a
mediating lexical representation. (There is no division into modality-neutral and modality-
specific lexical representations, such as the lemmas and lexemes in the theories of Levelt
(1992), Roelofs (1992), or Bock and Levelt (1994).) However, unlike models in which each
representation only passes information to the next (as in the discrete stage model of Roelofs
(1992) and the cascading models of Humphreys, Riddoch, and Quinlan (1988) and Cara-
mazza (1997)), each level in Dell et al.’s model is constantly interacting with its adjacent
levels. Since representations in Dell et al.’s model communicate by the spreading of activa-
tion, this claim is represented in the model by the spread of activation both forwards (from
the semantic level towards the phonological level) and backwards simultaneously. Unlike
the models of Harley (1993) or Rapp and Goldrick (in press), which postulate feedback only
from the phonological level, Dell et al.’s model has feedback from both the phonological and
lexical levels.

The second claim arises because the theory is designed to explain the lexical access
process not only of ordinary people, but also of people who have suffered brain damage.
To do this, Dell et al.’s model of aphasic naming must make claims not only about the
functional mechanism of lexical access, but also about how it is that the mechanism is

!Other data that have been used to inform theories of lexical access include investigations of the time
course of lexicalization in naming tasks (e.g., Schriefers, Meyer, & Levelt, 1990), the tip-of-the-tongue
phenomenon (e.g., Burke, MacKay, Worthley, & Wade, 1991; Miozzo & Caramazza, 1997), the distribution
of hesitation patterns in spontaneous speech (e.g., Butterworth, 1979; 1980), and the patterns of naming
deficits and other production disorders in aphasic patients (e.g., Butterworth, 1992; Badecker, Miozzo, &
Zanuttini, 1995; Garrett, 1992). See Caramazza (1997) for a review.
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damaged so as to result in impaired performance. Rather than requiring different levels of
damage to different parts of the lexical access system, Dell et al. propose that the different
patterns of naming errors of fluent aphasic patients can be explained by the assumption
that damage affects all levels equally. They call this claim the globality assumption, and
it is represented in the model by two parameters which alter the flow and maintenance of
activation in all parts of the model. The model therefore incorporates both a theory of the
lexical access system and a theory of brain damage.

The third central assumption that Dell et al. propose is what they call the continuity
thesis. This is the claim that the spectrum of aphasic naming, from mild to severe, can be
characterized as a continuum from normal performance at one end and the random error
opportunities afforded by the lexicon at the other end. The severity of each case places that
individual somewhere along that spectrum. Dell et al. claim that both the patient data and
their model’s results conform to this characterization.

Dell et al. support these three claims by using a simulation of their model to reproduce
the patterns of naming errors observed in individual aphasic patients. Each pattern consists
of the frequency of the five types of errors: semantic, phonological, mixed (both semantically
and phonologically related to the target), unrelated, and nonword. Dell et al. argue that
success in reproducing the error profiles observed in the patients would constitute support
for the assumptions of the model:

The good fit between the patient data and the model suggests three conclusions.
First, it extends support for the interactive two-step approach to naming. A
model that successfully characterized normal performance could be applied to
the range of performance that fluent aphasic individuals exhibit. Although only
a restricted set of error patterns is allowed by the model, the patients’ patterns
appeared to fall within that set. Second, the good fit supports the continuity
thesis. A large component of disordered naming can be linked to general severity.
More severe aphasic patients have an error pattern that is closer to the error
opportunities afforded by the lexicon, whereas less severe aphasic patients have
a pattern that is similar to the normal pattern. Finally, the fit supports the
hypothesis that variation in patient error patterns can be associated with global
lesions in activation transmission, representational integrity, or both. (p. 820)

In short, Dell et al. argue that since the model embodies the three claims, then if the model
fits the data, we have support for the claims.

We will evaluate Dell et al.’s argument in three different ways. First, we can evaluate
the empirical evidence for Dell et al.’s model. Although Dell et al. claim at several points
in their paper that “the fit between the model and patients was good” (p. 819), our close
inspection of their analysis will show that they do not actually present any evidence that
their model’s fit is in fact good. Since their claims are based on the fit of the model to the
data, it is essential to evaluate the model’s empirical performance. We will evaluate its fit
using three different evaluation metrics, and to improve the model’s accuracy, we will use a
novel numerical optimization procedure. However, we will see that the model cannot fit five
of Dell et al.’s twenty-one patients (24%), and performs worse than a simple mathematical
model of naming,.

Second, we can also ask whether there are any other known patterns of naming errors
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Figure 1. The structure of part of the core model.

that contravene the predictions of the model. Although Dell et al. show fits of their model
to data from twenty-one patients, they do not provide a comprehensive or precise analysis
of the range of patients that the model is capable of providing predictions for. It is not clear
that it can handle error patterns other than those exhibited by the specific patients they
tested. By plotting the results of exhaustive simulations, we will gain an understanding of
the global behavior and scope of the model, discovering that it cannot model well-known
patient patterns.

Finally, we can evaluate the logical force of Dell et al.’s argument. Even if their
model provided good fits to patient data and were consistent with other sources of empirical
evidence, it is not obvious that one would be compelled to adopt the conclusions they reach.
As we will see, Dell et al.’s claims would require evidence from multiple tasks and multiple
computational models, and could not follow from the single study they conducted.

But before examining Dell et al.’s claims in detail, we will begin with an overview of
the model.

The Model

Dell et al.’s model comes in two parts: a core model of phoneme retrieval, and then
supplemental parts that use the core model to predict other behaviors, such as word repe-
tition performance.

The Core Model.

The core model takes as input a semantic specification of a word, and returns an
ordered list of phonemes that is intended to represent the word’s pronunciation. It is based
on a theory of lexical access first proposed by Dell in 1986. The model is structured in
a localist connectionist style, as illustrated in Figure 1. The model involves three kinds
of structures: nodes, links, and layers. There are three layers in the model, and they are
ordered from highest (semantics) to lowest (phonemes). The middle layer is intended to
correspond to lexical entries. Each layer contains a set of nodes and a possibly-empty
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ordered list of selected nodes. Each node has a type (semantic, lexical, or phonemic), an
activation level (a real number), and a set of links to certain other nodes in other layers.
All links are bidirectional (if a is linked to b, then b is also linked to a). Each layer contains
nodes of only one type, and nodes in a given layer connect only to nodes in adjacent layers.
Nodes of type phoneme also have subtypes corresponding to syllabic position (onset, vowel,
or coda).

Processing occurs in the model by the updating of each node’s activation level ac-
cording to a weighted sum of the node’s current activation level and those of its neighbors.
A small amount of noise is also added to each node, some of which is proportional to its
current activation level, and the rest of which represents an absolute level of ambient noise.
More formally, if a;(m) represents the activation at time ¢ of a particular node m with
neighbors N, and R(z) represents a random sample drawn from the normal distribution
with mean zero and standard deviation z, and decay, connection, intrinsic, and activation
are parameters of the model, then

at+1(m) = old-activation + incoming-activation + noise

where
old-activation = (1 — decay) % as(m)
incoming-activation = Y, cn(connection x a(n))
noise = R(intrinsic) + (R(activation) x at(m)).

Note that activation is not necessarily conserved—the number of neighbors a node has does
not influence the amount of activation they acquire. This means that the total amount of
activation in the network depends on the number of neighbors of the active nodes. Input
is given to the model by raising the activation level of the semantic nodes connected to the
target word to an arbitrary constant. Activation then spreads according to the equation
given above for eight time steps. After this time, the lexical layer chooses its most active
node and sets that node’s activation level to a constant (ten times the initial semantic acti-
vation). This jolt is intended to correspond to lexical selection. After eight more time steps,
the phoneme layer then selects the most active phoneme node of each of the three position
subtypes (onset, vowel, and coda). This ordered list represents the output of the model,
which can then be classified as correct, semantically related to the target, phonologically
related, related in both ways (a mixed error), unrelated but representing an actual word,
or gibberish (a nonword error). The activation levels of all nodes are then set to zero,
preventing any influence of spurious activation from one trial on the next.

There are more semantic nodes in the actual network structure than are depicted in
Figure 1. Each of the six lexical nodes in the model connects to exactly ten semantic nodes,
although the two nodes representing semantically related words (cat and dog) share three
of their semantic nodes. The target word for every trial is cat. Every tenth lexical access
simulation is run using a slightly different network structure in which, instead of there
being two words phonologically related to the target (hat and mat), there is only one (mat)
and the sixth word is now a possible mixed error (rat). This arrangement is motivated by
concerns regarding the random error probabilities of the simulation—see Dell et al. (1997)
for details. All the parameters of the core theory and the values used by Dell et al. are
summarized in Table 1.
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Table 1: Parameters in the core theory and their default values.

Parameter Description Default value

Nodes the number of nodes in the semantic, lex- 57, 6, and 10
ical, and phonological layers

Connectivity the nodes each node connects to see Figure 1 and text

Connection strength the coeflicient by which a given node’s 0.1

neighbors’ activation levels are multiplied
during spreading

Decay rate the coefficient by which a given node’s ac- 0.5
tivation is multiplied during spreading

Semantic jolt the activation level to which semantic 10
nodes are set to represent the model’s in-
put

Lexical jolt activation level to which the selected lex- 100
ical node is set

Spreading steps the number of time steps for which acti- 8

vation is spread through the network be-
fore lexical selection or phoneme selection
takes place

Intrinsic noise standard deviation of the distribution of 0.01
activation-independent noise
Activation noise standard deviation of the distribution of 0.16

the noise that is proportional to a node’s
activation level

An example run of the simulation is shown in Figure 2, using the network structure
containing a mixed error (rat). The activation levels of only a few of the nodes are shown.
The node corresponding to the word cat is the most active lexical node at the eighth time
step, and hence receives the increase in activation corresponding to lexical selection. After
eight more time steps, it happens that the most active onset phoneme is K, the most active
vowel is AF, and the most active coda is T, so the trial is scored as a correct response. The
legend in the figure indicates the rank order of the nodes’ activation levels at the end of the
run.

Because of the influence of the random noise, each simulation of the core model
behaves slightly differently, and may result in any of the six possible outcomes (correct,
semantic, phonological, mixed, unrelated, nonword). By running the simulation multiple
times, one can estimate the probability distribution over the six response types. This
pattern can be compared with probabilities estimated from experiments with humans. If
the model can replicate the human error probabilities, then insofar as the data summarize
language production behavior, the model can be said to exemplify a mechanism sufficient
to simulate human behavior.
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Figure 2. Activation levels of some of the nodes in the model during a simulation run.

Using the Core Model.

By varying the values of connection and decay, the distribution of errors of the core
model can be changed. This allows the replication of a variety of error patterns. The
task of matching a particular patient’s performance is essentially a non-linear regression
problem, using connection and decay as a two-parameter summary representation for an
error pattern. One seeks the values for the parameters such that the resulting distribution
of the core model’s errors most closely matches the data from the given patient. Speaking
more formally, we can try to minimize the X? statistic of a x? test to detect a difference
between the patient’s distribution and the model’s. If P represents the distribution of the
patient’s responses over n possible response categories, and M represents the distribution
of the responses generated by the model, then this statistic is calculated as

n

XA(Mmp)y= > >

je{a,pyi=1

(observed;; — expected;;)?

expected, ;

where Mo P
it

expected;; = total; X “iotal

Varying connection and decay to minimize X? will maximize the probability that the model
matches the patient (given the observed samples and assuming an underlying multinomial).
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Although Dell et al. optimize the fit by hand, this step is mathematically well-specified, and
can be carried out by an appropriate automatic numerical optimization method, as we will
demonstrate in the next section.

Note that this use of the core model of picture naming does not itself provide any
specific predictions, since the two input parameters do not correspond to any psychologically
measurable quantities or stimuli. Although Dell et al. refer to the distributions produced
by the model as predictions, their model only makes the general claim that any patient
naming pattern can be represented by some setting of decay and connection. In addition
to this general claim, Dell et al. use the fitted core model parameters for each patient to
derive specific predictions about additional aspects of each patient’s performance. We will
defer discussion of those predictions until later in this paper.

In this paper, we are not concerned with evaluating the assumptions of the underlying
general theory of lexical access (Dell, 1986). We merely wish to test the specific model of
aphasic naming presented by Dell et al. (1997) on the tasks for which it was proposed. We
will first consider the model’s general ability to simulate patients’ naming error patterns.

Replicating Picture Naming Performance
FEvaluation Methodology

As we discussed above, the central task of Dell et al.’s core model is to reproduce
patient naming behavior. By allowing different values of connection and decay, the model
functions as a two-parameter summarization of a patient’s response distribution during pic-
ture naming. There are many different ways to assess the model’s performance at this task,
and we will consider three of them, ranging from formal numerical measures to graphical
visualizations.

First, we will formally test the model’s ability to replicate observed patient error
patterns. Since Dell et al. argue that their theoretical claims rest on the empirical ability of
the model to match patient response distributions, it is critically important to assess the fit
of the model to the patient data. If even one fluent aphasic patient could not be fit by Dell
et al.’s model, this would indicate at least one incorrect assumption regarding a relevant
aspect of lexical access, limiting the model’s ability to function as a basis for theoretical
claims. Without a quantitative assurance of fit, one cannot use the model’s performance as
a basis for further inferences.

