
Faster Than Weighted A*:
An Optimistic Approach to Bounded Suboptimal Search

Jordan T. Thayer and Wheeler Ruml
Department of Computer Science

University of New Hampshire
Durham, NH 03824 USA

jtd7, ruml atcs.unh.edu

Abstract

Planning, scheduling, and other applications of heuristic
search often demand we tackle problems that are too large
to solve optimally. In this paper, we address the prob-
lem of solving shortest-path problems as quickly as possi-
ble while guaranteeing that solution costs are bounded within
a specified factor of optimal. 38 years after its publica-
tion, weighted A* remains the best-performing algorithm for
general-purpose bounded suboptimal search. However, it typ-
ically returns solutions that are better than a given bound re-
quires. We show how to take advantage of this behavior to
speed up search while retaining bounded suboptimality. We
present an optimistic algorithm that uses a weight higher than
the user’s bound and then attempts to prove that the resulting
solution adheres to the bound. While simple, we demonstrate
that this algorithm consistently surpasses weighted A* in four
different benchmark domains including temporal planning
and gridworld pathfinding.

Introduction
Many difficult problems, including planning, can be repre-
sented as shortest-path problems. If sufficient resources are
available, optimal solutions to these problems can be found
using A* search with an admissible heuristic (Hart, Nilsson,
and Raphael 1968). However, in many practical scenarios,
one is willing to accept a suboptimal solution in return for re-
duced computation time. In this paper, we will consider the
setting in which one wants the fastest search possible while
guaranteeing that the suboptimality of the resulting solution
is bounded to within a given factor of the optimal solution’s
cost. For a given factorw, we say that an algorithm isw-
admissible.

The best previously proposed algorithm for this prob-
lem is weighted A* (Pohl 1970), in which the traditional
node evaluation functionf is modified to place additional
weight on the heuristic evaluation functionh, as inf ′(n) =
g(n)+w ·h(n), with w ≥ 1. By penalizing nodes with large
h values, the search becomes greedier, which often results in
finding a solution faster. The solution returned by weighted
A* is w-admissible. Weighted A* is beautifully simple and
often performs well, but other algorithms have been pro-
posed. One is dynamically weighted A* (Pohl 1973), which

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

requires an estimate of the depth of the solution and then de-
creasesw from its original value at the root of the tree to 1
at the estimated goal depth. This maintainsw-admissibility.
Another algorithm is A∗ǫ (Pearl and Kim 1982), which re-
quires both the traditional estimate of cost-to-goh and also
an estimate of the search effort or search distance-to-god.
Of all the nodes in the open list with anf value within a
factor ofw of the minimumf value of any node in open, A∗ǫ
expands that node whosed value is minimum. A∗ǫ is also
w-admissible. These two newer algorithms have not dis-
placed weighted A*, which remains widely used, and in the
experiments reported below we will see that they do not find
solutions as quickly.

In this paper, we propose a new technique for fastw-
admissible search, called optimistic search. The algorithm
has two phases. First, it employs an aggressively greedy
search phase to find a solution that is not guaranteed to be
w-admissible, but usually is. This is followed by a ‘clean-
up’ phase, in which the algorithm attempts to prove that the
solution obtained by the aggressive part of the search isw-
admissible. After showing the theoretical intuition behind
this optimistic approach, we demonstrate empirically thatit
performs well across a variety of search problems. Given its
simplicity, we believe optimistic search can find wide use in
AI systems.

An Optimistic Approach

We begin by noting that previous approaches to subopti-
mal heuristic search, including weighted A*, dynamically
weighted A*, and A∗ǫ , are very strict. That is, no node is
ever expanded which could not lead to aw-admissible goal.
Consider weighted A*, for example. Itsw-admissibility de-
rives from the following straightforward reasoning, which
we will build up in stages for later reuse. We will assume
that h is admissible. The optimal cost of a path from the
root to a noden will be notatedg∗(n) andoptwill represent
the node at the end of an optimal path to a solution. We start
with a special nodep:

Lemma 1 (following Pearl, 1984)Letp be the deepest node
on openthat lies along the optimal path toopt. No matter
how a best-first search selects nodes for expansion,f(p) =
g(p) + h(p) ≤ g∗(opt).



