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Abstract— A relaxed version of the process planning prob-
lem for flexible manufacturing systems/cells (FMS/FMC) and
processing networks, such as flexible flow shops and general
job shops, is formulated using a simple extension of multico-
modity network flow problems. Our multistage multicommodity
network formulation allows for simultaneous routing and re-
source allocation and also captures the case of re-entranines
(recirculation). It can be used to perform rapid, albeit crude,
explorations of the combinatorial space of possible configa-
tions and failure scenarios. The technique can also provide
bounds on the limits of system performance (eg: throughput,
link usage, bottlenecks, etc). This can be used to guide thesign
of robust FMS architectures with high degree of redundancy i Fi . ) .

. - . ig. 1. A simple re-entrant manufacturing cell viewed as & Gl
ma.chlnes and routes, as demon.strated in numerical examples components (I=input, E=exit, mi=machine i) interconnelctey a network
Being a relaxation to the full discrete problem, our method () ‘processing two jobs requiring different sequencesprations: Job1l:
could potentially be used as an admissible heuristic for praing | Sm1—m2—mi1—E: Job2: l-m1—E.

Al-based planning methods. We demonstrate our approach on
a realistic industrial problem.

I. INTRODUCTION a step toward making this multiobjective problem more

Modern flexible manufacturing systems (FMS) and flexi{ractable.
ble manufacturing cells (FMC) are highly modular recon- Specifically, in this paper, we will present a network flow
figurable systems that can be composed of hundreds i&faxation for maximizing thesteady state throughpusf
modules which can be connected in different ways. Thigulticlass deterministic processing netwoifig§, [22] with
leads to an enormous space of possible designs, making #ownfixed processing timese-entrant linesandno buffers
selection of the optimasystem architecture very difficult  [5], [26], [8]. In such problems there are a set of machines of
task. Furthermore, thplanning and schedulingf material  different types, and a set of different jobs, each requigng
transport and manufacturing processes can become a majiferent sequence of operations on the machines, see.Fig.1
challenge in such complex systems with many possibiEhe objective is to maximize the amount of jobs per unit
branches and interconnects. time that the overall system can produce. We will place

In fact, the two problems of system design and schedulinggrticular emphasis on systems witbmplex routingwhere
are not independent. A bad system design could lead to pd§dundancyin machines and routes is designed into the
schedules, while on the other hand, a inefficient schedufystem forfault-tolerance
might fail to make the most use of the flexibility and Such deterministic problems are becoming common today
robustness offered by the particular design. Our use @1 flexible manufacturing systems [5], [26], [8], where, for
the word “bad” presumes the existence of an optimalitgxample, robots perform sequences of operations on ditfere
criterion, which allows us to measure goodness or badneg@rts such as milling, spray painting, drilling, etc, all of
Therefore, ideally, one would want to design both the systeknown fixed duration. This steady state throughput objectiv
architecture and the plannsimultaneouslyln other words, arises naturally in applications where the production pssc
one would like to design an architecture which admits plani§ run continually without interruption, or where the jobs
that allow for the best possible performance, as measured 8¢ so large that startup transients are insignificant. The
the given optimality criterion. steady state throughput objective fits nicely into the nekwo

In such system optimization problems, when the cosféow framework, which can provide good approximations in
and constraints are convex, one can apply efficient convékuations where the machines are processing large numbers
optimization to compute a solution [4]. However, in gengralof parts very quickly and deterministically, in a first-imsf-
planning and scheduling are nonconvex problems, primarigut manner, without complex prioritization or preemption.
due to the discrete aspects of the components and resourc&he deterministic processing times and absence of buffers
constraints. The flow relaxation approach in this paper igdistinguishes this problem from work on stochastic process



ing networks [17], [18], [19], [13], [20], or the finite-hadn

job-shop problems considered in [6], [2]. It is not the goal

of this paper to provide an exact solution to the discretd2 g2

problem - in general, such problems are NP-complete. For

exact solution techniques, see [21], [22], [5], [26], [8],

[6], [2] for combinatorial optimization approaches and,[1] 1 I

[12], [25], [24], [11] for discrete search based planning gl

and scheduling methods from constraint programming and ml m2 ml+m2

artificial intelligence. In fact, we have been successfullyé _ _ _ o

using the latter techniques for planning and scheduling g, 2, MLSV200n f e Rcrdo Kertorovich prnipy resouroe poo-

real products for several years [24], [11]. two parts, with different processing capacities for thetpaan be more
The contribution of this paper is to present a self-conthingProductive as a whole.