Although necessary for evaluating Dell et al.’s argument, measuring the goodness
of fit to patients doesn’t provide a way to judge the model’s performance relative to the
difficulty of the task. Therefore, we will also examine the model’s fitting abilities relative
to two simple mathematical theories. This will give us a sense of the general difficulty of
the modeling task, and whether Dell et al.’s cognitive theory is performing well or poorly
in a wider sense.

Finally, we will present plots of the range of patients that the model can account for.
This visual evaluation will enable us to spot patterns in the model’s behavior and compare
those trends with the patient data. While less formal than a statistical evaluation, such
a display will allow us to understand the model’s performance more intuitively. Although
none of these evaluation methods are entirely satisfactory on their own, by considering all
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three we should obtain a comprehensive view of the model’s ability to account for patient
picture naming.

FEvaluating Dell et al.’s Fits

We begin by evaluating the fit of Dell et al.’s model to their patient data. Although,
as we discussed above, Dell et al. fitted the model by minimizing the X? statistic, they do
not report the resulting X2 values or analyze the model’s goodness of fit using a standard x?
test. Instead, they present their results using root mean squared deviation (RMSD), which
is a measure of similarity between distributions. Given the two probability distributions M
and P over a set of n response types,

RMSD (M, P) — J LS - P2 .

=1

RMSD values can range from zero through one, where a value of zero implies identical
distributions. Note that, while X? is calculated on the basis of the number of samples in
each category, RMSD is based on the probability of a response in each category. This makes
it insensitive to the number of samples taken. While RMSD seems to capture the average
magnitude of discrepancies between the model and patient probabilities in an intuitive way,
it is not clear how to use it as a test of the goodness of fit. Such a test would require a
way of calculating the probability of obtaining the given RMSD value under the assumption
that the two different sample distributions were both drawn from the same fixed underlying
distribution. Presumably, one would need to know the number of samples taken in each of
the two groups, information which the RMSD statistic does not directly capture.

Since it is difficult to assess goodness of fit using RMSD directly, Dell et al. try to
interpret the quality of their fits by comparing against fits to random data (p. 819). They
constructed ten sets of six random numbers (normalized to sum to one), fit the core model
to each set, and then calculated the RMSD between the model and the data for each of those
ten fits. Then they compared the median RMSD of their fits of the random data (0.220)
to the median RMSD of their fits to the patient data (0.026). Although this comparison
suggests that the model fits human data better than it fits random data, it does not tell us
how well the model is fitting either set. It could well be the case that both fits are poor.

Dell et al. also present an analysis of the deviation of the model’s response patterns
from random error opportunities (p. 819-820, Figures 9-11). Although they repeat the
analysis for the patient data, it is not clear whether one can compare the two deviations
in a quantitative way. The analyses don’t address the quality of the model’s fits, since
they do not quantify the significance of discrepancies between the deviation of the model
and the deviation of the patients. Some of the average discrepancies between model and
data in the figures appear to be the size of an entire unit on their logarithmic scale, which
corresponds to a factor of 2.7 times. It appears that nowhere in their paper do Dell et al.
provide evidence that their model has a good fit to patient data, even though their argument
depends critically on the match.

The most straightforward way to evaluate the model’s fit is to use a standard x? test
of independence between each patient distribution and the distribution of the fitted model.
This is easily done by computing the significance of the X? value of each fit, which yields
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the probability that we would be incorrect in claiming that available data shows that the
model’s distribution differs from the patient’s. One common objection to such a test is that,
with enough samples, one is almost certain to detect subtle and theoretically unimportant
differences between two distributions. This problem cannot arise in our situation, since we
have only 175 samples for each patient (one response for each stimulus in the Philadelphia
Naming Test (Roach, Schwartz, Martin, Grewal, & Brecher, 1996)). Although we can shrink
the region of uncertainty surrounding the model’s distribution by simulating more trials,
the uncertainty regarding the patient’s distribution is fixed, and will always allow many
similar distributions to appear as likely matches.

A naive application of the x? test would quickly show that nineteen of Dell et al.’s
twenty-one patients (90%) could not be fit by the model. This is because all but two
of them (L.B. and H.B.) gave at least one picture-naming response that did not fall into
the well-defined response categories (correct, semantic, phonological, mixed, unrelated, or
nonword). Responses such as descriptions or refusals to name would fall into this seventh
‘miscellaneous’ category. Since the core model cannot generate such responses, it cannot
match patients who make them. Any distribution the model can produce will, after enough
samples have been taken, be judged highly unlikely to be identical to any patient distribu-
tion that contains such a response. To alleviate this problem, we must ignore uncodable
responses, and treat them as outside of the domain of the model. This means that we
should calculate X? values based only on the six response categories that can be generated
by the model. (It seems that Dell et al. followed a similar approach by ignoring miscella-
neous responses in their RMSD calculations, although they continued to include them when
converting counts to percentages.)

We implemented Dell et al.’s model and tested its fit to their patient data. The patient
distributions were recovered from the probabilities reported by Dell et al. by multiplying
by 175, the number of stimuli in their naming task, and then rounding. For each patient,
we simulated 10,000 trials of the model using the values of connection and decay they
recommended for that patient. Results of a x? analysis are shown in Table 2, calculated
assuming five degrees of freedom.? For each patient, the table compares the response
probabilities of the patient and the model, and lists the RMSD and X? value of the fit. The
significance value (p) represents the probability that we would have obtained a match of
this quality if the model and patient had had the same response distribution. A low value
therefore indicates a significant mismatch between the model and a patient. Confidence
intervals on the X? values and their associated significance levels were derived using a
Monte Carlo procedure described in Appendix A.

Twelve of the twenty-one fits (57%) do not match (p < 0.05) the corresponding
patients. Nine of the fits are very poor (p < 0.01). This is surprising, given the emphasis
that Dell et al. place on the accuracy of their model’s fit to the data. An examination
using the statistic they used to present their data, RMSD, shows that it does not provide
a reliable indication of the goodness of fit. The fit for patient J.Fr., for instance, has a
lower RMSD than the fit for patient V.C. (.013 as opposed to .020), even though J.Fr.’s
fit is much worse (X2 = 18.4, p = .002 as opposed to X2 = 5.7, p = .334). A test using

2One could argue that, since we generate the model’s distribution by estimating the two parameters
connection and decay from the patient data, there are actually only three degrees of freedom instead of five.
We will err on the lenient side, perhaps rejecting fewer non-matches then is warranted.
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Table 2: Fits of Dell et al.’s model to their patients, using the parameters they suggest.
Patient and Naming response Fit
parameter values Corr. Sem. Phon. Mixed Unrel. Non. RMSD X2  X?2 conf. P p conf.

W.B. .94 .02 .01 .01 .00 .01

conn .0200, dec .56 .93 .04 .01 .00 .00 .02 .008 4.2 2.9-6.5 523 .258-.711
T.T. .95 .01 .01 .02 .00 .00

conn .0200, dec .56 .93 .04 .01 .00 .00 .02 .017 21.3 16.4-28.9 .001 .000-.006
J.Fr. .93 .01 .01 .02 .00 .02

conn .0200, dec .56 .93 .04 .01 .00 .00 .02 .013 18.4 13.4-27.2 .002 .000-.020
V.C. .92 .02 .01 .01 .00 .03

conn .0200, dec .57 .88 .05 .02 .01 .01 .03 .020 5.7 4.8-6.9 334 .229-.438
L.B. .82 .04 .02 .01 .01 .09

conn .0070, dec .50 .82 .05 .03 .01 .02 .07 .011 3.3 2.7-4.1 .653  .531-.748
J.B. .83 .06 .01 .03 .01 .06

conn .0065, dec .50 .77 .06 .04 .01 .02 .10 .033 14.8 12.9-17.0 .011 .005-.024
JL. .85 .03 .01 .03 .01 .06

conn .0250, dec .60 .82 .06 .03 .01 .01 .06 .021 15.5 13.4-18.6 .008 .002-.020
G.S. .73 .02 .06 .01 .02 .15

conn .0057, dec .50 .70 .07 .06 .01 .03 13 .024 6.5 6.0-7.1 263 .216-.305
L.H. .71 .03 .07 .01 .02 .15

conn .0057, dec .50 .70 .07 .06 .01 .03 13 .020 5.5 5.0-6.1 358 .292-417
J.G. .99 .06 .09 .04 .03 .20

conn .0450, dec .70 .56 .10 A1 .02 .05 .16 .029 109 10.0-12.1  .053 .034-.074
E.G. .94 .03 .00 .02 .00 .01

conn .1000, dec .60 .95 .03 .00 .01 .00 .00 .008 11.1  6.8-21.3 .049 .001-.233
B.Me. .89 .03 .01 .05 .01 .00

conn .1000, dec .82 .85 .09 .01 .03 .00 .02 .034 50.9 37.0-91.1 .000 .000-.000
B.Mi .88 .05 .01 .02 .01 .01

conn .0550, dec .70 .84 .08 .02 .02 .00 .03 .023 7.1 6.2-8.5 211 .131-.284
J.A. .88 .05 .00 .03 .01 .03

conn .0580, dec .70 .88 .07 .01 .02 .00 .02 .016 19.1  15.0-26.9 .002 .000-.010
AF. .78 .02 .03 .06 .04 .07

conn .1000, dec .85 .78 12 .02 .04 .00 .05 .044 88.7 73.6-106.4 .000 .000-.000
N.C. .80 .03 .07 .01 .00 .09

conn .1000, dec .85 .78 12 .02 .04 .00 .05 .047 42.3 39.5-46.1 .000 .000-.000
1.G. 07 .10 .06 .03 .01 .03

conn .1000, dec .86 .73 13 .03 .04 .01 .06 .026 9.2 8.3-10.3 101 .067-.142
H.B. .61 .06 13 .02 .01 18

conn .0500, dec .71 .60 A1 .10 .02 .04 13 .035 13.8 12.9-14.7 .017 .012-.024
J.F. .66 .16 .01 13 .01 .03

conn .1000, dec .86 .73 13 .03 .04 .01 .06 .051 38.1  35.1-42.1 .000 .000-.000
G.L. .29 .04 .22 .03 .10 .32

conn .0790, dec .85 .28 11 18 .03 .10 .30 .036 9.7 9.1-10.4 .085 .065-.106
W.R. .08 .06 .16 .05 .35 .30

conn .1000, dec .94 .18 .10 18 .03 12 .39 113 98.1 93.6-102.5 .000 .000-.000

Note:

RMSD stands for root mean squared deviation. Boldface indicates significant mismatches.
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the standard X? measure, however, reveals that Dell et al.’s reported results provide a very
poor match to their patient data. Almost half of the naming patterns were not replicated.

Improving the Model’s Fit

One possible explanation for the core model’s poor fit could be the manual regression
procedure used by Dell et al. They report that “the fitting process was informal” (p. 818)
and “if a patient could be reasonably well fit with a [parameter] combination that we had
already used, we just used that combination rather than try to fine tune the fit” (p. 818-19).
So it seems likely that the model’s fit to the patient naming data could be improved by the
use of a more formal regression process.

To this end, we developed an automated fitting procedure based on numerical opti-
mization. An overview of its operation can be found in Appendix A. We used the procedure
to refit the core model to Dell et al.’s patients, deriving new connection and decay values
for each patient response distribution. To allow finer adjustments at low values (and fol-
lowing the representation of the parameter space in Dell et al.’s Figure 5), the algorithm
manipulated connection on a logarithmic scale. The algorithm stopped fitting each patient
when it was confident that any better solution had a decay value within 0.01 of the current
solution, and a connection value whose logarithm (base 10) was within 0.025.

The fits found by the algorithm are shown in Table 3, with 95% confidence intervals on
the X? values and their associated significance levels. A comparison of the X? confidence
intervals with those resulting from the parameter settings reported by Dell et al. (our
Table 2) shows that, for thirteen of the twenty-one patients (62%), our algorithm found
fits with significantly lower X? values. For the remaining eight cases, the fits reported by
our algorithm were not significantly better or worse, given about 10,000 samples from each
distribution. Overall, the algorithm’s fits had a mean X2 of 13.2 (median 8.0) compared
with a mean X? of 23.5 (median 13.8) for the fits reported by Dell et al. Measured by
RMSD, the algorithm’s fits had a mean RMSD of 0.027 (median 0.024) compared with a
mean RMSD of 0.030 (median 0.024) for Dell et al.’s reported fits. These results give us
confidence that our fitting algorithm is, in general, at least as good as the manual fitting
process followed by Dell et al., and confirms our previous suspicion that a more formal
fitting process would improve the model’s fit.

Even with this improved fit, however, five of the twenty-one patients (24%) cannot
be fit by the model (patients J.L., B.Me., A.F., J.F., and W.R.). Four of the fits are very
poor, with even the lower bound of a 95% confidence interval on X? indicating a failure
to match with 99.8% significance. The rigorous nature of the fitting algorithm suggests
that these failures are due to intrinsic inadequacies in the model, rather than experimental
happenstance. Our results lead us to conclude that, contrary to the claims of Dell et al.,
the fit of their model to patient naming data is mediocre and that, in general, the model
cannot account for many patterns of aphasic naming.

