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Abstract

If the promise of computational modeling is to be fully realized
in higher-level cognitive domains such as language processing, princi-
pled methods must be developed to construct the semantic representa-
tions that serve as these models’ input and/or output. In this paper,
we propose the use of an established formalism from mathematical
psychology, additive clustering, as a means of automatically assigning
discrete features to objects using only pairwise similarity data. Simi-
lar approaches have not been widely adopted in the past, as existing
methods for the unsupervised learning of such models do not scale well
to large problems. We propose a new algorithm for additive cluster-
ing, based on heuristic combinatorial optimization. Through extensive
empirical tests on both human and synthetic data, we find that the
new algorithm is more effective than previous methods and that it also
scales well to larger problems. By making additive clustering practical,
we take a significant step toward scaling connectionist models beyond
hand-coded examples.

1 Introduction

Many cognitive models posit mental representations based on discrete sub-
structures. Even connectionist models whose processing involves manipula-
tion of real-valued activations typically represent objects as patterns of 0s

∗This report summarizes work done from the summer of 1998 through January, 2001.
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and 1s across a set of units (Noelle, Cottrell, and Wilms, 1997). Often, in-
dividual units are taken to represent specific features of the objects and two
representations will share features to the degree to which the two objects are
similar. While this arrangement is intuitively appealing, it can be difficult
to construct the features to be used in such a model. Using random feature
assignments clouds the relationship between the model and the objects it
is intended to represent, diminishing the model’s value. But as Clouse and
Cottrell (1996) point out, hand-crafted representations are tedious to con-
struct and it can be difficult to precisely articulate or justify the principles
that guided their design. These difficulties effectively limit the number of
objects that can be encoded.

In this paper, we investigate methods for automatically synthesizing fea-
tures directly from the pairwise object similarities that the model is intended
to respect. (These similarities need not be obtained from psychological test-
ing: one might use word co-occurrence statistics as a proxy for lexical seman-
tic similarity, for example (Resnik, 1995).) This automatic approach elimi-
nates the manual burden of selecting and assigning features while providing
an explicit design criterion that objectively connects the representations to
empirical data. After formalizing the problem, we will review existing al-
gorithms that have been proposed for solving it. We will then investigate
a new approach, based on combinatorial optimization. When using a novel
heuristic search technique, we find that the new approach, despite its sim-
plicity, performs better than previous algorithms and that, perhaps more
important, it maintains its effectiveness on larger problems.

1.1 Additive Clustering

There are many ways to formalize the problem of constructing discrete fea-
tures from similarity information. We will use what may be the oldest
and most established, the additive clustering model of Shepard and Arabie
(1979). In this framework, clusters represent arbitrarily overlapping discrete
features. Each of the k features has a non-negative real-valued weight wk,
and the similarity between two objects i and j is just the sum of the weights
of the features they share. If fik is 1 if object i has feature k and 0 otherwise,
and c is a real-valued constant, then the similarity of i and j is modeled as

ŝij =
∑

k

wkfikfjk + c .

This class of models is very expressive, encompassing non-hierarchical as
well as hierarchical arrangements of clusters. (An example model, derived
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Table 1: An 8-feature model derived from consonant confusability data.
With c = 0.024, the VAF is 91.8%.

Wt. Objects with feature Interpretation

.350 fθ front unvoiced fricatives

.243 dg back voiced stops

.197 p k unvoiced stops (without t)

.182 b v∂ front voiced

.162 ptk unvoiced stops

.127 mn nasals

.075 dgv∂zz̆ voiced (without b)

.049 ptkfθss̆ unvoiced

using the ewindclus-klb algorithm described below, is shown in Table 1.)
Additive clustering is asymmetric in the sense that only the shared features
of two objects contribute to their similarity, not the ones they both lack.
(This is the more general formulation, as an additional feature containing
the set complement of the original feature could always be used to produce
such an effect.) Additive clustering was extended by Carroll and Arabie
(1983) to the case in which one has similarity data gathered from multiple
sources. The assumption is that the underlying cluster memberships remain
the same across the conditions, but that separate weights and constants can
account for source variation. Carroll and Arabie term this model Indclus,
for individual differences clustering.