development of a network flow model for multiclass deter-

ministic processing networks, and to show in detail how it . . . _
can be applied to problems wittomplex routingand re- interpretation, in terms of multistage multicommodity flaw

entrant lines a case that was not considered in [27], [15]Wi|| make it an appealing and useful tool for practical FMS

[26]. We develop an intuitivenultistage multicommodity flow evaluation and design.

formulation, similar in spirit to [27], [15], which can be 1. MOTIVATION
solved very efficiently using convex optimization. Althdyg
in general, the network flow model does not solve the fu
discrete problem, it is much faster than the search-based!n 1817, the British economist D. Ricardo made a remark-
Al methods. Hence, our technique can be used to perforﬁble observation which is regarded as one of the fundamental
rapid, albeit crude, explorations of the combinatorialcgpa Motivations for international trade (ieesource pooliny

of possible FMS configurations and of failure scenarios. Thatated concretely, it goes as follows [23]:

technique can also provide bounds on the limits of system If two countries are producing two goods, and the
performance (eg: throughput, link usage, bottlenecks, etc  countries have different opportunity costs for pro-

and hence can be used as a CAD design tool, to guide the ducing the goods, then by means of specialization
design of FMS architectures. It can also be usedldad and trade, it is possible for both countries to have
balancing more of both goods.

Finally, we note that since the flow model ignores dis- |f the countries have the same opportunity costs, then there
cretization, it solves a less constraineglaxed problem will be no benefit from specialization and trade. This is
Hence it will always produce a bound on performancghenomenon is shown in Fig.2. In this figure, the x- and
which is more optimistic than the true optimal. This meang-axes measure the countries’ capacities for producing the
that flow model could potentially be used as @amissible goods g1 and g2, and the shaded regions are the production
heuristic for pruning the Al-based planning and schedulingyossibility set for the machines. It is assumed that for each
searches mentioned above [12], [25], [24]. Specifically, weountry, the goods trade off linearly. The area above the
can safely rule out any part of the design space for which thgashed line in the m1+m2 plot represents the potential gain
throughput of our network flow model is inadequate, sincef resource pooling and judicious management. The entire
the throughput of the actual system can only be worse. m1+m2 region is in fact the set sum of the individual

Our approach is closely related to [27], [15], [26], inproduction possibility regions of m1 and m2, see [9] for
the sense that one of our performance objectives is steagyformal proof of this principle.
state throughput maximization as in [26], while the other is |n other words, by pooling resources and proper man-
intelligent automated routing as in [27], [15]. At the sameagement, the countries can be more productive as a whole,
time, our approach can be viewed as a special case of tithout any extra investment in capital or hardware. This
generalstatic planning problempresented in [13] in the principle was rediscovered by Kantorovich in 1939 [16], in
context of stochastic networks. This, in turn, has roots ithe context of flow models for manufacturing systems. In
activity analysisdeveloped by economists in the 1950's [23]this case, machines replace countries, parts replace goods