Although aphasic patients are the main focus of our discussion, we also attempted to
fit the model to the error pattern of normal participants (as reported by Dell et al., p. 810).
The results are shown in Table 4. The closest fit found by our optimization algorithm results
in a distribution that is significantly different (p < 0.0005) from normal performance, even
though it is closer than the distribution achieved by the parameters suggested by Dell et
al.. When adjusted for a high probability of a correct response, the model cannot make
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algorithm.
Patient and Naming response Fit
parameter values Corr. Sem. Phon. Mixed Unrel. Non. RMSD X? XZ conf. P p conf.
W.B. .94 .02 .01 .01 .00 .01
conn .0375, dec .62 .92 .04 .01 .01 .00 .01 .012 2.5 1.9-3.2 .778 .665-.861
T.T. .95 .01 .01 .02 .00 .00
conn .0422, dec .63 .94 .04 .01 .01 .00 .01 .014 80 6.6-10.1 .156 .072-.251
JFr. .93 .01 .01 .02 .00 .02
conn .0563, dec .69 .90 .06 .01 .02 .00 .02 024 7.9 6.9-9.1 .160 .107-.227
V.C. .92 .02 .01 .01 .00 .03
conn .0313, dec .61 .91 .05 .01 .01 .00 .02 011 3.1 2.5-4.1  .684 .542-.779
LB. .82 .04 .02 .01 .01 .09
conn .0104, dec .53 .81 .06 .03 .01 .02 .08 .013 2.8 2.1-3.9 .734 .560-.835
J.B. .83 .06 .01 .03 .01 .06
conn .0453, dec .67 .82 .08 .03 .02 .01 .04 .014 4.5 3.6-5.8  .481 .330-.602
JL. .85 .03 .01 .03 .01 .06
conn .0453, dec .67 .82 .08 .03 .02 .01 .04 .026 11.2  9.6-13.3 .048 .021-.087
G.S. .73 .02 .06 .01 .02 15
conn .0057, dec .50 .69 07 .06 .01 .03 14 .025 6.4 5.5-74 274 .193-.362
L.H. .71 .03 .07 .01 .02 .15
conn .0055, dec .50 .67 07 07 .01 .03 15 .023 5.2 4462 .394 .285-.487
J.G. .59 .06 .09 .04 .03 .20
conn .0470, dec .70 .59 A1 .10 .02 .04 14 031 104 8.8-12.4 .065 .029-.117
E.G. .94 .03 .00 .02 .00 .01
conn .0703, dec .71 .93 .05 .00 .02 .00 .01 .009 2.9 2141 7115 .534-.836
B.Me. .89 .03 .01 .05 .01 .00
conn .0672, dec .73 .85 .08 .01 .02 .00 .02 031 222 18.9-27.3 .000 .000-.002
B.Mi .88 .05 .01 .02 .01 .01
conn .0484, dec .67 .87 07 .02 .01 .00 .02 .010 50 3.5-72 420 .205-.616
JA. .88 .05 .00 .03 .01 .03
conn .0550, dec .70 .84 .08 .02 .02 .01 .03 .025 9.0 7.8-10.8 .109 .055-.166
AF. .78 .02 .03 .06 .04 07
conn .0531, dec .71 .72 .10 .06 .02 .02 07 .044  26.5 23.7-29.7 .000 .000-.000
N.C. .80 .03 07 .01 .00 .09
conn .0065, dec .50 .77 .06 .05 .01 .02 .09 021 8.8 7.6-10.3 .117 .067-.181
L.G. .m7 .10 .06 .03 .01 .03
conn .0641, dec .74 .77 A1 .04 .02 .01 .05 .011 2.6 2.0-3.7 .754 .601-.852
HB. .61 .06 13 .02 .01 18
conn .0375, dec .67 .57 .10 A1 .02 .05 .16 .030 9.7 85-11.0 .085 .051-.130
JF. .66 .16 .01 13 .01 .03
conn .0984, dec .86 .69 14 .05 .04 .01 07 046  36.5 31.9-42.4 .000 .000-.000
G.L. .29 .04 .22 .03 .10 .32
conn 0734, dec .83 .28 A1 19 .03 .10 .30 .032 8.3 74-9.6  .138 .088-.193
W.R. .08 .06 .16 .05 .35 .30
conn .0969, dec .94 .15 .08 A7 .02 13 45 114 82.8 76.0-90.8 .000 .000-.000
Note: RMSD stands for root mean squared deviation. Boldface indicates significant mismatches.
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Table 4: Fits of Dell et al.’s model to control participants, first using the parameters found by our
optimization algorithm, and also using the parameters they suggest.

Naming response Fit
Data source Corr. Sem. Phon. Mixed Unrel. Non. RMSD X2 p
Controls 10,094 120 6 90 28 5
conn .0806, dec .55 9,748 164 0 85 0 3 002  41.7 .000
vs..land .5 9,668 219 0 104 0 9 .006 68.5 .000

Note: RMSD stands for root mean squared deviation.

any phonological or unrelated errors. It appears that, in addition to its failures on aphasic
patients, the model is unable to match the performance of normal participants.

Evaluating in Relative Terms

We have seen that Dell et al.’s model cannot replicate the behavior of a quarter of
their patients (even when ignoring descriptions and non-responses), and therefore that its
performance cannot be used as evidence in support of theoretical claims such as interac-
tivity, globality, or continuity. But perhaps patient naming patterns are inherently very
difficult to model successfully. Coming as close as Dell et al.’s model has might then be
an impressive achievement. We could then interpret the model’s promising performance as
strongly suggestive of directions for further research. Although we still could not use it as
a basis for theoretical inferences, the model would have important heuristic value.

Evaluating the model in relative terms will give us a quantitative basis for such
judgments. The model’s performance would be impressive only if it were difficult to match
sixteen of twenty-one patients (or score a mean RMSD of 0.028) using a model that is as
simple as Dell et al.’s. (Ockham’s razor tells us that we are only interested in theories that
are as simple or simpler.) We can determine if this is the case by comparing the model’s
performance to that of some simple alternatives.

Perhaps the simplest theory of aphasic naming is that all patients exhibit the same
performance. If we choose that constant pattern as the mean of the patient data, then
comparing against this simple theory is known as computing the variance accounted for
(VAF). VAF, also called the proportion of variance explained, is widely used to evaluate
models produced by techniques such as linear regression (Mosteller, Fienberg, & Rourke,
1983), classical multidimensional scaling (Cox & Cox, 1994), or clustering (Shepard &
Arabie, 1979). To calculate VAF, one compares the error between the model and the data
to the error between the mean of the data and the data. If the model is explaining at least
a part of the measured phenomenon, it should perform better than a constant model that
always guesses the mean. Although the constant model is clearly incorrect, its performance
provides a quantitative way to assess how far Dell et al.’s model has come toward explaining
the data, even if we know that it can’t provide a match.

We performed a VAF analysis of Dell et al.’s model, using the fits found by our
regression algorithm. We will express the VAF of the model and the patient data as the
percentage of the variance in the data that is accounted for by the model, computing the
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mean separately for each response category and summing over all categories:

3 (data — model)?

AF(M,P)=1—
VAF(M, P) Y- (data — meanq44)?

If the model were perfect (and tolerant of sampling error), it would account for 100% of the
residual error left from guessing the mean. And, if it were worse than guessing the mean,
the model’s VAF would be negative. The model accounted for 87% of the variance, which
is much better than guessing the mean. However, when we calculate VAF by summing
over categories, we are implicitly weighting response categories with higher variance (such
as correct and nonword) more than those with lower variance (such as phonological or un-
related). This is inappropriate here, since patient response rates in low-variance categories
such as phonological or mixed errors are just as important for evaluating theories of lexical
access as response rates in the high-variance categories. (In fact, we will see later than
phonological and mixed errors play a large role in the predictions that Dell et al. derive
from the model.) Calculating the VAF separately in each category, we find that the model
accounted for the following percentages of the variance in each category:

correct  98%
semantic -40%
phonological ~ 90%
mixed 11%
unrelated  55%
nonword  83%.

The mean of these category VAF's is 49%. This means that, on average, the model performed
better than guessing the mean in each category, reducing the error by half. It performed
best in the correct category, which is not surprising, since we optimized the model’s fit using
the X? statistic, which is sensitive to the number of samples, and the correct category is
the one in which most patients made most of their responses. It is surprising, however, that
the model fares so poorly in the semantic category. It performs worse here than guessing
the mean of the data.

Of course, a constant model is an overly simplistic theory, even as a baseline. It is
obvious that different aphasic patients exhibit different patterns of naming errors. It would
be more interesting to compare against a baseline model that had adjustable parameters to
separately fit the particular aphasia of each patient. Like Dell et al.’s model, such a model
would be able to represent a range of different patterns, depending on the adjustments to the
parameters. The simplest such model would be a linear theory of naming. In other words,
the baseline hypothesis would be that there is a single spectrum of naming performance,
with each patient falling somewhere exactly between two extremes. This means that we
are assuming that, if we plotted all the patients’ error mixes as points in six-dimensional
space, they would all happen to line up along a single straight line shooting through the
space in some orientation. Since the theory restricts us to a line, we could then represent
each error pattern by a single number representing its position along that line. Comparing
against such a simple linear model would still be misleading, however, since it has only one
adjustable parameter we can tune to fit each patient, whereas Dell et al.’s model has two. We
can extend the linear model with a second parameter, expanding its range of representable
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patterns from a line to a two-dimensional plane in the space of patterns. As we explain
in Appendix B, such a model embodies the theoretical claim that patient performance is
composed only of two components that interact with patient response probabilities simply
by summing. The strengths of the two components then locate each patient on that plane.
Like the constant model, this two-parameter linear model does not identify specific mental
representations and the theory it embodies is clearly false. It is useful only as a benchmark
two-parameter theory against which we can compare Dell et al.’s model. Its simplicity
implies that it could well be missing important features of aphasic naming behavior that
are explicitly articulated in Dell et al.’s model of aphasic lexical access. (Indeed, we will see
in the next section that Dell et al.’s model is more complicated in the specific sense that
it allows the patients to lie on a complex curved two-dimensional surface in the response
space.) If those additional assumptions are useful, we would expect Dell et al.’s model to
outperform the linear one.

An evaluation of the linear model is complicated somewhat by the fact that its fixed
parameters must be estimated from the patient data (just as we computed the mean for
the VAF measure). This must be done carefully, so as not to allow the model to implicitly
memorize the data it will be tested on. Details of our testing methodology and experiments
are given in Appendix B—we will only repeat the main results here. The simple two-
parameter linear model succeeds in matching (p > 0.05) seventeen of the twenty-one patients
(81%), with a mean RMSD of 0.022 (median 0.015), a weighted VAF of 89%, and an average
category VAF of 65%. The VAF in the individual categories is

correct  99%
semantic  28%
phonological  80%
mixed 57%
unrelated  33%
nonword 92%.

These figures indicate that the variance unaccounted for by Dell et al.’s model in the se-
mantic and mixed categories is not entirely due to noise in the data. While the linear model
does not match significantly more patients than Dell et al.’s model (which matched sixteen
patients with a mean RMSD of 0.027, a weighted VAF of 87%, and an average category
VAF of 49%), it does indicate that Dell et al.’s model is not doing a particularly good job of
capturing the patient data. The data seem to be equally well matched with a simple linear
model representing a superficial theory that is clearly false. The mediocre performance of
Dell et al.’s model therefore remains unimpressive, even when evaluated in relative terms.
Although we have not yet considered the accuracy of the supplementary predictions that
Dell et al. derive from their model, both formal tests of its ability to replicate patient pat-
terns and relative comparisons against simple models indicate that its fit to picture naming
data is poor.

Possible Error Patterns

To fully understand Dell et al.’s model of aphasic naming, we need to know more
than how well it can fit particular patients—we need some general intuition about what
kinds of error patterns it can represent and what kinds of patterns it can’t. Describing the
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model’s representational range would provide a first step toward understanding why it fits
some patients but not others. Just as we saw how a linear model of naming assumed that all
patients lay along a line or plane in six-dimensional space, we would like to have a similar
graphical understanding of Dell et al.’s model. This would allow us to visually determine
which basic patterns in the data the model is able to capture. Since it can be difficult to
analyze such computational models abstractly, we will adopt the brute-force approach of
empirical testing.

We sampled the output distributions of Dell et al.’s model using a wide range of
possible settings of the two parameters, connection and decay. We varied the logarithm
(base 10) of connection from -4 through -1 in increments of 3 (resulting in values from
0.0001 through 0.1) and we varied decay from 0.5 through 1 in increments of ﬁ.
addition, we also varied connection non-logarithmically from 0 through 0.1 in increments
of %, with decay varying the same way. This resulted in over 8,000 distinct parameter
settings. At each of these parameter settings, we ran the core model simulation until the
width of the widest 95% confidence interval around any of the six response probabilities
was 0.02 (this took anywhere from 200 to 9,600 trials, depending on the results at that
setting). This gave us, for each setting of the parameters, an estimate of the error mix
produced by the simulation at that setting. By examining the range of mixes across all of
these parameter settings, we can see the structure of those patterns that are describable by
Dell et al.’s representation.