Four-way Grid Pathfinding (Life cost)
S

o
lu

ti
o

n
 Q

u
al

it
y

 (
re

la
ti

v
e 

to
 A

*) 1.6

1.4

1.2

1.0

Sub-optimality Bound

321

y=x

wA*

Figure 1: The suboptimality of solutions returned by
weighted A* versus the suboptimality bound, averaged over
20 grid-world path-finding problems.

Proof: Let p be the deepest node onopenthat lies along
an optimal path toopt. Such a node must exist because
an optimal path toopt exists by definition. The root is on
it, and if a node which has been expanded is on it, one of
the children must be, and all children are inserted intoopen.
f(p) ≤ f(opt) = g∗(opt) by our definition ofp and the ad-
missibility of h. 2

This wonderful property ofp supports a general result for
weighted A*:

Theorem 1 (after Pohl, 1970)For any noden expanded by
a best-first search guided byf ′ = g(n) + w · h(n), f ′(n) ≤
w · g∗(opt).

Proof: Consider an optimal path toopt. If all nodes on this
path have been expanded, we have the optimal solution and
the theorem holds trivially. Otherwise, letp be the deepest
node onopenthat lies along the optimal path toopt. When
we expandn, f ′(n) ≤ f ′(p) becausen was selected for
expansion beforep. f ′(p) = g(p) + w · h(p) ≤ w · (g(p) +
h(p)) = w · f(p) by algebra. So we havef ′(n) ≤ w · f(p).
By Lemma 1,w · f(p) ≤ w · f(opt) = w · g∗(opt). 2

Thew-admissibility of weighted A* is just a special case:

Corollary 1 For the solutions returned by weighted A*,
g(s) ≤ w · g∗(opt).

Proof: Becauses is a goal node andh is admissible,h(s) =
0. So g(n) = f(n) = f ′(n) by the definition off ′ and
f ′(n) ≤ w · g∗(opt) by Theorem 1. 2

While this strict approach tow-admissibility has a certain
conservative appeal, there is also a long history in AI re-
search of exploiting the fact that worst case behavior rarely
occurs. This leads us to an optimistic approach in which we

Optimistic Search(initial , bound)
1. openf ← {initial}
2. open

f̂
← {initial}

3. incumbent←∞
4. repeat untilbound· f(first onopenf ) ≥ f(incumbent):
5. if f̂(first onopen

f̂
) < f̂(incumbent) then

6. n← remove first onopen
f̂

7. removen from openf

8. elsen← remove first onopenf

9. removen from open
f̂

10. addn to closed
11. if n is a goal then
12. incumbent← n
13. else for each childc of n
14. if c is duplicated inopenf then
15. if c is better than the duplicate then
16. replace copies inopenf andopen

f̂

17. else ifc is duplicated inclosedthen
18. if c is better than the duplicate then
19. addc to openf andopen

f̂

20. else addc to openf andopen
f̂

Figure 2: Optimistic search using an admissible node evalu-
ation functionf and an inadmissible function̂f .

allow ourselves to expand nodes more aggressively, without
a strict guarantee that they lead to aw-inadmissible solution.
Any fast search method with an open list can be used—in the
experiments below, we use weighted A* with a high weight.
Crucially, once we have found a solution using the aggres-
sive search, we will then expand additional nodes until we
can either prove our solution isw-admissible or we find a
better one. This proof ofw-admissibility relies on the fol-
lowing corollary of Lemma 1:

Corollary 2 (following Pearl, 1984, and Hansen and
Zhou, 2007)No matter how an open list-based search al-
gorithm selects nodes for expansion, the lowestf value of
any node on the open list is a lower bound on the optimal
solution cost.

Proof: Consider nodep in Lemma 1. The lowestf on open
will be ≤ f(p). 2

This means that, to prove that a solution found by an op-
timistic search isw-admissible, we can expand the node in
open with the lowestf value until the lowestf value in open
is within a factor ofw of the solution’s cost.

The clear risk in such a technique is that the solution
found during the first phase might not bew-admissible. This
will cause the algorithm to behave like A*, expanding all
nodes withf values less than the optimal solution after hav-
ing already invested time into producing a suboptimal solu-
tion. We attempt to hedge against this worst case: if there is
a node whose inadmissible heuristic value according to the
aggressive search is less than that of the incumbent solution,
then that node is selected for expansion. Figure 2 gives a
complete sketch of the optimistic search approach. In an op-



timized implementation, one would probably delay forming
the openf list until the first solution was found. Note that

the aggressive heuristiĉf can be any arbitrarily inadmissi-
ble function.