[16], [7]. The dynamic fluid model techniques in [6], [2], and opportunity costs are replaced by processing times.
[18], [19], [13], [20] can also be viewed as generalizations

in which our method is implicity embedded. See also [10P- Fault Tolerance and Performance Costs

and the references therein for efforts in the 1980’s to use Another important motivation for pooling machines, even
multicommodity network flows for the traveling salesmarfor single job production, is the idea gfaceful degradation
problem. However, we have found that the special case the face of faults. Consider the option of buying a single
considered here very useful in our work on real system d@owerful machine with a certain production capacity or, for
signs, so we believe it is worthwhile to describe it expligit the same price, four smaller machines, each with a quarter
since it has received relatively little attention in thetature the capacity of the large one. Clearly, provided that the
in its own right. We hope that its simplicity and intuitive maintenance cost of the 4-machine system is not higher than

nA. Ricardo-Kantorovich Resource Pooling



the single machine system, the consequences of a single  Sout
failure are much lower for the 4-machine system. Thus

robustness is achieved througddundancy i
. . . N E
Yet another motivation for networking manufacturing sys- EF%

tems isperformance costt is often the case that a high-end

machine with twice the performance of a regular machine

costs considerably more than twice as much as the regular

one (think of LCD monitors!). So thus there is potential for x11 x12
large savings if low end machines could somehow be easily

networked togetheto work as if they were a single high- sg}f? (14)

end machine. Again, this is further motivation for a design

tool which allows the rapid exploration of different networ

architectures.We will show examples of such architectires m
section V.

I1l. NETWORK FLOW MODEL

) ) ) ) x13 x14
Multiclass processing networks do not immediately fall
into the class of standard network flow models, since even $2D 4(22)
at the flow relaxation level, the flow of each job must pass out <<} n
through designated links at each stage. Nevertheless, live wi (21 i i

show intuitively and formally in this section, that theitae- EFL% . E >S(()?12t)

ations can be viewed as a cascade of standard network flow

models, which makes them amenable to linear programming

and convex optimization techniques. Our approach uses idea
from [17], [6], [2], [18], [19], [13], [20], [27], [15], [26]

A. Flow modeling of multiclass FMS: Intuition

Fig. 1 shows a simple re-entrant manufacturing cell viewed
as a set of components (I=input, E=exit, mi=machine i)
interconnected by a network (N). In this example, two jobs
are being processed, requiring the following sequence of op
erations: Jobl:-bml1—m2—ml—E, and Job2: +ml—E.

The re-entrant flow in Fig. 1 (Jobl) can be broken up into
four constituent flows, one for each stage of the process
(x(ll) : I —ml, 212 :ml - m2, 20 : m2 — ml, Fig. 3. Breaking up the re-entrant flow in Fig. 1 into 4 constitt sets of

214 1 E), while Job2 can be decomposed into thdlows of Jobl(z(1D), z(12) £(13) (14)) and 2 constituent sets of flows

two flows ¢V : I — ml, z®» . ml — E). These of Job2 (2(21), £(22)), which are coupled only through the network and
) . ! . ) machine capacity constraints and through equality canssrdetween the
flows are only coupled in two ways: through the networkytput of one flow to the input of the next, to ensure consiEmabf the

capacity constraints and through equality constraintwéen  flow. At the bottom we have the aggregate flow picture.
the output of one flow to the input of the next, to ensure
conservation of the flow, see Fig. 3.

Fig. 4 shows how the same technique of Fig. 3 can bg standard Network Flow Model
easily extended to handle systems with multiple machines
of the same type. One can imagine the individual flows

being_ sent to_artificial aggregation nodes. The mUItiIOI?1ave a network withV nodes connected h¥ directed links.
machine case happensflaxible flow shopnodels [22]. For For each nodex: Z(n) is the set of incoming links, and

simplicity, we show just Jobl. The flows are again coupleg)(n) is the set of outgoing linkss, , > 0 denotes the flow
through the network and equality constraints are impose L=

. coming into noder from the outside, andyys,, > 0 is the
to ensure that for each component, the input flow at ong,, leaving noden to the outside. Let:; > 0 denote flow
stage must equal its output flow at the next stage. [N iy

Ty Ot(? link ¢, and letxz be the vector of all the flows. The we
that the artificial nodes are shown here as a conceptual adgn write the flow conservation at each nodes:

but, because of the equality constraints between stages, we

will not need them in our implementation.] Fig. 5 shows

the resulting aggregate flows. Just as before, we can easily Z T + Sinn = Z Zj + Sout,n (1)
handle multiple jobs by using more flows. i€Z(n) F€0(n)

We now review thestandard network flow mod¢8]. We
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Fig. 4. The technique of Fig. 3 for multiple machines, alorighwartificial
aggregation nodes. The flows are coupled through the maahid@etwork
capacity constraints and the equality constraints imposezhsure that for
each component, its input flow at one stage must equal itsubtipv at
the next stage.