With a model formalism in hand, we can then phrase the problem of
constructing feature assignments as simply finding the Indclus model that
best matches the given similarity data using the desired number of features.
The fit of a model (comprising F,W, c) to a matrix, S, can be quantified by
the variance accounted for (VAF), which compares the model’s accuracy to
just guessing the mean similarity:

VAF = 1 −

∑
i,j(sij − ŝij)

2

∑
i,j(sij − s̄)2

A VAF of 0 can always be achieved by setting all wk to 0 and c to s̄.
Similar approaches to feature construction for cognitive modeling have

been proposed previously. Clouse and Cottrell (1996) present a framework,
based on an analogy to multi-dimensional scaling, that encompasses many
models. The results they present are based on a model that assumes that
feature absence also implies similarity, but we will consider an Indclus
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variation of their algorithm below. Also, they use an intermediate vector
representation of each object, derived using principal components analysis,
rather than working directly from the similarities. Lee (1998) also investi-
gates the case in which feature absence implies similarity, although he briefly
discusses extending his algorithm to Indclus models. We will consider a
variation of a more recent Indclus algorithm of his below (Lee, submitted).

2 Previous Algorithms

Additive clustering is a difficult 0-1 quadratic programming problem and
only heuristic approaches, which do not guarantee an optimal model, have
been proposed. Many different approaches have been taken:

Subsets: Shepard and Arabie (1979) proposed an early algorithm based
on subset analysis that was clearly superseded by Arabie’s later work
below. Hojo (1983) also proposed an algorithm along these lines. We
will not consider these algorithms further.

Non-discrete Approximation: Arabie and Carroll (1980) and Carroll
and Arabie (1983) propose the two-stage indclus algorithm. In the
first stage, cluster memberships are treated as real values and opti-
mized for each cluster in turn by gradient descent. At the same time,
a penalty term for non-0-1 values is gradually increased. Afterwards, a
combinatorial clean-up stage tries all possible changes to 1 or 2 cluster
memberships. Experiments reported below use the original code, mod-
ified slightly to handle large instances. Runs that crashed or produced
VAFs ≤ 0 were ignored.

Asymmetric Approximation: In the sindclus algorithm, Chaturvedi
and Carroll (1994) optimize an asymmetric model with two sets of
cluster memberships, having the form ŝij =

∑
k wkfikgjk + c. By con-

sidering each cluster in turn, this formulation allows a fast method
for determining each of F , G, and w given the other two. In prac-
tice, F and G often become identical, yielding an Indclus model.
Experiments reported below use both a version of the original im-
plementation that has been modified to handle large instances and a
reimplemented version that differs in its behavior at boundary cases
(handling 0 weights, empty clusters, ties). Runs of the original code
that crashed or seemed to hang were ignored. Models from runs in
which F and G did not converge were each converted into several In-

dclus models by taking only F , only G, their intersection, or their
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union. The weights and constants of each model were optimized using
constrained least-squares linear regression (Stark and Parker, 1995),
ensuring non-negative cluster weights, and the one with the highest
VAF was used.

Alternating Clusters: Kiers (1997) proposes an element-wise simplified
sindclus algorithm, which we abbreviate as ewindclus. Like sindclus,
it considers each cluster in turn, alternating between the weights and
the cluster memberships, although only one set of clusters is main-
tained. Weights are set by a simple regression and memberships are
determined by a gradient function that assumes object independence
and fixed weights. The experiments reported below use a new imple-
mentation, similar to the reimplementation of sindclus.

Expectation Maximization: Tenenbaum (1996) reformulates Indclus fit-
ting in probabilistic terms as a problem with multiple hidden factorial
causes, and proposes a combination of the EM algorithm, Gibbs sam-
pling, and simulated annealing to solve it. The experiments below use
a modified version of the original implementation which we will notate
as em-indclus. It terminates early if 10 iterations of EM pass without
a change in the solution quality. (A comparison with the original code
showed this modification to give equivalent results using less running
time.)