Why would we expect this technique to work? It de-
pends heavily on the aggressive search finding a node which
falls within the desired suboptimality bound. When using
weighted A* with a weight higher thanw as the aggressive
search component, the proof of Theorem 1 shows us how
this can happen. Recall the crucial step:

f ′(p) = g(p) + w · h(p) ≤ w · (g(p) + h(p)) = w · f(p)

Note the significant potential gap betweeng(p) + w · h(p)
andw · (g(p) + h(p)). Equality only holds wheng(p) = 0.
In many heuristic search problems, this happens only at the
root node. Everywhere else, there is a significant gap, which
implies that nodes whosef ′ is less thanf ′(p) are usually
significantly better thanw · g∗(opt). This is exactly the gap
that optimistic search is trying to exploit.

The gap present in the inequality also manifests in empir-
ical examinations of weighted A*. Figure 1 shows the true
quality of solutions found by weighted A* compared to the
suboptimality bound, and used weighting factor,w. The line
y = x is also included to show the theoretical limit. Clearly,
not only is it possible for weighted A* to return solutions far
better than the bound suggests, it is also common in some
domains.

A higher weight in weighted A* usually results in faster
search and the decrease in solution quality is often not lin-
ear, as the bound would suggest. By running an aggres-
sive search first with a weight higher than the bound, and
then proving our solution is within the bound, we can ex-
pect faster total search time for aw-admissible solution than
when running weighted A* itself.

Empirical Evaluation
To gain a more concrete sense of the behavior of opti-
mistic search, we implemented it and several other search
algorithms and tested them on four challenging bench-
mark search problems: temporal planning, grid-world path-
finding, the traveling salesman problem, and the sliding
tile puzzle. All algorithms were implemented in Objective
Caml, compiled to 64-bit native code executables, and run
on a collection of Intel Linux systems. We implemented the
following algorithms:
weighted A* (wA*) using the desired suboptimality bound

as a weight. For domains with significant number of
duplicates, we also implemented a version of weighted
A* that ignores nodes that are already in the closed list,
noted by dd in our graphs. Likhachev, Gordon, and
Thrun (2004) point out that this modification retainsw-
admissibility while potentially reducing the number of
nodes expanded (although see Hansen and Zhou, 2007,
for another view). Such an approach is only possible with
a consistent heuristic.

dynamically weighted A* usingd(root) as a depth bound.

A∗

ǫ using the desired sub-optimality bound to form the ‘fo-
cal’ list from which the node to expand is selected

optimistic search using weighted A* with a weight of
2(bound−1)+1 for the aggressive search phase. This was
chosen arbitrarily—a different weight may have given
better results.

bounded anytime weighted A* using a weight of
2(bound− 1) + 1. Bounded anytime weighted A*
(BAwA*) is a natural extension of the anytime weighted
A* algorithm introduced by Hansen and Zhou (2007).
Standard implementations of this algorithm would run
until they converged on the optimal solution. By adding
an additional priority queue sorted onf , we can keep
track of the node with the lowestf value. With the
addition of the second priority queue, the algorithm can
be made to run until its incumbent solution can be shown
to be within the desired suboptimality bound. This is
functionally equivalent to our optimistic search without
a cleanup phase. Again, the weight here was arbitrarily
chosen to allow for a direct comparison to optimistic
search, a different weight may have resulted in better
performance.

Our primary figure of merit is the speed with which an algo-
rithm can find a solution that is guaranteed to fall within a
given suboptimality bound.

Temporal Planning
Heuristic search algorithms have been widely applied to
planning problems (Bonet and Geffner 2001; Zhou and
Hansen 2006). It is a domain in which optimal solutions
can be extremely expensive to obtain (Helmert and Röger
2007). We tested our algorithms on 31 temporal planning
problems from five benchmark domains taken from the 1998
and 2002 International Planning Competitions where the ob-
jective function is to minimize the plan duration (makespan).