.
e

‘m2

Fig. 5. Aggregate flows for the sequence in Fig.4.

These equations can be written compactly in matrix form by
defining the matrices!;,, and B;, as follows:

AP e eI 5 1 s € Z(0)
Y 0 ;otherwise ’ Y 0 ;otherwise
(2)
and similarly defined,,; and B, with Z(i) replaced by
O(i). The input-output flow balance is now

Aoutx + Boutsout == AinI + Binsin
Then, defining théncidence matrixA = (Aout — Ain) gives
Ax + Boutsout - Binsin = 0

We refer to B;, and B, as thesource matrixand sink
matrix, respectively.

There will generally be capacity constraints at each link.
These can be written in two ways: Lgf, denote linkk's
maximum throughput of material per unit time, andggt=
1/, denote linkk's processing time per component. Then
we can write eithetr;, < uy or prxy < 1. The latter will
extend more easily to the situation with multiple flows.

Thus our overall network flow model in terms of the
reduced incidence and source matrices is:

Ax + Boutsout - Binsin =0
Px<1 or z=3u 3)
€ i 07 Sin i 07 Sout t 0

wherep = (p1, ..., pz), P = diag(py,...,pr) andl is the
vector of all-ones.

C. Multicommodity Network Flow Model

The standard network flow model in (3) can be easily
extended to handle multiple simultaneous flows on the net-
work, each having its own sources and sinks. This is known
as themulticommodity network flow modg]. Assume that
there areF’ source-destination flows®,i = 1,..., F just
like the one above, each with its own set of souret $
sinkss'”);, and processing timeB(®) = diag(p\”,...,p\").
These flows are almost independent in the sense that each
must satisfy its own flow conservation and nonnegativity
constraints, but they are coupled through the shared link



capacities of the network. It follows that the overall netiwo the first to get the new conservation constraints:
flow model for the multicommodity scenario is [3]: AGD 4 gD D) _ gl (1) _ 0:

out out in ln
Az® 4 BOsY —BYsY =0, i=1,...,F Aglid) 4 BUI ) _ gl =) _ o0 5o p
SF L P <1 4 . . . 8
= Now if there areJ multistage jobs, each with its own
2@ =0; sV -0 s =00 i=1,...F set of flowsz(¥) j = 1,...,F;, all of which share the

interconnection network, then we arrive at our fimallti-

The incidence matrix is the same for the Wh?'e grap_h, bléttage multicommodity network flow modi@l a multiple job,
each flow has its own source and sink matrix. If tR&) multiple stage-per-job, multiple-route scenario is:

are all equal, then we can optionally replace the processing

times capacity constraint with the correspondlng peak flow Az 4 Bfmt) Emt) B(“) (“) =0; Vi

capacity constraint as in (3) above, i Elzlff () < . But Azl 4 B(”) (i) B(”)S(z,ﬁl) 0 Vii>9

this not always possible to do in general. ut Sout in “out ' =
Byya) = 0; 2 =0, s -0y Vi, ©)

D. Multistage Multicommodity Network Flow Model

(i1) .
s, =05 Vi

We will now introduce themultistage multicommodity
network flow modelwhich allows us to extend the standard Zz 1 ZE Pz <1
and multicommodity network flow models above to theat this point it is useful to recall the interpretation of the
multiple job, multiple stage-per-job, multiple-route,gsibly  link capacity constraint in (9): since the(”/) are diagonal
re-entrant scenario. Our development is based on ideas fr(vﬁatrices, we can write these constraints equivalently at th

Consider a multi-stage jobwhere we have a set of flows J
() j =1,...,F; obtained as a result of breaking up the Zzpk”)xl(;j < k=1,... L
overall process through the components as shown in section =1 j=1

[1I-A. Flow conservation and nonnegativity must hold for (i) (i) ) o
each subflow, and they must share the links of the networkherép; "~ andz,”" are, respectively, the processing time
Therefore, the flow at each stage is subject to (4) above: and the flow of link for job i at stage;.