Although an error mix is a six-dimensional object, we can visualize the error mixes
attainable in the representation by considering only two or three response categories at a
time. In Figure 3, we consider only the proportions of semantic and phonological errors.
Each small dot in the figure corresponds to a particular setting of connection and decay,
and all settings we sampled are plotted in the figure. Circles represent patients reported by
Dell et al. The performance of normal speakers is marked with a large X (partially obscured
by points from the model), as are the random error opportunities in English. Dell et al.
estimated the random point using the method of Dell and Reich (1981), a combination of
random initial phoneme substitutions and target/error re-pairings. Clusters of dots in the
figure imply that many different parameter settings for the simulation give rise to error
mixes that have similar percentages of semantic and phonological errors, although these
mixes may vary widely in the other response types (such as nonword errors) which are not
shown. Looking at the boundary of the dotted area shows us the limits of the representation.
Note that the clusters and patterns of variation in the density of dots in the figure arise
from the systematic way in which we varied the input parameters, and do not represent
important features of the representation—only the boundary of the area containing dots is
meaningful for our purposes. We assume that, although we didn’t happen upon it in our
sampling, there exists a parameter setting that can give rise to a distribution that would
fall between any two adjacent dots.

From the figure, we see that several patients lie outside the region that can be captured
by the model. Note that the distance between the model and each patient is minimized
in this two-dimensional projection, since a patient who appears to lie within the model’s
range may differ along dimensions not represented in the figure. The figure serves as a more
intuitive, but less accurate, version of the y? tests we discussed earlier.3

In

3Although our main evaluation criterion has been the ability of Dell et al.’s model to replicate patient
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Figure 3. The relations between semantic and phonological errors that are attainable using Dell et
al.’s two-parameter representation. Patients are plotted as circles.
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A detailed examination of the figure shows that the model cannot represent any error
mix with more than 17% semantic errors, and when representing any mix with more than
13% semantic errors, a significant number of phonological errors must also be included (note
that mixed errors are not shown). Similarly, when representing any significant number of
phonological errors, a large number of semantic errors must be present. These results weaken
Dell et al.’s assertion (p. 802) that their representation accounts for a dissociation between
predominately semantic or predominately phonological errors. It is patients exhibiting just
such patterns from whom the model is especially distant.

Considering only semantic and nonword errors gives further insight. In Figure 4, we
see that the representation also forces a large proportion of non-word errors whenever it
represents a significant number of semantic errors. Any error pattern with more than 13%
semantic errors must have at least 5% nonword responses. Conversely, the model also forces
a significant number of semantic errors whenever it represents patients with a significant
number of nonword errors. This forces a poor fit to several patients who have low rates of
semantic errors.

The dimensions in which the limited range of the model is most obvious are those
for mixed and unrelated errors. It is clear from Figure 5 that the range of variation of the
model is inadequate to capture the variety among the patients. It can generate up to 13%
unrelated errors while patients can make over 30%, and it can generate up to 5% mixed
errors while patients can make more than twice that many.

The most intuitive constraint on the possible error mixes is the relationship between
correct and gibberish responses. As shown in Figure 6, there seems to be a steady inverse
relationship between the two. The model implies that any patient who gives a substantial
percentage of incorrect answers will exhibit a substantial percentage of nonword errors. As
the positions of two of the patients in the figure illustrates, this assumption is unwarranted.
It is well-known that patients can exhibit a high rate of semantic or phonological errors
without a high rate of neologisms (see, for example, Caramazza & Hillis, 1990).

The Continuity Thesis

These figures also allow us to informally assess the continuity thesis, in which Dell et
al. claim that the error patterns of both the model and the patients fall along a continuum
between normal performance and random error opportunities. Dell et al. define random er-
ror opportunities in a theory-neutral way as “...the distribution of error types that would
occur if output is ‘random’ (i.e., if output is not affected at all by lexical retrieval)” (p. 808).
However, they do not calculate the opportunities of English by scoring random phonologi-
cally legal sequences of phonemes. As we mentioned earlier, they instead use the estimation
method of Dell and Reich (1981), which involves phoneme substitutions in the first position
of target words. Presumably, this is motivated by a desire to estimate the distribution of
error types produced by a process akin to the one used by patients. However, any artificial
process of generating patient-like errors necessarily depends on an implicit theory of lexical

data, another desirable characteristic of any naming model is the inability to represent error patterns that
do not arise in human performance. If enough patient data could be gathered to estimate the portion of
error-pattern space occupied by possible human patterns, one could develop a quantitative measure of this
inability, perhaps based on volume intersection.



EVALUATING A MODEL OF NAMING 20

(0 0)
o
S
= o
W o 7
=
o
=
[
(@]
< <
S oS
©
2
E
S «
[@) -
E o
O_ . > (0]
© 5 \ T T T
Probability of a Semantic Error

Figure 4. The relations between semantic and non-word errors that are attainable using Dell et al.’s
two-parameter representation. Patients are plotted as circles. Note the difference in scale between
the two axes.
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Figure 5. The relations between mixed and unrelated errors that are attainable using Dell et al.’s
two-parameter representation. Patients are plotted as circles. Both the random and normal points
are obscured by the model. Note the difference in scale between the two axes.
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Figure 6. The relations between correct responses and non-word errors that are attainable using
Dell et al.’s two-parameter representation. Patients are plotted as circles.
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access. In this paper, we will merely assume that Dell et al.’s continuity thesis refers to the
particular error probabilities they calculated.

Although a literal reading of the definition of the continuity thesis implies that error
patterns must lie directly between the normal and random points, and therefore along a
straight line, we will interpret it more loosely as claiming that error patterns should form a
continuous curved surface which must start and end at the prescribed points, but which may
deviate somewhat from a straight line. Since the continuity thesis only refers to the position
of error patterns, it could be true or false of either the model or the patients independently,
and we will consider each in turn.

Judging from Figures 3 through 6, the model does seem to admit a description in
terms of a single curved surface (of intrinsic dimensionality two) flowing from the point
of normal performance to the random distribution, rather than forming a scattered cloud
in three or more dimensions. This is not particularly surprising, since we generated the
points by varying only two parameters. Figures 3 and 6, especially, give the impression of
a spinnaker filling out from the two points. While the model’s possible patterns do not,
strictly speaking, lie between the normal and random points (i.e., on a line or within a box),
those points do seem to define the endpoints of a curved surface (somewhat like the peel of
a single section of an orange, twisted) on which the model’s patterns lie.

However, the wide dispersal of patients in most of the figures indicates that this is a
poor characterization of aphasic naming. In Figures 3 and 5, patients lie far to both sides of
the random point, and in Figure 4, patients far from the normal point lie in many directions.
The position of W.R. at 8% correct and 30% nonword in Figure 6 serves as a reminder that
low-correctness need not imply high nonword rates. To provide a clearer view, Figure 7
shows only the patients. Although they seem to follow a clear pattern, they do not seem to
tend toward the random point as the percentage of either nonword or phonological errors
increases. Figure 8 echoes Figure 5, although this time using semantic errors. We see that
while patients vary widely in their frequency of semantic errors, they are not constrained
to lie between the random and normal points in any obvious way. Of course, some patients
may exhibit random naming behavior. But there seems to be such a variety of different
patterns of breakdown that it would be misleading to speak of possible aphasic behavior as
constrained by random error opportunities. The continuity thesis does not find support in
Dell et al.’s data.

The Effects of the Parameters

Figures 3 through 6 gave us some intuitions about the response distributions that
the model could generate, but ignored the relation between those error patterns and the
parameter values used to generate them. Looking at how the parameters affect the model’s
output is another way of understanding its behavior. To see how the parameters affect the
model’s response distribution, we can measure the similarity of the model’s distribution to
a reference distribution as we try different values of the parameters. In Figure 9, we use
patient G.S. as our reference distribution, and we measure similarity using RMSD. Lighter
shading indicates a distribution more similar to that of G.S. While most parameter settings
are unsuitable, there seems to be a diagonal band of settings that produce distributions
similar to G.S.’s. In this region, one can use various settings of decay, as long as one
modifies connection accordingly. This helps to explain why our fitting algorithm was able
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Figure 7. The percentages of nonword and phonological errors of Dell et al.’s patients.
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Figure 9. The RMSD of the model to patient G.S. at various parameter settings.

to improve on many of Dell et al.’s manual fits, since much effort is required to distinguish
the true optimum from the many reasonably good values. The shading suggests that the
model’s fit to G.S. improves as decay is lowered, which agrees with our regression algorithm
(which chose a decay of 0.5 and a connection of .0056 for G.S.).

One experiment this suggests is trying a decay value less than 0.5, to see if the fit
could be further improved. Although Dell et al. do not consider them, there is no inherent
computational reason why lower values of decay would be inappropriate. In Figure 10, we
show the model’s behavior relative to G.S. when we allow decay and connection to both
vary from 0 through 1, rather than stop at 0.5 and 0.1, respectively. Figure 9 would occupy
the upper left portion of this expanded view. We can see from the figure that not only
does the model get even closer to G.S.’s distribution with very low values of decay and
connection, but that there is a second band of similar distributions when connection is
above 0.1. The values of the parameters that allow the model to come close to G.S. seem to
form a wishbone-shaped region. This general shape occurred for all patients we examined,
although the right-hand high connection region varied in quality, relative to the left-hand
region. Figure 11 shows another example, using patient I.G.

These figures raise the possibility that many patients, such as G.S., could be fit better
by parameters that lie outside of the parameter region we have been considering. To test this
hypothesis, we refit all the patients, allowing the fitting algorithm to try parameter values
from 0 through 1 for both decay and connection. For seven of the twenty-one patients
(33%), the most likely fit of the model resulted from parameter values outside the usual
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Figure 10. The RMSD of the model to patient G.S. at a wider variety of parameter settings.

region. The improved fits are shown in Table 5. This result is surprising, given Dell et al.’s
intuitive interpretations of the model’s parameters. Dell et al. consider the parameter called
connection to represent ease of transmission of signals in the human brain, or the degree
to which different levels of representation are communicating effectively. The parameter
called decay is seen as reflecting the integrity and accuracy of each mental representation.
If decay corresponds to representational integrity, then we would expect that a decay value
less than 0.5 (Dell et al.’s setting for normals) would result in behavior even more accurate
than that of normals. Similarly, if connection corresponds to ease of transmission, we would
expect that brain damage would be better modeled by values lower than that used to model
normals (0.1). (Dell et al. use these same intuitions to derive predictions regarding recovery
that we will discuss in the next section.) The new fits imply that seven of the brain-damaged
patients have mental representations that are either more accurate or communicating more
effectively than those in normal participants. This contradiction suggests that we must
use caution when assessing the extent to which elements of the model truly correspond to
relevant concepts from neuropsychology.

By exhaustively sampling the possible parameter settings of Dell et al.’s core model,
we have gained a more intuitive understanding of its capabilities and limitations. For ex-
ample, any patient who exhibits significant phonological or semantic errors without making
many nonword responses cannot be represented. While the model seems to reflect the con-
tinuity thesis, the patients do not. These analyses complement the results we obtained
when fitting particular patients. Not only does the model have a poor fit to individual
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Figure 11. The RMSD of the model to patient I.G. at a wide variety of parameter settings.

patients, but it inherently excludes classes of error patterns that are known to be exhibited
by patients.

The Model’s Predictions

Dell et al. credit their model not only with the ability to account for the pattern of
naming errors observed in aphasic patients, but also with the ability to make predictions
about other aspects of patients’ performance. Since the model makes detailed assumptions
regarding the mechanisms involved in lexical access, those assumptions can be used to
generate predictions regarding related tasks or phenomena that share those mechanisms.
(It is this breadth that underlies the intuitive appeal of cognitive theories.) In Dell et al.’s
theory, the predictions are obtained by first fitting the core model to each patient’s naming
performance, and then using the resulting values of connection and decay. Dell et al. derive
four predictions:

Frequency of nominal phonological errors If one assumes that selection of lexical
nodes in the human lexical system respects syntactic category, and therefore that
only lexical nodes representing nouns are ever selected during picture naming, then
those responses that are phonologically related to the target but are not nouns prob-
ably result from misselection at the phonological level.* With a normal connection

4This assumes that syntactic category is not specified by communication from the semantic representation
to the lexical level, and is thus exempt from damage in the model.
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Table 5: Patients that are better fit by parameter settings outside the area considered by Dell et al.

Patient and Naming response Fit
parameter values Corr. Sem. Phon. Mixed Unrel. Non. RMSD X2 X? conf. P p conf.