Unfortunately, it is not clear which of these approaches is the best. Most
published comparisons of additive clustering algorithms use only a small
number of test problems (or only artificial data) and report only the best
solution found within an unspecified amount of time. Because each algo-
rithm often returns solutions of widely varying quality, this leaves it unclear
which algorithm gives the best results on a typical run. Furthermore, differ-
ent algorithms require very different running times, and multiple runs of a
fast algorithm with high variance in solution quality may produce a better
result in the same time as a single run of a more predictable algorithm. The
next section reports on a new empirical comparison that addresses these
concerns.

2.1 Evaluation of Previous Algorithms

We compared indclus, both implementations of sindclus, ewindclus, and
em-indclus on 3 sets of problems. (For compatibility with the em-indclus

code, only problems with a single source matrix were used.) The first set is
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Table 2: Benchmark problems.
Name n k First use

animals-small 10 3 Mechelen and Storms (1995)
numbers 10 8 Shepard and Arabie (1979)
workers 14 7 Shepard and Arabie (1979)

consonants 16 8 Shepard and Arabie (1979)
animals 30 5 Chaturvedi and Carroll (1994)
letters 26 12 Shepard and Arabie (1979)

a collection of 6 typical data sets from psychological experiments that have
been used in previous additive clustering work. These instances are sum-
marized in Table 2, which lists the number of objects (n), the number of
features used to fit the data (k), and the paper in which additive clustering
was first applied to that set. The second set of problems contains noise-
less synthetic data derived from Indclus models with 8, 16, 32, 64, and
128 objects. In a rough approximation of the human data, the number of
clusters was set to 2 log2(n), and as in previous Indclus work, each object
was inserted in each cluster with probability 0.5. A single similarity ma-
trix was generated from each model using weights and constants uniformly
distributed between 1 and 6. The third set of problems was derived from
the second by adding gaussian noise with a variance of 10% of the variance
of the similarity data and enforcing symmetry. Each algorithm was run at
least 50 times on each data set. To avoid biasing our conclusions in favor
of methods requiring more computation time, those results were then used
to derive the distribution of results that would be expected if all algorithms
were run simultaneously and those that finished early were re-run repeatedly
until the slowest algorithm finished its first run, with any re-runs in progress
at that point discarded.1

The time-equated distributions of solutions produced by each algorithm
on each of the human data sets are shown in Figure 1. (em-indclus took
much longer than the other algorithms and for clarity its performance is
shown separately in Figure 2.) Each box represents the middle 50% of a
distribution, a line marks the median, vertical whiskers from each box cover
all values within 4 quartiles of the median, and a small grey box represents
the 95% confidence interval around the mean. Small circles mark outliers.

1Depending as it does on running time, this comparison remains imprecise due to
variations in the degree of code tuning and the quality of the compilers used, and the need
to normalize timings between the multiple machines used in the tests.
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IN = indclus

SI = sindclus

RSI = new sindclus

EW = ewindclus

animals-small numbers workers consonants animals letters
IN IN IN IN IN INSI SI SI SI SI SIRSI RSI RSI RSI RSI RSIEW EW EW EW EW EW

1.0 1.0 1.0 1.0 1.0 1.08.0 5.1 9.1 6.1 9.3 7.112.4 7.4 7.4 5.5 12.7 5.34.4 4.9 1.6 1.1 25.6 16.7

Figure 1: The performance of several previously proposed algorithms on
data sets from psychological experiments.

The small numbers below the bars indicate how many runs were necessary
on average to achieve time parity with the slowest algorithm on that data
set. On most instances, there is remarkable variance in the VAF achieved by
each algorithm.2 Overall, despite the variety of approaches that have been
brought to bear over the years, the original indclus algorithm appears to
be the best. Animals-small is the only data set on which its median perfor-
mance is not the best, and its overall distribution of results is consistently
competitive. It is revealing to note the differences in performance between
the original and reimplemented versions of sindclus. Small changes in the
handling of boundary cases make a large difference in the performance of
the algorithm.