To find the plan, we used the temporal regression planning
framework in which the planner searches backwards from
the goal stateSG to reach the initial stateSI (Bonet and
Geffner 2001). To guide the search, we computeh(n) us-
ing the admissibleH2 heuristic of the TP4 planner (Haslum
and Geffner 2001). This heuristic estimates the shortest
makespan within which each single predicate or pair of
predicates can be reached from the initial stateSI . This
is computed once via dynamic programming before start-
ing the search, taking into account the pairwise mutual ex-
clusion relations between actions in the planning problem.
In order to compute a search-distance-to-go functiond, we
also computed the expected number of steps to reach the
shortest makespan solution. This value was estimated by
first extracting a relaxed plan (Hoffmann and Nebel 2001)
that approximates the closest shortest solution in terms of
makespan from a given search node. The number of regres-
sion steps in this plan is then used as the distance estimate
to the cheapest solution.

Figure 3 shows results on the hardest benchmark problem
from each domain that A* could solve within four minutes.
The x axis represents the sub-optimality bound, where 1 is
optimal and 3 is three times the optimal cost. Samples were
taken at 1, 1.001, 1.005, 1.01, 1.05, 1.1, 1.15, 1.2, 1.3, 1.5,
1.75, 2, 2.52 and 3. The y axis is the number of nodes gen-



zenotravel (problem 3)
N

o
d

es
 g

en
er

at
ed

 (
re

la
ti

v
e 

to
 A

*) 1.2

0.8

0.4

0.0

Sub-optimality Bound

321

dyn wA*
BAwA*

Optimistic
wA*

A* eps

zenotravel (problem 3)

N
o

d
es

 g
en

er
at

ed
 (

re
la

ti
v

e 
to

 A
*) 1.2

0.8

0.4

0.0

Sub-optimality Bound

4321

BAwA*
Optimistic

wA*

satellite (problem 2)

N
o

d
es

 g
en

er
at

ed
 (

re
la

ti
v

e 
to

 A
*) 1.2

0.8

0.4

0.0

Sub-optimality Bound

321

dyn wA*
A* eps

wA*
Optimistic

BAwA*

rovers (problem 4)

N
o

d
es

 g
en

er
at

ed
 (

re
la

ti
v

e 
to

 A
*) 1.2

0.8

0.4

0.0

Sub-optimality Bound

321

A* eps
dyn wA*

wA*
Optimistic

BAwA*

rovers (problem 4)
N

o
d

es
 g

en
er

at
ed

 (
re

la
ti

v
e 

to
 A

*) 1.2

0.8

0.4

0.0

Sub-optimality Bound

4321

Optimistic
BAwA*

wA*

logistics (problem 4)

N
o

d
es

 g
en

er
at

ed
 (

re
la

ti
v

e 
to

 A
*) 1.2

0.8

0.4

0.0

Sub-optimality Bound

321

A* eps
dyn wA*

wA*
Optimistic

BAwA*

blocksworld (problem 7)

N
o

d
es

 g
en

er
at

ed
 (

re
la

ti
v

e 
to

 A
*) 1.2

0.8

0.4

0.0

Sub-optimality Bound

321

dyn wA*
wA*

A* eps
BAwA*

Optimistic

blocksworld (problem 7)

N
o

d
es

 g
en

er
at

ed
 (

re
la

ti
v

e 
to

 A
*) 1.2

0.8

0.4

0.0

Sub-optimality Bound

4321

BAwA*
Optimistic

wA*

Figure 3: Performance on difficult temporal planning problems.

erated, normalized by the number of nodes generated by A*
search on the same problem. Zenotravel, rovers, and blocks
world are presented twice in order to provide a clearer pic-
ture of the relationship between weighted A*, bounded any-
time weight A*, and optimistic search.

Optimistic search performed as expected in this domain,
just as weighted A* would have done with a higher weight.
In effect, it shifts the curve for weighted A* to the left. For
small suboptimality bounds, this gives rise to large speed-

ups, often reducing the search time by 50%. In zenotravel,
where weighted A* degenerates with a high weight, opti-
mistic search shifts the curve to the left and degenerates
faster. Clearly, if one knows the performance of weighted
A*, it is easy to predict the performance of optimistic search
and either achieve the same suboptimality bound within
fewer node generations or achieve a better suboptimality
bound for the same number of node generations. This ex-
tends to any inadmissible search which could be used for



the aggressive phase of our algorithm. If the performance of
what will be the aggressive search is known a priori, tuning
the performance of optimistic search is as simple as selecting
the right level of optimism for the first phase of the search.