L.B. .82 .04 .02 .01 .01 .09

conn .0002, dec .07 .83 .04 .03 .01 .01 .08 .005 1.4 0.8-2.5 922 .T75-.975

conn .0104, dec .53 .81 .06 .03 .01 .02 .08 .013 2.8 2.1-3.9 7134 .560-.835
G.S. .73 .02 .06 .01 .02 15

conn .0002, dec .04 .72 .05 .06 .01 .02 15 .013 3.5 2.8-4.6 621 .464-.725

conn .0057, dec .50 .69 .07 .06 .01 .03 .14 .025 6.4 5.5-7.4 274 .193-.362
LH. .71 .03 .07 .01 .02 .15

conn .0002, dec .04 .70 .05 .06 .01 .02 .16 .012 2.9 2.2-3.9 709  .561-.817

conn .0055, dec .50 .67 .07 .07 .01 .03 .15 .023 5.2 4.4-6.2 394 .285-.487
E.G. 9 .03 .00 .02 .00 .01

conn .1286, dec .51 .93 .03 .00 .02 .00 .01 .001 0.1 0.0-0.3 1.000 .998-1.000

conn .0703, dec .71 .93 .05 .00 .02 .00 .01 .009 2.9 2141 715 .534-.836
N.C. .80 .03 .07 .01 .00 .09

conn .0002, dec .03 .81 .04 .04 .01 .01 .10 .017 85 6.8-10.9 .129  .053-.233

conn .0065, dec .50 .77 .06 .05 .01 .02 .09 .021 8.8 7.6-10.3 .117  .067-.181
H.B. .61 .06 A3 .02 .01 .18

conn .0001, dec .06 .58 .06 .09 .01 .04 .23 .031 9.3 7.8-11.4 .096 .044-.167

conn .0375, dec .67 .57 .10 11 .02 .05 .16 .030 9.7 85-11.0 .085 .051-.130
JF. .66 .16 .01 13 .01 .03

conn .1411, dec .97 .70 .15 .03 .04 .01 .07 .045 30.6 26.6-35.8 .000 .000-.000

conn .0984, dec .86 .69 .14 .05 .04 .01 .07 046  36.5 31.9-42.4 .000 .000-.000

Note: The three response distributions in each block correspond to the patient, the new parameter settings, and

the best parameters that are inside the usual region. RMSD stands for root mean squared deviation. Boldface
indicates significant mismatches.

value, feedback from the phoneme layer should result in additional misselections at

the lexical level, and hence a higher percentage of phonological errors would be nouns

than one would predict by chance. If connection has a very low value (below 0.05),
then there would be almost no feedback from the phoneme layer to the lexical layer,
and we should predict noun responses to occur at chance rates.

Frequency of mixed errors Similarly, a lower connection value should also reduce the

feedback that boosts the occurrence of mixed errors. So if connection is less than 0.05,
mixed errors should occur no more frequently than one would predict by chance.

Naming during recovery By assuming that recovery from brain damage implies move-

ment of connection and decay toward normal values, one derives a loose constraint on

the possible naming error mixes observable during recovery: only those mixes obtain-

able using parameter settings between the currently fit values and the normal values

should be observed.

Repetition If we assume that word repetition is carried out by the same mechanism as

picture naming, but without the initial processing from semantic input, then we can
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simulate repetition as the second half of naming. Input is represented by setting the
activation level of the lexical node corresponding to the target word, and after allowing
the usual number of time steps for activation to spread, phonemes are then selected as
usual. By using the core model parameters derived from a patient’s naming data, we
can generate a predicted distribution of error types for the patient’s word repetition
performance.

Although Dell et al.’s model does a relatively poor job of matching patient naming
data, it could be that its additional abilities as a predictive model are valuable. This would
be the case if its predictions were particularly accurate or difficult. In this section, we will
determine if this is, in fact, the case.

The Mized Error Effect

The predictions of the frequency of nouns among phonological errors and the fre-
quency of mixed errors are handled in the same way. We predict higher than chance levels
of both phenomena if the value of connection that best fits the patient’s naming data is
greater than 0.05. We will consider the mixed error effect first. As Dell et al. point out,
predicting the frequency of mixed errors given a patient’s error pattern is less impressive
that predicting the frequency of nouns among phonological errors, since the error pattern
explicitly specifies the mixed error rate, while the noun rate is not included among the
input to the model. However, recall that the model only accounts for 11% of the variance in
the mixed category. This low reconstruction accuracy suggests that information regarding
the mixed response category is, to a large extent, lost during the compression of the six
error categories into the two values for connection and decay. Since this information is not
necessarily available, it is not obvious that the model can predict the mixed error effect
correctly based on the connection value alone.

Dell et al. divide their patients into two groups according to each patient’s value
of connection. To increase the amount of relevant data, they add two additional patients
(G.B. and V.P.) to the high connection group who were not considered when evaluating the
model’s naming fits due to their frequent nonresponses and circumlocutions. Considering
the semantic and mixed responses from each group, they calculate the frequency with which
phonemes in the first, second, or third position of the response are shared with the target.
Comparing these rates with estimates of chance, they find that the patients in the high
connection group show a significant mixed error effect in all three positions (p < 0.004 for
each position, by our calculation®), as predicted. However, the model’s prediction that the
effect will be absent in the low connection group is not borne out by the rates reported
by Dell et al. The group’s mean rate in second position of .122, estimated from 74 trials,
is greater than the chance rate of .060 with p = .014. (Although Dell et al. discuss this
problematic discrepancy, use of a poor statistical approximation when computing confidence
intervals seems to have misled them into thinking it was statistically insignificant.) When
we recalculated the rates using the patient groups implied by the connection values found
by our optimization algorithm, the mixed effect in second position grew larger (.139 from

STests in this section were performed using data for individual patients that were generously supplied to
us by Deborah Gagnon. Most of the data were published by Gagnon, Schwartz, Martin, Dell, and Saffran
(1997).
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101 trials, greater than .060 with p < .0005). And when we removed from the analysis
the five patients that the model had failed to fit and the two that Dell et al. considered
unsuitable for fitting (G.B. and V.P.), the mixed error effect remained in second position for
the low-weight group, and was no longer detectable in third position for the high connection
group. In each variation of the analysis, the model’s predictions regarding the mixed error
effect are not consistent with Dell et al.’s data.

The Noun Effect

The second prediction derived from the connection values concerns the frequency of
nouns among the patients’ phonological errors. As with mixed errors, Dell et al. perform a
grouped analysis of the noun effect using two additional patients they initially considered
unsuitable for fitting by the model. (If we exclude these unsuitable patients and those that
the model failed to fit, the noun effect is no longer significant (p > .068).) The low number
of responses from most of the patients creates uncertainty as to the correct classification
of each individual. Only W.R.’s proportion of formal errors that are nouns is significantly
different from chance (p = .048, double-sided test) and only I.G., W.R., G.B., and V.P.’s
are significantly above chance (single-sided test). Twelve of the twenty-three patients had
three or fewer formal errors. This means that we cannot directly assess the accuracy of Dell
et al.’s classification (by estimating the number of patients misassigned to each category,
for instance). We can, however, ask how impressive it is to find the model’s predictions
confirmed. If such a situation is unlikely, then the model’s predictions should be considered
evidence in its favor. Otherwise, we should be unimpressed by its performance, since it may
reflect random chance.

To evaluate the significance of the noun results, we constructed 10,000 random parti-
tions of Dell et al.’s patients into groups of size 13 and 10 (the sizes of the groups Dell et al.
constructed), and tested how frequently it was the case that one group had formal errors
that were nouns significantly more often than chance while the other group’s rate was indis-
tinguishable from chance.’ This turned out to be true for 4,750 of the classifications (48%).
If we were to guess at random which group would exhibit the effects, we would therefore
succeed with a random partition 24% of the time. This suggests that such a criterion is not
a useful indicator of empirical support for a model of naming, and that the prediction of
the grammatical class effect cannot be taken as evidence in support of their model.

Recovery Predictions

Dell et al. also use their model to predict patient naming performance after a recovery
period (which varied between 1.5 to 9 months for their patients). The prediction they derive
from their model is that the parameter values used to fit the patient’s improved naming will
each lie somewhere between the value used to model the original naming performance and
the value used to model normals (0.1 for connection and 0.5 for decay). Dell et al. reported
that this was the case for seven of the ten patients from whom they gathered naming data
after a recovery period. However, they regarded the model’s predictions as clearly confirmed

5Dell et al. note that their particular partition creates groups that exhibit the noun effect at rates that
are significantly different from each other, but since their model only predicts that a difference will exist
and not that it will necessarily be large enough to be significant, we do not consider this criterion when
calculating the percentage of random partitions consistent with the model’s predictions.



EVALUATING A MODEL OF NAMING 32

because, for nine of the ten patients, the value of connection remained on the same side
of 0.05 in the fit to the post-recovery data as it was in the fit to the original data. But
this represents a much weaker claim than the model’s prediction, and results consistent
with this weaker claim are also consistent with situations in which the parameter values
of patients do not always move toward normal values during recovery. Thus, the weaker
claim is useless as a test of the model’s prediction. Dell et al. were presumably motivated
by concerns regarding the sampling error associated with having only 175 responses from
each patient and the difficulty of finding optimal parameter settings. These sources of noise
might conceivably cause fits to some patients to fall outside the predicted range even if the
model’s predictions regarding recovery were accurate. However, if sampling and regression
errors cause significant inaccuracies in determining the relationship between the original
and the later parameters, then the recovery prediction is inherently untestable and could
not be used to support the model no matter what results were obtained. We will assume
that these errors are not significant, and that the model’s recovery predictions should be
evaluated.

Before we try to assess the significance of 70% accuracy, we should see if our improved
fitting procedure can be used to increase it. New fits of Dell et al.’s model to the post-
recovery patient naming data are presented in Table 6, along with the fits generated from
the parameters suggested by Dell et al. As we saw with the original naming data, the
optimization algorithm is able to find improved fits of the model, although four of the ten
patients still cannot be fit by the model. Now we can use these parameter values to test
the recovery predictions.

To test the model’s predictions, we need to compare the fitted parameter values (from
Table 6) with those found for the original data (from Table 3). This comparison is distilled
in Table 7. The new parameters lie in the rectangle between the original fit and the normal
values of 0.1 for connection and 0.5 for decay in only four of the ten cases (J.G., H.B.,
J.F., and W.R.). For two of those four, the patient’s naming error pattern changed so
little after the recovery period that parameters almost identical to the original ones were
returned by the fitting algorithm. These patients clearly don’t provide a good test of the
model’s predictions. But even if we include them, the model’s accuracy has dropped to 40%,
rather than improving. This is not statistically distinguishable from the 25% accuracy one
would expect if the recovered parameters lay in a random direction from the original ones
(p > 0.15). Although we have data from only ten patients, it seems that the recovery
predictions cannot be taken as evidence in support of the model.

Let us now turn to the most detailed predictions that Dell et al. derive from the
model, those for repetition performance.

Repetition Predictions

Dell et al. predict a patient’s distribution of repetition errors by running a simulation
of repetition using the parameters derived from the patient’s naming data. As with naming
data, Dell et al. quantify the fit of the predicted distribution to the patient’s actual perfor-
mance using RMSD. The average RMSD for the predictions reported by Dell et al. is 0.048
(median 0.024). To evaluate the accuracy of these predictions, we can forgo the x? tests
we used to evaluate the model’s naming performance and use a simple comparison. In a
manner similar to the VAF analysis we performed earlier, we will choose a constant model
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Table 6: Fits of the core model to the performance of Dell et al.’s patients who were tested after a
recovery period.

Patient and Naming response Fit
parameter values Corr. Sem. Phon. Mixed Unrel. Non. RMSD X? XZconf p p conf.

J.B. .92 .01 .01 .03 .00 .03

conn .0563, dec .69 .90 .06 .01 .02 .00 .02 .022 10.2 8.9-12.1  .069 .034-.112

vs. .0085 and .50 .89 .04 .02 .00 .01 .04 .019 31.1  23.9-44.3 .000 .000-.000
J.L. .95 .02 .01 .01 .00 .01

conn .0129, dec .52 .93 .03 .01 .00 .00 .02 .011 5.2 3.8-7.7 395 .171-.575

vs. .1000 and .50 97 .02 .00 .01 .00 .00 .010 247.0  240-262 .000 .000-.000
G.S. 91 .00 .02 .01 .00 .05

conn .0105, dec .52 .89 .04 .02 .01 .01 .04 .020 10.5 9.4-11.9 .063 .036-.094

vs. .0090 and .50 .91 .04 .02 .00 .00 .03 .020 14.5 12.7-17.9 .013 .003-.027
L.H. .76 .01 .09 .02 .01 .10

conn .0344, dec .65 .71 .09 .07 .01 .02 .10 .040 15.7 14.3-17.4 .008 .004-.014

vs. .0065 and .50 7 .06 .05 .01 .02 .09 .029 21.8 18.6-26.0 .001 .000-.002
J.G. 91 .02 .01 .03 .00 .03

conn .0563, dec .69 .90 .06 .01 .02 .00 .02 .017 7.2 6.0-8.9 206 .114-.304

vs. .0090 and .50 .91 .04 .02 .00 .00 .03 .013 31.0 22.1-46.1 .000 .000-.001
AF. .93 .01 .01 .02 .01 .02

conn .0347, dec .62 .89 .05 .02 .01 .01 .03 .025 10.2 8.9-12.3 .068 .030-.114

vs. .0100 and .50 .94 .03 .01 .00 .00 .02 .011 15.7 11.8-22.8 .008 .000-.037
H.B. .76 .05 .06 .02 .01 .09

conn .0422, dec .67 .74 .09 .05 .02 .02 .08 .019 4.3 3.5-5.4 511 .373-.621

vs. .05640 and .71 .74 .10 .06 .02 .02 .07 .025 6.3 5.4-7.7 281 .176-.373
J.F. .76 .09 .01 .09 .02 .02

conn .0984, dec .86 .69 .14 .05 .04 .01 .07 .045 27.6 24.3-31.0 .000 .000-.000

vs. .1000 and .85 .77 12 .02 .04 .00 .05 .030 55.1 41.8-80.9 .000 .000-.000
G.L. .38 .02 .20 .03 .03 .34

conn .0422, dec .71 .33 .09 15 .02 .09 .32 .048 20.2 18.4-22.2 .001 .000-.002

vs. .0510 and .74 .35 .10 .15 .02 .09 .28 .051 21.6  20.0-23.4 .001 .000-.001
W.R. .20 .08 .22 .01 .28 .20

conn .0969, dec .93 21 .10 19 .03 12 .35 .092 47.9 42.9-53.5 .000 .000-.000

vs. .1000 and .94 .18 .09 18 .03 12 .40 105 51.5  47.3-56.5 .000 .000-.000

Note:The three response distributions in each block correspond to the patient, the parameters found by our
optimization algorithm, and the parameters suggested by Dell et al. RMSD stands for root mean squared
deviation. Boldface indicates significant mismatches.
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Table 7: A comparison of the fitted parameter values for each patient’s original naming performance
and the performance obtained after a recovery period.