Surprisingly, on the synthetic data sets (not shown), the relative perfor-
mance of the algorithms was quite different, and almost the same on the
noisy data as on the noise-free data. (This suggests that the randomly gen-
erated data sets that are commonly used to evaluate Indclus algorithms do

2Figure 2 shows one anomaly: no em-indclus run on animals resulted in a VAF ≥ 0.
This also occurred on all synthetic problems with 32 or more objects (although very good
solutions were found on the smaller problems). Tenenbaum (personal communication)
suggests that the default annealing schedule in the em-indclus code may need to be
modified for these problems.
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animals-small numbers workers consonants animals letters
IN IN IN IN IN INEM EM EM EM EM EM

22.6 156.3 88.4 291.3 1.0 486.31.0 1.0 1.0 1.0 None 1.0

Figure 2: The performance of indclus (IN) and em-indclus (EM) on the
human data sets.
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not accurately reflect the problems of interest to practitioners.) ewindclus

performed best here, although it was only occasionally able to recover the
original models from the noise-free data.

Overall, it appears that current methods of additive clustering are quite
sensitive to the type of problem they are run on and that there is no assur-
ance that they can reliably scale to problems larger than those examined in
the first papers on the topic. In an attempt to address these problems, we
turn now to a new approach.

3 A Purely Combinatorial Approach

One common theme in indclus, sindclus, and ewindclus is their compu-
tation of each cluster and its weight in turn, at each step fitting only the
residual similarity not accounted for by the other clusters. Assuming that
clusters are independent allows simple equations for updating the cluster
weights, but forces memberships to be considered in a predetermined order
and allows weights to become obsolete. Inspired in part by recent work of
Lee (submitted), we propose an orthogonal decomposition of the problem.3

Instead of computing the elements and weight of each cluster in succession,
we first consider all the memberships and then derive all the weights using
constrained regression. And where previous algorithms recompute all the
memberships of one cluster simultaneously (and therefore independently),
we will change memberships one by one in a dynamically determined or-
der using simple heuristic search techniques, recomputing the weights after
each step. From this perspective, Indclus becomes a purely combinatorial
optimization problem.

We will evaluate three different algorithms based on this approach, all of
which attempt to improve a random initial model. The first, indclus-hc, is
a simple hill-climbing strategy which attempts to toggle memberships in an
arbitrary order and the first one resulting in an improved model is accepted.
The algorithm terminates when no membership can be changed to give an
improvement. This strategy was suggested by Clouse and Cottrell (1996),
although here we are using the Indclus model of similarity. In the second
algorithm, indclus-pbil, the PBIL algorithm of Baluja (1997) is used to
search for appropriate memberships. This is an efficient simplification of the
strategy suggested by Lee (submitted), whose proposal includes elements
concerned with automatically controlling model complexity. We use the

3Lee’s recent proposals take a similar combinatorial approach, although his algorithms
use it within a more complex two-stage or incremental design.
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parameter settings he suggests but only allow the algorithm to generate
10,000 solutions.

While the two previous approaches do not use any problem-specific infor-
mation beyond solution quality, the third algorithm uses the gradient func-
tion from the ewindclus algorithm to guide the search. The move strategy
is a novel combination of gradient ascent and the method of Kernighan and
Lin (1970) which we call ‘KL break-out’. It proceeds by gradient ascent,
changing the entry in F whose ewindclus gradient points most strongly
to the opposite of its current value. When the ascent no longer results in
an improvement, a local maximum has been reached. Motivated by results
suggesting that good maxima tend to cluster (Boese, Kahng, and Muddu,
1994; Ruml et al., 1996), the algorithm tries to break out of the current
basin of attraction and find a nearby maximum rather than start from an-
other random model. It selects the least damaging variable to change, using
the heuristic as in the ascent, but now it locks each variable after changing
it. The pool of unlocked variables shrinks, thus forcing the algorithm out of
the local maximum and into another part of the space. To determine if it
has escaped, a new gradient ascent is attempted after each locking step. If
the ascent surpasses the previous maximum, the current break-out attempt
is abandoned and the ascent is pursued. If the break-out procedure changes
all variables without any ascent finding a better maximum, the algorithm
terminates. This strategy, which we will call ewindclus-klb, surpassed the
original KL method in time-equated tests. It is also conceptually simple and
has no parameters that need to be tuned.