E. The Objective Function

. . So far we have focused on the formulation of the flow

Sy Pzt <1 constraints but said nothing about the objective function.

20 = 0. s w0 §@) w . j=1,....F Basically any _obje_zctive f_unction tha_t is of interest in netk{
-7 Timo= o Pout = T 5) flow optimization is a suitable candidate for our formulatio

where A is the incidence matrix of the entire aggregatd/Ve mention a few interesting possibilities:

system, with all the machines included. « Steady state throughpuas mentioned in the introduc-
In addition, two more essential features must be modeled: tion this was one of the primary motivations for our

The first feature is that since, at each stage, we are inéerest ~ Work. The corresponding optimization problem is

in the flow from one specific set of machines to another max Z NG

specific set, all the other machines must be “switched off”, st (9)1 1 %in (10)

ie: we must not allow any flow through the other machines '

in the system at that stage. This is enforced by constraininge Link utilization in complex manufacturing cells with

Ax (ig) + B(U) (45) Bl(:lJ)Sl(;J) — 0’ ,] — 17 e, E

out Sout

the flows on the other machines to be zero highly redundant routes, one might wish to find rea-
- sonablysparse flowsAnother reason why this might
D2 =0, Vi,j (6) be of interest is forshort paths Both are captured

with the samel;-norm objective [4]. So for example

where ¢;; is a matrix whose rows are rows of identity ~ on could minimize thé;-norm objective subject to the
corresponding to the link indexes of the machines switched  throughput being more than some specifigt

off at that stage. The second feature that must be modeled is ; " B
the cascading of the stages in each individual job. At each min 30, 0 (@

stage, from the second stage onward, the flows on the output (i1) G . )

i X . stosy  mag,t=1,...,J; (9).
links of each final component must equal the input flows to min

the subsequent stage. This is expressed by the constraint:  Load Balancingthis can easily be effected either with
a term in the objective that penalizes deviation of the

sTIT) = 00 g > g, @) flows of the machines from each other, or by imposing
N constraints that require the flows to be equal or close to
Using (7) in (5), we can eliminatg(ff) from each stage after each other.

(11)



« Utility, Fairness, Delaysthere are several objectiv
which capture different notions of utility, fairness & e Y e ot e “ e 2ad ey
expected delays. See [27] and the references ther: \ v , s

8 8

F. Extensions IR er QTS
As pointed out in [27] in the context of communicati
networks, two extensions are immediately possible. The e g rEwe P eete @ vie e aETre
extension is that the link capacities themselves could lye l, s ' v
concave functions of yet other variables, such as link pt LRSS ey P @ e ey @
consumption, and any convex constraints associated
these variables can easily be appended to (9). The st
extension is also inspired by [27]), and this is that it woloé rereT et s e e ereTe
interesting to study different solution algorithms suctdaal " " " v
decomposition methods, subgradient cutting plane metl w8 wgs @ @ e e 5@
etc.