Original Recovery
Patient Conn. Decay Conn. Decay
J.B. .0453 .67 .0563 .69
J.L.  .0453 .67 .0129 .52
G.S.  .0057 .50 .0105 .52
L.H. .0055 .50 .0344 .65
J.G.  .0470 .70 .0563 .69
AF. .0531 el .0347 .62
H.B. .0375 .67 .0422 .67
J.F. .0984 .86 .0984 .86
G.L. .0734 83 .0422 .71
W.R. .0969 94 .0969 .93
Note: Boldface indicates values contrary
to the model’s predictions.

as a baseline hypothesis. In other words, we will assume that all aphasic patients have the
same repetition performance. For convenience, we will use the data as Dell et al. present
it, rather than renormalizing without miscellaneous responses. Computing the mean of all
the patients’ responses in each category yields a baseline hypothesis of

correct 93%
semantic 0%
phonological 2%
mixed 0%
unrelated 0%
nonword  3%.

(Error types don’t sum to one due to uncodable responses and rounding.)

This constant model yields an average RMSD of 0.016 (median 0.015). The fit for
each patient is listed in Table 8. Removing from the analysis that patient for whom Dell et
al.’s model’s fit is worst (W.R.) improves its mean RMSD to 0.026 (median 0.023), while
the performance of the baseline hypothesis remains unchanged. When predicting repetition
performance, Dell et al.’s model fails to capture any of the phenomena in their data—it
is less accurate than ignoring the patient’s naming performance and guessing the mean.
Its performance is comparable to what one would obtain by generating random patterns
according to a distribution centered around the mean patient pattern. Clearly, this level of
performance fails to provide support for Dell et al.’s model.

Summary of Empirical Results

Dell et al. (1997) propose a two-step, interactive model of lexical access in aphasic
patients, and apply it to oral word production. They argue that global alterations of
parameters in the model successfully mimicked the patterns of naming errors produced by
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Table 8: Predicting repetition performance using a constant model.

Repetition Response
Patient Corr. Sem. Phon. Mixed Unrel. Non. RMSD

Mean .93 .00 .02 .00 .00 .03

T.T. .98 .00 .02 .00 .00 .00 .024
V.C. .95 .00 .01 .00 .00 .04 .008
LB. 91 .00 .03 .00 .00 .06 .015
J.L. .89 .00 .02 .00 .00 .03 .018
J.G. .91 .00 .02 .01 .01 .05 .012
E.G. .94 .00 .03 .00 .00 .01 .011
B.Mi 1.00 .00 .00 .00 .00 .00 .032
JA. .90 .00 .02 .00 .00 .08 .023
LG. .95 .00 .02 .00 .01 .02 .010
JF. 94 .00 .02 .01 .00 .03 .004

W.R. .90 .00 .03 .01 .00 .06 .018

Note: RMSD stands for root mean squared deviation.

fluent aphasic patients. They interpreted the putative success of the lesioned model in
fitting patient naming data as providing support for the central assumptions underlying
the model, specifically, the interactivity assumption, the globality assumption, and the
continuity thesis. However, we have now seen that Dell et al.’s model of aphasic naming
cannot be justified by any of the empirical data they presented. We evaluated the model’s
fit to naming data in three different ways, ranging from formal statistical tests to informal
visual displays:

Matching patient patterns: Even when Dell et al.’s model is fitted using a numerical
optimization procedure, it cannot fit five of the twenty-one patients (24%). It also
failed to match four of the ten patients who were tested after a recovery period, and
the behavior of control participants.

Relative comparisons: A simple two-parameter linear model can match more patients,
has a lower mean RMSD (root mean squared deviation), and has a higher weighted
VAF (variance accounted for) and mean category VAF, indicating that Dell et al.’s
model does a relatively poor job of accounting for the patient data, even if we don’t
insist on a match.

Global qualitative analysis: Plotting the range of patterns that the model can represent
reveals that it cannot model several well-known patient classes, including any patient
with only a moderate percentage of correct responses yet few nonword errors. Its
adherence to the continuity thesis seems problematic.

We also evaluated the predictions that Dell et al. draw from the model, and found that:

The mixed error effect was not borne out in Dell et al.’s data,
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The noun effect was correctly predicted by 24% of random models and is therefore not
a useful criterion,

Recovery predictions from the model were correct in only 40% of the cases, which is not
distinguishable from random prediction, and

Repetition predictions were worse than guessing the mean of the data, and comparable
to guessing random patterns.

In short, patient data and simulation results do not provide support for Dell et al.’s two-step
interactive model of aphasic naming. While its performance may be suggestive of avenues
for future work, it cannot be used as validation of Dell et al.’s theoretical assumptions. (And
even if we could identify a particular assumption that might be to blame for the model’s
failures, this would not provide validation for the remaining assumptions.) Our evaluation
has provided a precise characterization of the model’s performance, which will facilitate
comparisons with future models (see, for example, Ruml, Caramazza, Shelton, & Chialant,
submitted).

Methodological Considerations

We are now ready to turn to the other aspects of our investigation. In the introduction,
we noted that besides a direct assessment of the model’s fit to the patient data, there are
two other ways we could evaluate Dell et al.’s claims. We can ask whether there are other
empirical facts about naming deficits that are inconsistent with the model, and we can ask
whether the inferences drawn by the authors on the basis of their results would be justified
even if the model’s fits to the data were good. We turn to these issues next.

Implications of Simulation Results

As we noted above, Dell et al. argue that the putative ability of their model to
simulate the patterns of naming errors in aphasic patients can be taken as support for the
assumptions of the model, such as the interactivity assumption, the globality assumption,
and the continuity thesis. Given our demonstration that the model’s fits to the patient
data are poor, can we conclude that the central assumptions of the model are false? It
seems clear that no such conclusion can be drawn from the model’s poor performance. The
failure could be due to any one of the model’s major or minor assumptions, including but
not limited to Dell et al.’s three central claims. But if one cannot conclude that empirical
failure removes support for any specific aspect of the model, can one claim that empirical
success would have provided it?

Consider Dell et al.’s claim that the putative success of their simulation research
supports the assumption of interactivity (in the context of a two-step model of lexical
access). Would such a conclusion have been justified by positive results? We think not.
Empirical success would only have allowed the conclusion that the model as a whole is
consistent with the observed results. In order to be able to begin to assign credit or blame
to any one of the many assumptions of the model, we would have had to have much more
specific evidence than Dell et al. have provided. In order to draw conclusions specifically
about the assumption of interactivity, for instance, we would need to be certain that relaxing
that assumption (by removing the connections allowing activation to spread backwards, for
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example) would have adversely affected the model’s ability to fit patients’ naming error
profiles. Given the deviations between Dell et al.’s model and the patient data, it is not
clear that a model incapable of producing a mixed error effect would do worse. Similarly, in
order to conclude that the simulation results support the globality assumption, the authors
would have had to show that failure to implement the assumption (by testing different
parameter values for different layers of the model, for instance) would have resulted in
poorer fits to the data. (Indeed, broad comparative studies along these lines have now been
carried out by Rapp and Goldrick (in press) and Ruml et al. (submitted).)

Furthermore, any conclusions about the necessity of an assumption, such as interac-
tivity or globality, must necessarily be tentative unless it can be shown that no modification
of the other, non-central assumptions of the model (such as the number of semantic nodes
connected to each lexical node) would allow a model lacking that assumption to fit the data.
Without such direct evidence that success depends critically on a specific feature or set of
features of the model, no strong inferences can be made specifically about assumptions such
as interactivity or globality. The only conclusions that are possible from evaluating a single
version of the model is that the tested model as a whole is either consistent or inconsistent
with the data. Thus, Dell et al.’s claim that the putative success of their simulation research
provides support for both the interactivity assumption in lexical access and the globality
assumption in naming deficits would be unwarranted even if the fits of the model to the
data had been good.

Of course, this cautionary stance must also apply to those assumptions of the general
theory that the authors describe but never subject to test in their model. For example, in
describing their model, Dell et al. claim that

lemma access is concluded by a selection process. The most highly activated
word node of the proper syntactic category is selected. ...In the case of object
picture naming, we assume a degenerate frame consisting of a slot for a single
noun. In our implementation of the naming task, the most highly activated
noun is selected. (p. 806)

While it is useful to know how Dell et al.’s model relates to their general theory of language
production, it is important to note that no such mechanism was implemented in the model.
All lexical nodes included in the model are nouns. Another example is provided by the
authors’ claim that

...the model assumes the existence of a layer of word nodes that is actively
selected and controlled by syntactic processes. These processes also create a
sizable nonlinearity in the network. .. (p. 829)

However, in the implemented model, a jolt of activation is applied whenever a node is
selected, and no process beyond selection acts on the nodes. The only thing syntactic about
the selection of lexical nodes is its label. Assumptions not implemented by mechanisms in
the model cannot be tested by matching simulation results to patient data. Thus, no
meaningful inferences are possible about putative syntactic properties of lexical nodes. The
authors’ allusions to such properties must be recognized as suggestive intuitions, rather
than theoretical claims that could have been validated had the model been successful.
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The Globality Assumption and Cognitive Neuropsychology

The globality assumption, as instantiated in the context of naming deficits, is the
claim that aphasic errors result from global damage to all levels of the lexical access system.
Dell et al. instantiated this assumption by altering parameters that affected all layers of
their model equally. Although it is clear how the assumption was instantiated in Dell et al.’s
model, it is less clear what substantive claim is being made by invoking this assumption.
There are at least two possible readings. The claim could be that if a patient is classified
as a fluent aphasic then his naming errors must reflect damage to all layers of the lexical
access system. Alternatively, the claim could be much weaker: it could simply assert that if a
patient is classified as a fluent aphasic then his naming errors could (though not necessarily)
reflect damage to all layers of the lexical access system. We will examine both versions.

The Strong Globality Assumption.

We argued above that the failure of the model to fit the naming data of some patients
does not allow us to reject the globality assumption, because of the possibility that it is
some other aspect of the model that is responsible for such failures. When considering oral
naming performance alone, certain patients do seem problematic. For instance, patients
who make exclusively semantic errors, such as R.G.B (Caramazza & Hillis, 1990), would
seem to pose difficulties. Dell et al. dismiss such problematic cases on the grounds that
“ ..pure semantic patients are often associated with high rates of failure to name: no
responses and semantic descriptions” (p. 832). However, patient R.G.B. always produced a
response. He produced 69% correct responses, 15% semantic errors, and 16% descriptions.
Dell et al. further attempt to circumvent the apparent problems raised by such cases for
their globality assumption by arguing that

... this pattern does not necessarily require a nonglobal lesion. If nonattempts
are construed as events in which the patient has retrieved a nonword or a word
that is semantically unrelated to the picture, but has elected to suppress output,
a global lesion is entirely consistent. (p. 832)

However, it is not clear what in Dell et al.’s theory of lexical access has the function of
monitoring output in order to screen out phonological errors. What device would have the
capacity to determine that the set of phonemes selected for output do not correspond to a
word? And if we were to grant the feasibility of an output filter (a notion similar to that of
Levelt (1989)), why wasn’t it available to the patients who did produce phonological errors?
Are we to assume that in the latter cases the filter was damaged? But if we were to make
such a move, we would violate the globality assumption since we would have postulated
differential damage in order to explain the two types of patients. That is, the patients
who make semantic errors and phonological errors would have both the global damage
hypothesized by Dell et al. as well as damage to the filter mechanism (so as to allow the
production of phonological errors); the patients who make only semantic errors would only
have the hypothesized global damage (so that the intact filter mechanism would be able to
detect and suppress phonological errors). If instead the filter were operational in both cases,
one would need to explain the difference in its effects without allowing such an explanation
to function as an additional free parameter in the theory. In addition, it would be more
difficult to motivate the interactivity assumption, since as Levelt (1989) has argued, a filter



EVALUATING A MODEL OF NAMING 39

Table 9: The modality-dependent naming performance of patients R.G.B. and R.C.M.

Oral naming Written naming
Patient Corr. Sem. Descr. Corr. Sem. Other
R.G.B. .687  .153 .16 .94 .06
R.CM. 1.0 .53 382 .088

Note: Data from Caramazza and Hillis (1990) and
Hillis, Rapp, and Caramazza (in press), respectively.

can account for similar effects. It seems that the patients Dell et al. call pure semantic cases
pose a serious challenge to their model even if we invoke an ad hoc filter mechanism.