3.1 Evaluation of the Combinatorial Algorithms

The time-equated performance of the combinatorial algorithms on the hu-
man data sets is shown in Figure 3, with indclus, the best of the previous
algorithms, shown for comparison. As one might expect, adding heuristic
guidance to the search helps it enormously: ewindclus-klb surpasses the
other combinatorial algorithms on every problem. It performs better than
indclus on three of the human data sets (top panel), equals its performance
on two, and performs worse on one data set, letters. The variance of indclus
on letters is very small, and the results suggest that ewindclus-klb is the
better choice on this data set if one can afford the time to take the best of 20
runs. (Experiments using 7 additional human data sets found that letters
represented the weakest performance of ewindclus-klb.)

Performance of a plain KL strategy (not shown) surpassed or equaled
indclus on all but two problems (consonants and letters), indicating that
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PB = indclus-pbil

KLB = ewindclus-klb

IN = indclus

animals-small numbers workers consonants animals letters
HC HC HC HC HC HCPB PB PB PB PB PBKLB KLB KLB KLB KLB KLBIN IN IN IN IN IN

43.9 23.8 16.1 11.2 8.5 2.71.0 1.0 1.0 1.0 1.0 1.074.2 18.6 12.6 8.6 6.5 2.247.0 59.4 52.9 60.9 36.4 56.6

Figure 3: The performance of the combinatorial algorithms on human data
sets.

the combinatorial approach, in tandem with heuristic guidance, is powerful
even without the new ‘KL break-out’ strategy. It is also interesting to note
that indclus itself is unique among previous algorithms in incorporating a
purely combinatorial search phase. Our results suggest that this portion of
the algorithm may account for a substantial part of its effectiveness.

While we have already seen that synthetic data does not predict the
relative performance of algorithms on human data very well, it does provide
a test of how well they scale to larger problems. On noise-free synthetic
data, ewindclus-klb reliably recovered the original model on all data sets.
It was also the best performer on the noisy synthetic data (a comparison
with indclus is presented in Figure 4.4) These results show that, in addition
to performing best on the human data, the combinatorial approach retains
its effectiveness on larger problems.

4The indclus code crashed on 94% of runs with 128 objects. Because these results
reflect only runs that completed, they are sensitive to any correlation that might exist
between final solution quality and code malfunction.
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Figure 4: ewindclus-klb (KLB) and indclus (IN) on noisy synthetic data
sets of increasing size.
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4 Conclusions

We developed a connection between constructing feature-based representa-
tions for cognitive modeling and the unsupervised learning of Indclus mod-
els from similarity data. In an empirical comparison sensitive to variance
in solution quality and computation time, we found that several recently
proposed methods for recovering such models perform worse than the orig-
inal indclus algorithm of Arabie and Carroll (1980). Noting that indclus
does not scale well to large problems, we suggested a purely combinato-
rial approach that is simpler than previous proposals. When provided with
gradient information, this approach was comparable to indclus, and when
using a novel move strategy, it surpassed all other algorithms. Perhaps even
more important, the new method seems to perform well on large problems.

For simplicity, we considered algorithms in isolation, although it would
be interesting to explore the potential for using the output of one algorithm
as the starting point for another. We also did not consider the tolerance of
the algorithms for missing data, or the question of determining how many
features are justifiable for a particular data set.

While this work has extended the reach of the additive clustering paradigm
to large problems, it is directly applicable only to cognitive models whose
representations encode similarity as shared features. (The cluster weights
can be represented by duplicating strong features or by varying connec-
tion weights.) However, the simplicity of the combinatorial approach should
make it straightforward to extend to models in which the absence of features
can enhance similarity.
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