Another extension is to explore the use of this techn
as a heuristic in Al based search methods [1], [12], [25],
[24]. Such methods are closely related to branch-and-bound ~ Fig- 6. The four flows of Jobl, and the two flows of Job2.
search and essentially enumerate all possible plans ifactio
sequences) and schedules (resource allocation orderings)
Efficie_ncy is gained_ by expanding partial solutions in_ a o @G e g P e
‘best-first’ order defined by a lower bound on the solution
objective. Our network flow analysis can be used in a pre- Ag v5
processing step to compute an approximate routing. Pessibl
plans inconsistent with this routing can then be pruned
from the search space explored by the Al planner. Note
that, because the flow analysis merely approximates the
possible actions applicable in the machine, restricting th Fig- 7. Aggregate flows of Jobl. Note that Jobl is a re-enfamt
planner in this way to paths deemed optimal by the flow
analysis may result in a suboptimal final production plan.
However, the approximation may be very tight in certai®nd m2 act as bottlenecks. (This was verified by the results
applications, and the speed-up in planning time is enormougf the optimization.) The processing times for m1 (link 9)
If planning must explore a search tree of depthand Wwere set of 0.2 for all stages of job 1, and 0.4 for all stages
breadthb, ie: b? states, then exploring only/3)? states may Of job2. The processing times of m2 (link 10) were set to
make previously intractable applications feasible. langing 0.8 for job 1 and arbitrary for job 2, since job 2 must never
optimality is critical, the flow analysis results can be used be routed through m2.

Job-1, All Flows

@ 7® m218 (@

a ‘node-ordering’ heuristic to focus the planner’s att@mtn The objective was maximization of throughpgfﬁl) +
promising actions first while retaining the ability to bawidk  s{2"). The resulting optimal flows are!" = s*") = 1.25,
to the non-preferred options. The individual flows of both jobs are shown in Fig. 6, while

the aggregate flows of each job are shown in Fig. 7 and
Fig. 8. The link thicknesses are proportional to the flows.
In this section, we present two examples to illustrate ouThe results are easy to understand: Job1 loops through the
ideas. system, giving rise to twice the flow on the upper path as
the lower path (Fig. 7); while Job2 passes straight through,
with the same flow in both stages, whose size is consistent

We now present the results of applying our method tQiith the remaining capacity of m1.
the two-job, two-machine example in Fig. 1 with routing

Jobl: ml—-m2—ml—E; Job2: ml1—E. This simple

example could be solved by hand. However, it is included Job-2, All Flows
here to complete the running example from the earlier sectio PR Sy S
and to show, at the link-node level, the process of breaking

up the flows and interpreting the results. The resulting lgrap
topology is shown in Fig. 7. Note that since the jobs are
required to pass through the exit link “E”, it must be treated @ 76 m)@ (6@

as a third type of machine in our framework too. The

processing times on all the links except m1 and m2 were

chosen small enouglp,gj) = 0.1, to ensure that only m1 Fig. 8. Aggregate flows of Job2.

IV. EXAMPLES

A. A Simple Two Job System

/\8 VS



B. Multimachine Example with Complex Routing

m2 m2

In this example, we will show how thgraceful degra s T mmend Tn e m Chemti e
dation mentioned section 1I-B can been achieved thro (SN S U
redundancyand intelligent routing Although this exampl o T atels TLas e 2T adWEW e
may seem somewhat contrived, it is actually a sanit (2 R PRSI PR | PR | PO )
version of a real application from one of our indus UL | S | N | S | | — - .

3 8t
84 85 g5 86

. ®
<6 < 162 86 wes  E

<82 <

S p onsors. . . . . A AR At Ay Ay Ag® Ag® A0 @7
Suppose that a single multistage job with the same R | I . - | . e
®6 L ] <s ® -

quence of operations as jobl abovesthl—m2—m1—E) w O | | | R | | |
is being processed on a manufacturing network with topa

AV A o AV AV AR s o AVISS Adse

PR L . s s BT @R P e ;AT SRR T g
shown in Fig. 9. The flow decomposition will be as in Fic 1 o I | |
and Fig. 5, except with four instances of each mac N e A O O O
type. (Again, the exit link “E” is treated as a third ty = ThmmnE T CRSLEmEE ke

of machine.) The inputs are on the far left, and the ou

is the far right. The four machines on the outer perim

are of type m2; the four machines on the inside are or

type ml. For fault-tolerance and production cost, there areg. 9. Topology and relative link capacities for a manuisicg network

multiple instances of each type of machine. with multiplé’"ith multiple machines and redundant routes. (Not all tid labels are
. . ! visible at this small size unfortunately.)