Bounded anytime weighted A* behaves very much like
optimistic search, in many cases they behave identically.
In satellite, logistics, rovers, and blocksworld, the lines of
optimistic search and bounded anytime weighted A* lie on
top of one another. This should be expected since both are
performing the same search initially, and differ in their ap-
proach to confirming that the solution is within the given
suboptimality bound. In planning, finding the initial solu-
tion dominates the cleanup phase, wherein the initial solu-
tions are shown to bew-admissible. Given the importance
of an explicit cleanup phase in other domains, it is surprising
how often the two approaches perform identically here.

In cases where optimistic search performs better, it is be-
cause its explicit cleanup strategy allows it to prove the qual-
ity of the solution faster than bounded anytime weighted A*
can. This shouldn’t be surprising, as it says that, typically,
expanding nodes inf order raises the lower bound on solu-
tion quality faster than expanding nodes inf ′ order would.
The lower bound on solution quality is the smallestf in our
open list, and so clearly expanding nodes inf order will
raise this value fastest.

There are several reasons for which the algorithms might
perform identically. The first, and most common, is that
no cleanup phase is needed. If, during the initial aggres-
sive search, all nodes whosef values were within a fac-
tor of the suboptimality bound of the aggressive solution
were expanded, no clean up is needed. This can happen
when the suboptimality bound is very generous because the
suboptimality guarantee allows the solution to differ greatly
from the lower bound. Alternatively, when the suboptimal-
ity bound is incredibly tight, we aren’t likely to have need of
a cleanup phase. In this case, optimistic search will have al-
ready expanded most, if not all, of the nodes whosef values
are near that of the aggressive solution. Finally, the algo-
rithms perform similarly whenh is extremely accurate, as
this also eliminates the cleanup phase.

Dynamically weighted A* usually performs much worse
than plain weighted A*, with the exception of blocksworld,
where it temporarily surpasses weighted A* and optimistic
search. A∗ǫcan perform well in planning, as particularly evi-
dent in zenotravel, but its behavior is erratic in many of the
temporal planning problems, and it performs very poorly in
other domains. In general, if it performs well, it performs
well when the suboptimality bound is very high, allowing
A∗

ǫ to function primarily as if it were a greedy search ond(n).

Grid-world Planning
We considered 12 varieties of simple path planning prob-
lems on a 2000 by 1200 grid, using either 4-way or 8-way
movement, three different probabilities of blocked cells,and
two different cost functions. The start state was in the lower
left corner and the goal state was in the lower right corner.
In addition to the standard unit cost function, under which
moves have the same cost everywhere, we tested a version
the uses a graduated cost function in which moves along the

upper row are free and the cost goes up by one for each
lower row. We call this cost function ‘life’ because it shares
with everyday living the property that a short direct solu-
tion that can be found quickly (shallow in the search tree)
is relatively expensive while a least-cost solution plan in-
volves many annoying economizing steps. In 8-way move-
ment worlds, diagonal movement costs

√
2 times as much

as movement in any of the cardinal directions. Under both
cost functions, simple analytical lower bounds (ignoring ob-
stacles) are available for the costg(n) and distanced(n) (in
search steps) to the cheapest goal. The obstacle density in-
troduces error to the heuristics and challenge to the prob-
lems.

Figure 4 shows the algorithms’ performances on the hard-
est problems we considered in each of the four classes of
worlds (35% blocked cells in the four-way worlds, 45%
in the eight-way worlds). The x axis represents the sub-
optimality bound used, with 1 being optimal and 3 being
three times the optimal solution cost. Samples were taken at
the same points as in temporal planning. The y axis is the
number of generated nodes relative to an optimal A* search,
averaged over 20 random worlds. Error bars indicate 95%
confidence intervals around the mean, although they are typ-
ically so tight as to be invisible. All algorithms are shown in
the leftmost plot in each row, with the next two plots show-
ing fewer algorithms in greater detail.