But arguing about the model’s ability to fit the naming performance of patients such
as R.G.B. is beside the point. The oral naming performance of such patients cannot be
used on its own to reject the strong version of the globality assumption. Dell et al. argue
that

globality as a substantive claim turns on whether the patterns observed in our
sample are compatible with the model and whether the observed patterns rep-
resent a fair sampling of those present in the population at large. (p. 814)

But we would argue that the strong version of the globality assumption can be falsified
only by demonstrating conclusively that there exist fluent aphasic patients in whom at
least one level of the lexical access system is intact, a criterion that cannot be evaluated
by considering a single task in isolation or by computational modeling, and has little to do
with the incidence of such patients in the general population.

Such patients have been found, using the techniques of cognitive neuropsychology. An
example can be constructed by comparing aphasic patients who make semantic errors in all
modalities of input (visual, tactile, auditory, definition) and output (spoken, written) with
those who make semantic errors in only one output modality. Since the former also make
semantic errors in word comprehension tasks (Butterworth, Howard, & McLoughlin, 1984;
Hillis, Rapp, Romani, & Caramazza, 1990), their configuration of performance invites the
inference that the patients have damage to the semantic system—a component of processing
shared by all the tasks tested. However, we cannot rule out that they also have damage
to other levels of lexical access. But there are also fluent aphasics who make semantic
errors in naming only in one modality of output and who show normal performance in word
comprehension tasks. For example, Table 9 shows two such patients. Patient R.G.B. made
semantic errors only in spoken production tasks. By contrast, patient R.C.M. (Hillis et al.,
in press) made semantic errors only in written production tasks. For these cases, we can be
reasonably confident that the locus of damage cannot be the semantic system since it has to
be intact in order to support normal performance in the spared output modality and in the
comprehension tasks. This means that the naming errors in these patients must arise from
damage to modality-specific lexical access mechanisms in the context of spared semantic
processing.” This single example is enough to falsify the strong globality assumption: there

"This argument assumes a single semantic store for speaking and writing. We are unaware of evidence
inconsistent with this hypothesis.
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are fluent aphasics whose naming profile cannot be explained by the assumption of global
damage to the lexical access system.

This example also illustrates a powerful and general procedure for establishing the
locus of damage to a cognitive system. The approach is based on a core assumption in the
cognitive sciences: the same cognitive mechanism may be recruited in the performance of
many different tasks. By testing performance across tasks that are assumed to share some
components of processing but not others, it may be possible to establish which portion of
the system of interest is damaged. In our example, the assumption is made that naming
with either oral or written responses recruits the same lexical access mechanisms and that,
therefore, selective difficulties for one task must mean that large portions of the lexical
access system are intact. If we had considered only performance on oral naming, we would
not have been able to establish the locus of damage responsible for the semantic errors
produced on that task. It is evident that the strong globality assumption is unfalsifiable if
we restrict ourselves to the types of observations and research methodology adopted by Dell
et al. The failure of the computational model cannot tell us anything about the globality
assumption in particular. By focusing on performance on a single task (oral naming), we
have no way of independently establishing the intactness of hypothesized components of a
complex processing system. Dell et al. do not consider the kind of evidence that would have
allowed them to empirically assess their claim.

The Weak Globality Assumption.

We have presented clear evidence that the strong globality assumption of naming
errors in fluent aphasics is false. However, Dell et al. might have meant to advance a weaker
claim. At one point in their paper, they seem to adopt the position that the globality
assumption may only hold for some patients:

... we cannot fully endorse the globality assumption as a substantive claim about
the functional basis of lexical retrieval disorders in aphasia. However, we do not
find that the existing evidence compels rejection of the assumption either. Our
view, based on the data reported here, is that the globality assumption works for
a large enough segment of the population to merit further investigation. (p. 832)

If one were to adopt the latter position, the globality assumption would lose its substan-
tive status and become a methodological prescription that is widely observed in cognitive
neuropsychology research. On this view, Dell et al. would merely be saying that the fact
that a particular patient makes disproportionately different rates of error types does not
necessarily reflect differential damage to the levels of his lexical access system, but could
equally well reflect damage to all layers equally.

The problem, then, becomes one of trying to distinguish whether a specific patient’s
error mix reflects a global lesion or arises from differential lesions to the different levels of
his lexical access system. As already noted, this problem cannot be solved by considering
oral naming performance alone. To distinguish between the two alternatives we would
have to have independent evidence about the relative integrity of each of the hypothesized
mechanisms in the lexical access process. And we have seen that this kind of evidence can
only be obtained by considering each patient’s performance across different tasks so as to
allow us to converge on the locus or loci of damage. We conclude that whether one adopts
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the strong or the weak version of the globality assumption, the evidence provided by Dell
et al. is not adequate for its stated purpose.

The Continuity Thesis

Although we saw, when looking at possible error patterns, that patient naming be-
havior does not seem to form a continuum between normal performance and random error
opportunities, it could be that Dell et al. meant only to make one of two more abstract
claims. Dell et al. emphasize a quantitative aspect of the continuity thesis. They note that
different patterns of impaired performance could reflect different degrees of damage to the
normal system. Presumably this position is to be contrasted with the view that brain dam-
age only affects cognitive mechanisms in an ‘all-or-none’ fashion, in which partial damage
would render a mechanism completely non-functional. Although this is a logical possibility,
it is not clear that anyone has ever championed this view, and it is certainly not a position
that has any currency in modern cognitive neuropsychology.

Alternatively, the continuity thesis could be interpreted as the claim that impaired
performance reflects the functioning of the mechanisms that are used in normal perfor-
mance but that these ordinary mechanisms have been damaged. This view contrasts with
the alternative claim that impaired performance involves mechanisms that are not used in
normal processing (Kosslyn & Kleek, 1990, but see Carmazza, 1992). As Dell et al. see it,

[the] continuity [thesis] implies that the model should provide a complete ac-
count of aphasic naming performance, without recourse to mechanisms that
have sometimes been invoked by aphasiologists, such as neologism-producing
devices or editors that are not part of normal production. (p. 830)

In the latter case, impaired performance would only have an indirect, perhaps impenetrably
opaque relation to normal mechanisms and could not be used to constrain theories of normal
functioning. In other words, it would violate the ‘transparency assumption’ that undergirds
the cognitive neuropsychology enterprise (see Caramazza (1986) for discussion). Clearly, it
is an empirical matter whether or not impaired performance reflects only the functioning of
mechanisms used in normal performance that have been altered in some way. However, it is
not the kind of empirical issue that is routinely tested by individual experimental projects
the way we might test a specific theoretical claim. Rather it is the kind of background
assumption that is used to motivate a whole enterprise, and is assessed not by the successes
of individual projects but by the long-term success of the enterprise as a whole in providing
theoretical insight to its domains of interest. In other words, we don’t claim to have provided
support for the transparency assumption (or the continuity thesis) each time we have a
plausible explanation for a pattern of impaired performance; similarly, we don’t claim to
have reasons for rejecting the transparency assumption each time we are not able to provide
an explanation for some pattern of performance. In the latter case, we are more likely to
find fault with our theories. Thus, even if the model’s fits to the aphasia data had not
been poor, it would have made little sense to claim that the results of the research provided
support for the continuity thesis.
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Conclusions

We have evaluated Dell et al.’s computational model of lexical access in three different
ways. First, we investigated its fit to the experimental data it was designed to explain.
Using an automated regression procedure, we tried to match Dell et al.’s patient data.
Even though we found many fits that were better than those reported by Dell et al., 24%
of the patients could not be fit by the model. By comparing against a simplistic linear
model of naming, we saw that this level of performance was relatively easy to attain, as the
mathematical model was more accurate by every measure. And by sampling the behavior
of Dell et al.’s model throughout the full range of its parameters, we saw that it was
incapable of representing well-known patterns of patient naming. Although we considered
the predictions that could be derived from the model, they failed to raise our evaluation, as
we saw that the predictions were easy to make or inaccurate. We must conclude that Dell
et al.’s model of aphasic naming enjoys little support from the empirical data.

Second, we investigated the central claim of globality, and noted that well-documented
patients in the existing literature already disconfirm it. The continuity thesis found little
support when taken literally, and became an untestable axiom of cognitive neuropsychology
when interpreted loosely.

And third, we saw that the support that Dell et al. claimed to draw from their
simulation results was not fortified by any investigation of models that lacked interactivity
or globality, and hence the fit of their model to the data could not have bolstered those
assumptions even if it had been good.

However, none of the flaws we have identified in Dell et al.’s core model is neces-
sarily insurmountable. Although the globality assumption and the continuity thesis seem
untenable, we have no reason to think that assumptions such as interactivity or localist rep-
resentations are to blame for the model’s failures. Indeed, our evaluation should be merely
the first step in improving the model. Computational theories of cognitive behavior allow
a precision of prediction that gives them great power. However, precision is not the same
as accuracy, and the thorough evaluation methodology we advocate here will only become
more important. Both formal tests of models’ abilities to match human data and relative
evaluations comparing against simple baseline models will enable quantitative measures of
future progress. It is encouraging that Dell et al.’s model of aphasic naming was developed
from the same general theory that can be used to construct individual models of many
other behaviors. We hope that such models might, in the future, be unified to provide a
comprehensive computational theory of the lexical system.
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Appendix A: Optimizing the Model’s Fit

In this appendix, we discuss our automated regression algorithm for fitting Dell et al.’s
core model to patient data. Fitting simulation models like theirs is a difficult computational
problem, known as stochastic optimization or stochastic approximation. At every setting of
the input parameters, one can only determine an estimate of the model’s output distribution,
and hence, only an estimate of the fit to the desired distribution at those settings. (Similar
problems arise in manufacturing settings, such as controlling a chemical plant.) Since most
current methods either require large numbers of trials at many settings (Kushner & Yin,
1997) or sophisticated Bayesian statistical analysis (Moore, Schneider, Boyan, & Lee, 1998),
we developed our own simple algorithm, tailored to our specific, low-dimensional problem.
Although the details would take us far afield from our interests in this paper, we provide a
sketch of the procedure. Since it is a general algorithm, we will first describe it in terms of
a generic measure of fit, and afterwards discuss how we use it to optimize the X? metric in
particular.

Since we have already accumulated many estimates of the output distribution of the
model at various parameter settings (see the discussion of possible error patterns in the
main text), we start our optimization algorithm from that previously-visited parameter
setting that most closely matches the desired distribution. From there, our algorithm has
the basic structure of a direction-set optimization method (Press, Teukolsky, Vetterling, &
Flannery, 1992, p. 412), in which we carry out successive one-dimensional optimizations.
However, instead of trying to determine an approximate gradient at the current best point,
we only ask if adjacent points are significantly better. Fewer trials are required to resolve
such relative comparisons than would be needed for a firm estimate of the rate of change,
since the latter necessitates determining the size of the difference (Ho, Sreenivas, & Vakili,
1992). Although the lack of slope information forces us to use a simplistic bisection-style
search strategy, such an approach protects us from problems caused by misestimation or
asymmetry in the shape of the cost function (Wilde, 1964). Thus, the core computational
task of our fitting procedure is to determine only whether a new candidate parameter setting
is better than the current one, and not by how much.

We answer this question by sampling the output distribution at each setting, and
comparing the two resulting distributions to the desired distribution using the measure of
fit. However, since we have only a finite number of samples of each distribution, there is
uncertainty regarding each goodness of fit value. We compute 95% confidence intervals
around each value using Monte Carlo simulation (Press et al., 1992). This technique is
based on estimating the distribution of fit scores around the one we actually got, taking
into account that we only took z samples. We conduct 500 random experiments in which we
consider the estimated distribution at this setting to be the true underlying multinomial.
In each experiment, we randomly choose z samples according to the multinomial, and
construct an empirical distribution from them. Measuring the fit of these 500 experimental
distributions to the desired distribution gives a distribution over fit scores. By examining
the 2.5th and 97.5th percentiles of this distribution of scores, we obtain estimates of the
bounds of a confidence interval for the fit of the original samples.

When we have taken enough samples from each parameter setting, the two confidence
intervals will cease to overlap and we can confidently choose one setting as superior. If the
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intervals become very small (0.001 from the end of one to the end of the other), yet continue
to overlap, we conclude that the new point is no better than the current one. And finally,
if after many trials (10,000), the intervals have neither separated nor shrunken sufficiently,
we rashly trust the current estimates as accurate, and choose the seemingly better setting.

Although this simple algorithm performs poorly when started in a desolate region of
the search space where all nearby possibilities look equally poor, it seems to perform well
for our purposes in this paper, since the prior sampling allows us to start the algorithm in
an interesting part of the space. Comparisons against manual fitting on the naming data
reported by Dell et al. can be found in the body of the paper, in the discussion of improving
the model’s fit and the discussion of the model’s predictions regarding recovery.