paths into and out of each machine. Note that there are many

bidirectional links in this system, represented by pairs of

opposir_lg links. (Not all the link labels are visible at thiSprocessing more m2 flow. Note that while the crossing of
small size unfortungtely.) o ] the flows at node 14 may be unappealing, it is unavoidable

The the network interconnection links, m2 machines, angh s failure mode. The designer can then easily try other
exit link all have capacities ofi; = 10. The type ml i5n0l0gies by changing the model, or adding extra links,

machines have a capacity pf = 2.5. The link thickness is re|ying on the optimization to identify the most important
proportional to the capacity, hence links of the m1 machingsneg.

have a quarter the thickness of all the other links. Again, we ag mentioned earlier, this example is based on a san-
have chosen the network link f:apacities to be large, in ord§lyed version of a real manufacturing system of one of
to ensure than only m1 machines can act as bottlenecks. g, industry sponsors. And it was exactly questions such
Fig. 10 shows the aggregate optimal route, again fq§s machine topology, throughput maximization, and failure
throughput maximization. Note that Matlab graphics quanscenario analysis that were most pertinent during the syste
tizes the line thickness, so they are only approximatelyrchitecture and design phase. Running the network flow
proportional to the flows. The result of the thrOUghpUt 0ptimode| presented in this paper was about two orders of
mization is 5.0 which makes sense, since the total capacifyagnitude faster than running the discrete planner. Thus
of the bottleneck machines isx 2.5 = 10, but each unit of many more machine architectures and failure scenariosicoul
flow leaving the system must have been processed by an 1§ explored, and cases for which the performance of the
machine twice, thus reducing the total capacity from 10 teelaxed network model was poor could be immediately ruled

5. We observe that each quadrant runs almost independerglyt, since the full discrete planner could not do better.
performing the m1, m2 and m1 operations locally, and then

the flows are combined at the transportation bus in the middle V. CONCLUSION
of system. To avoid unnecessary looping or meandering, aA relaxed version of the steady state material flow
small /; term was added to the max-flow objective. Thisplanning problem for flexible manufacturing systems/cells
produces appealing shortest-path like routes. (FMS/FMC) such as flexible flow shops and general job
Fig. 11 shows the resulting aggregate routing infeikire  shops is formulated using a simple extension of multicom-
scenariqQ where the top right m2 machine is broken, bymodity network flow problems. Our convex multistage mul-
severing the link connecting nodes 50 to 49. Neverthelesigcommodity network formulation allows for simultaneous
the result of the throughput optimization is still 5 - thusrouting and resource allocation, and also captures the case
achieving the graceful degradation mentioned earlierutyho of re-entrant lines (recirculation). It can be used to perfo
redundancy and intelligent routing. Again, the resultimgv®  rapid, albeit crude, explorations of the combinatorialcgpa
are easy to understand. Note that the remaining three m2 possible FMS configurations and of failure scenarios.
machines still have enough capacity to cope with the flowhe technique can also provide bounds on the limits of
from all four m1 machines. Thus the optimal flow simplysystem performance (eg: throughput, link usage, bottle)ec
processes more m2 flow on one of the remaining workingtc). This can be used to guide the design of robust FMS
m2’s, namely the one in the upper left. We observe that therchitectures with high degree of redundancy in routes and
lower part of the system is running just as before, but thmachines. Our flow based technique can model the trans-
upper part has done some looping and resource managemémtmation of the components from one form to another, as
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Fig. 10.  Throughput-optimal routes and flows for the manuifdacy [12]
network of Fig. 9. [13]
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[21]

Fig. 11.  Throughput-optimal routes and flows for the manuifdacy [22]
network of Fig. 9, in a partially failed state with the uppeft m2 broken.
Yet the system can still run at maximum throughput. 23]

[24]
well as their movement from one location to another. Being
a relaxation to the full discrete problem, our method could
potentially be used as an admissible heuristic for pruninigs]
Al-based planning methods. We demonstrated our approa&g]
on a realistic industrial problem.
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