Optimizing the X? Metric

Although the above procedure works well for measures of distributional similarity
such as RMSD, it stumbles on metrics such as X? which can vary in value according to the
number of samples taken. When comparing two fits which were estimated from different
numbers of samples, the X2 metric can be biased in favor of the fit estimated from fewer
samples, since a failure to fit may not be discernible from a few samples. To remove
this bias, we can use the fact that, since the number of samples from the target patient
distribution is fixed, the X? value for a particular parameter setting should asymptotically
approach a fixed value as more samples are taken. This is because the samples taken from
the model will come to dominate the calculation of the expected number of samples in each
response category, reducing the model’s contribution to the X? value to zero, and causing
the patient’s contribution to converge to a fixed value. To compare fits with different
numbers of samples, we therefore compute an estimate of this asymptotic value for each
distribution. This can be easily done by using only the model’s samples to determine the
expected number of samples in each category, rather than using both the model’s and the
patient’s. Rather than optimizing X? directly, our fitting algorithm instead optimizes this
estimate of the asymptotic value of X2. This works well, except for the case in which the
model predicts no samples in a category, but the patient distribution contains samples in
that category. In this case, the expected X? value is infinity, and our estimate attempts to
divide by zero. Such situations may occur even at the optimal settings, and we would like
the algorithm to choose the setting with the lowest actual X2 value (even if it seems to be
heading towards infinity). Therefore, we avoid infinite error by reverting to the ordinary
X? estimation method for the troublesome category, using both the model and the patient
samples. (This modified X? approach also seems to be the strategy taken by Dell et al.
during their informal fitting, although they revert to RMSD when the model predicts zero
in a category.)
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Appendix B: A Linear Model of Naming

In this appendix, we evaluate a two-parameter linear model of patient naming pat-
terns. Rather than postulating specific mental representations, the model just specifies that
aphasia involves a systematic linear breakdown of language performance. This simple model
can serve as a point of comparison for evaluating the performance of Dell et al.’s model.
We will use it in the same general way as Dell et al.’s model. First, the model’s adjustable
parameters will be set to allow the model to fit a patient’s pattern as closely as possible.
Then, we will test, given those parameter settings, how well the model can regenerate the
patient’s pattern.

The form of the linear model embodies the claim that patient performance is composed
of two phenomena that interact simply by summing. It assumes that each patient will
vary from the mean patient response pattern to the extent that these two phenomena are
particularly strong or weak. More formally, if the mean probability of a patient response of
type 7 is m;, and we notate the strengths of the two phenomena as y; and y9, then patient
performance will be predicted to be

correct = a1y1 + biys +my
semantic = agy1 + bayos + mo
phonological = a3y; + b3y + ms3
mixed = a4y1 + bays +my
unrelated = asy; + bsy2 + ms5
nonword =  agy1 + bey2 + me.

where the a; and b; are fixed constants representing the impact of the two phenomena on
each response category. Each equation is a simple linear combination of the parameters y;
and 5.8 The model has a simple geometric interpretation. When we vary y; and o, the
equations will result in error patterns that lie on a two-dimensional plane slicing through
the six-dimensional space of possible patterns. The position of each patient on the plane is
specified by y; and s, and the orientation of the plane itself is specified by the a; and b;.
Put another way, a two-dimensional plane in six-dimensional space can be fully specified
by three points in that space, implicitly represented here by the a;, b;, and m;.

To form a testable model from this schematic template, we need to choose specific
values for the a; and b; in such a way that the resulting plane is as close as possible to the
data. We chose these values using the downhill simplex optimization algorithm described
by Press et al. (1992), attempting to minimize the sum of the X2 values of the model from
each patient. After computing the mean patient response in each category, we have the
following complete model:

8Since the model isn’t even assuming that the patient data represent probabilities, its predictions won’t
necessarily remain positive. To prevent the model from benefiting from negative terms during the calculation
of X%, we must force any negative response probabilities to zero. This clamping means that the model has
a crease at the edge of the response space and is thus, speaking strictly, only piece-wise linear.
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correct = 0.868y; + 0.198y9 + 0.757
semantic = —0.071y; — 0.424y, + 0.046
phonological =  —0.198y; + 0.296y2 + 0.048
mixed = —0.045y; — 0.400y, + 0.031
unrelated = —0.203y; — 0.387y2 + 0.031
nonword = —0.383y1 + 0.601y2 + 0.086.

To test this model, we need to determine y; and ys for each patient and then measure
the model’s ability to reconstruct the patient’s response pattern from those two parameters.
Since the model is linear, we can directly invert it to derive equations for y; and y2.? These
are:

y1 = 0.868c —0.383n —0.203w — 0.198p — 0.071s — 0.045m — 0.604
yo = 0.601n — 0.424s — 0.400m — 0.387u + 0.296p + 0.198¢ — 0.172

where ¢, s,p,m,u, and n represent the probabilities of correct responses and semantic,
phonological, mixed, unrelated, and nonword errors for the patient, respectively. The type
and amount of information lost by summarizing the six numbers as y; and y, will determine
the accuracy of the model.

To see how this linear model works, let’s take Dell et al.’s patient N.C. as an example.
The distribution of N.C.’s picture naming responses is

correct 80%
semantic 3%
phonological 7%
mixed 1%
unrelated 0%
nonword 9%

First we need to compute our representation for N.C., using the equations for y; and yo:

y1 = (0.868 x 0.80) — (0.383 x 0.09) — (0.203 x 0.00)—

(0.198 x 0.07) — (0.071 x 0.03) — (0.045 x 0.01) — 0.604 = 0.039
ys = (0.601 x 0.09) — (0.424 x 0.03) — (0.400 x 0.01)—

(0.387 x 0.00) + (0.296 x 0.07) + (0.198 x 0.80) — 0.172 = 0.041.

Then, to assess the accuracy of this representation, we need to reconstruct the error mix
that corresponds to y; = 0.039 and y2 = 0.041 in the model:

correct =  (0.868 x 0.039) + (0.198 x 0.041) + 0.757 = 80%
semantic = (—0.071 x 0.039) — (0.424 x 0.041) + 0.046 = 3%
phonological = (—0.198 x 0.039) + (0.296 x 0.041) + 0.048 = 5%
mixed = (—0.045 x 0.039) — (0.400 x 0.041) + 0.031 = 1%
unrelated =  (—0.203 x 0.039) — (0.387 x 0.041) + 0.031 = 1%
nonword =  (—0.383 x 0.039) + (0.601 x 0.041) + 0.086 = 10%.

9The inversion depends on assumptions about the orthogonality of the two phenomena a and b. We will
ignore these issues, assume orthogonality, and compute the inverse as the transpose of the matrix representing
the projection. No additional parameters are required—the constants in the resulting equations are the dot
products of the constants and coefficients from the original model equations.
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As with Dell et al.’s model, the match is rarely exact—the reconstructed pattern must
conform to the model’s assumptions. Here we are assuming that N.C. lies somewhere on
the plane defined by the model. We can multiply these reconstructed percentages by a
large integer, such as 10,000, to obtain a distribution which we can compare to N.C.’s. This
fit gives an X2 value of 2.8 (p = 0.73), indicating that the linear model has successfully
matched N.C.’s error pattern. The linear model is directly interpretable in terms of the
patient error probabilities, and doesn’t require manual fitting or numerical regression to
produce each description.

When we follow the same procedure with each of Dell et al.’s patients, we find that
the two-parameter linear model fits eighteen of the twenty-one patients (86%), with a mean
RMSD of 0.015 (median 0.010), and a mean VAF of 78%. This is a surprisingly better fit
than that of Dell et al.’s model (which fit sixteen patients with a mean RMSD of 0.028).

However, recall that we chose most of the fixed parameters of the model (the a;
and b;) by explicitly attempting to optimize the match to the patient data. While this is
methodologically sound if we merely want to show that the data are well-captured by linear
equations, and hence easy to model, one could argue that it would be unfair to directly
compare that model’s performance to the performance of Dell et al.’s model, since the non-
adjustable parameters of Dell et al.’s model were fixed without reference to the patient
data that the model would be tested against. If we had a large supply of patient data,
we could avoid this problem by testing the linear model on different patients than we used
for constructing it. (There is nothing unsound about using patient data to construct the
model, as long as different patients are used for testing.) Since we have only a small number
of patients, we must use the standard testing technique of cross-validation, in which we use
many partitionings of the data we have in order to estimate the accuracy we would obtain
if we had new data (Kearns, Mansour, Ng, & Ron, 1997; Stone, 1974). We will repeatedly
construct a linear model on the basis of twenty patients, and then test the model on the
remaining patient, whose error pattern was not used in constructing the model. Since we
aren’t allowing ourselves to use all of the data when constructing the model, this leave-one-
out technique should give us a slightly pessimistic estimate of the generalization accuracy
of the full model on new data.

Results for all patients are shown in Table 10. The two-parameter linear model fits
seventeen of the twenty-one patients (81%), and has a mean RMSD of 0.022 (median 0.015),
a weighted VAF of 89%, and a mean category VAF of 65%. The VAF in the individual
categories is

correct  99%
semantic  28%
phonological  80%
mixed 57%
unrelated  33%
nonword 92%.

Like Dell et al.’s model (the fits of which were shown in Table 3), the linear model does
best in the frequent correct and nonword categories. It consistently outperforms the mean,
even in the semantic category. Using each of the three metrics that we have considered
(X2, RMSD, VAF), the linear model is more accurate than Dell et al.’s two-parameter
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Table 10: Fits of the linear model to Dell et al.’s patients.

Patient and Naming response Fit
parameter values Corr. Sem. Phon. Mixed Unrel. Non. RMSD X2 X? conf. P p conf.

W.B. .94 .02 .01 .01 .00 .01

linear model .94 .02 .01 .02 .00 .01 .003 0.4 0.2-0.8 996 .975-.999
T.T. .95 .01 .01 .02 .00 .00

linear model .91 .04 .02 .03 .00 .00 .021 4.4 3.8-5.3 A87  .378-.583
J.Fr. .93 .01 .01 .02 .00 .02

linear model .92 .01 .01 .02 .00 .03 .005 0.5 0.2-1.0 992 .966-.999
V.C. .92 .02 .01 .01 .00 .03

linear model .89 .03 .02 .02 .00 .03 .013 1.7 1.2-2.3 894 .813-.948
L.B. .82 .04 .02 .01 .01 .09

linear model .78 .04 .06 .03 .01 .09 .026 6.4 5.5-7.4 269  .192-.358
JB. .83 .06 .01 .03 .01 .06

linear model .81 .05 .03 .03 .02 .05 .012 3.0 2.4-3.8 .694  .578-.787
J.L. .85 .03 .01 .03 .01 .06

linear model .82 .04 .03 .03 .02 .06 .015 2.6 2.1-3.4 759 .643-.840
G.S. .73 .02 .06 .01 .02 .15

linear model .72 .03 .08 .01 .03 .14 .010 1.1 0.7-1.8 952 .882-.983
L.H. .71 .03 .07 .01 .02 .15

linear model .71 .03 .08 .01 .03 14 .006 0.6 0.3-1.0 989  .958-.997
J.G. .59 .06 .09 .04 .03 .20

linear model .59 .05 .09 .03 .07 A7 .021 6.0 4.9-7.2 311 .206-.434
E.G. .94 .03 .00 .02 .00 .01

linear model .94 .03 .00 .02 .00 .00 .005 3.0 2.0-4.8 699  .440-.854
B.Me. .89 .03 .01 .05 .01 .00

linear model .89 .05 .01 .04 .01 .01 011 5.7 4.6-7.6 340 .183-.468
B.Mi .88 .05 .01 .02 .01 .01

linear model .88 .04 .01 .04 .01 .02 .007 1.8 1.2-2.7 879 .753-.941
JA. .88 .05 .00 .03 .01 .03

linear model .84 .05 .02 .04 .02 .03 .020 4.1 3.54.8 542 .441-.627
AF. .78 .02 .03 .06 .04 .07

linear model .78 .05 .04 .03 .04 .07 .016 6.8 5.2-8.6 238 .125-.390
N.C. .80 .03 .07 .01 .00 .09

linear model .78 .03 .05 .02 .02 .10 .015 5.5 4.6-6.7 358 .245-.461
1.G. .77 .10 .06 .03 .01 .03

linear model 77 .06 .04 .05 .05 .04 .026 13.0 11.3-15.2 .024 .009-.046
H.B. .61 .06 13 .02 .01 18

linear model .64 .03 .09 .01 .05 .18 .029 14.2 12.3-16.7 .014 .005-.031
J.F. .66 .16 .01 13 .01 .03

linear model .68 .09 .03 .08 .10 .02 .051 25.5 23.3-28.3 .000 .000-.000
G.L. .29 .04 .22 .03 .10 .32

linear model .31 .06 .16 .02 13 .33 .032 7.6 6.3-9.3 181 .099-.277
W.R. .08 .06 .16 .05 .35 .30

linear model .04 .14 .22 .09 .10 A1 122 123.1 112.2-133.9 .000 .000-.000

Note: RMSD stands for root mean squared deviation. Boldface indicates significant mismatches.
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representation.

As one would expect, a linear model with only one adjustable parameter gives a worse
fit to the data. Using leave-one-out cross-validation, a linear model succeeds in matching
fourteen of the twenty-one patients (67%), with a mean RMSD of 0.034 (median 0.022), a
weighted VAF of 54%, and a mean category VAF of 37%. This result quantifies the increased
accuracy gained by characterizing aphasic naming by two linear parameters rather than one.
It also starts to give us some intuition for reasonable values of RMSD.

Of course, the simple superficial linear representation we have used as a baseline for
comparison cannot be taken seriously as a theory of language production, since it does
not identify any mental representations or processes. It is presented solely as a way of
determining whether it is particularly difficult to match sixteen of the twenty-one patients.
We have concluded that it is not, since this level of performance can be surpassed by a
simple linear model.