Again we see optimistic search perform as if it were
weighted A* running with a higher weight. This is clearest
in the Life four-way graph. Bounded anytime weighted A*
is not nearly as competitive here as it was in temporal plan-
ning. Although both algorithms take the same amount of
time in finding their first answer, bounded anytime weighted
A* spends more time proving the quality of the solution than
optimistic search. The benefit of expanding onf instead of
f ′, so long as the incumbent solution is within the desired
suboptimality bound, is clear.

Dynamically weighted A* and A∗ǫ perform quite poorly,
running off the top of all the plots. In the unit-cost prob-
lems, optimistic search is able to boost weighted A*’s per-
formance enough to match the special duplicate dropping
version (notated ‘wA* dd’ in the plots), actually surpassing
it on the eight-way problems (the duplicate dropping version
is almost identical to the plain weighted A* line). In life-
cost problems, duplicate dropping seems essential. For all
but the largest weights, where A∗ǫbecomes quite competitive,
weighted A* with duplicate dropping outperforms all of the
other algorithms. When comparing optimistic search with
weighted A*, we do see the same pattern of performance
as before: optimistic search provides the performance of
weighted A* running at a higher bound, while returning so-
lutions within a lower bound. This can be desirable, as it is
in unit cost worlds, or it can be detrimental, as it is early on
in life cost worlds.

Traveling Salesman
Following Pearl and Kim (1982) we also tested on a straight-
forward encoding of the traveling salesman problem. Each
node represents a partial tour with children representing the
choice of which city to visit next. We used the minimum



Four-way Grid Pathfinding (Unit cost)
N

o
d

es
 g

en
er

at
ed

 (
re

la
ti

v
e 

to
 A

*) 4

2

0

Sub-optimality Bound

321

dyn wA*
A* eps

BAwA*
wA*

Optimistic
wA* dd

Four-way Grid Pathfinding (Unit cost)

N
o

d
es

 g
en

er
at

ed
 (

re
la

ti
v

e 
to

 A
*)

0.9

0.6

0.3

0.0

Sub-optimality Bound

321

wA*
Optimistic

wA* dd

Eight-way Grid Pathfinding (Unit cost)

N
o

d
es

 g
en

er
at

ed
 (

re
la

ti
v

e 
to

 A
*)

0.9

0.6

0.3

0.0

Sub-optimality Bound

1.41.21.0

wA*
wA* dd

Optimistic

Four-way Grid Pathfinding (Life cost)

N
o

d
es

 g
en

er
at

ed
 (

re
la

ti
v

e 
to

 A
*) 4

2

0

Sub-optimality Bound

321

dyn wA*
A* eps

wA*
BAwA*

Optimistic
wA* dd

Four-way Grid Pathfinding (Life cost)
N

o
d

es
 g

en
er

at
ed

 (
re

la
ti

v
e 

to
 A

*) 4

2

0

Sub-optimality Bound

321

wA*
Optimistic

wA* dd

Eight-way Grid Pathfinding (Life cost)

N
o

d
es

 g
en

er
at

ed
 (

re
la

ti
v

e 
to

 A
*) 4

2

0

Sub-optimality Bound

321

wA*
Optimistic

wA* dd

Figure 4: Performance on grid-world path-finding problems.

spanning tree heuristic forh(n) and the exact depth remain-
ing in the tree ford(n). Again, samples were taken at the
same points as in temporal planning.

Figure 5 shows the algorithms’ performance on two types
of problems: 19 cities placed uniformly in a unit square
(‘usquare’) and 12 cities with distance chosen uniformly
at random between 0.75 and 1.25 (‘Pearl and Kim Hard’).
Both types of problems were symmetric, and results are av-
erages over 40 instances. In both types of problems, the
results are clear: optimistic search improves over weighted
A* and dynamically weighted A* lags behind. Bounded
anytime weighted A* performs better than either A∗

ǫ or dy-
namically weighted A*, and at some points it is even better
than weighted A*, but the focus optimistic search demon-
strates during its cleanup phase proves to be very useful in
obtainingw-admissible solutions quickly.

Branch and bound, a typical, and remarkably effective,
approach for solving traveling salesman problems is absent
from the results presented here. While it works very well for
problems of fixed depth with few or no duplicate states, do-
mains such as traveling salesman, branch and bound strug-
gles in domains with duplicates, such as tiles and grid world,
as well as in domains with infinite search spaces, such as
temporal planning.

Sliding Tile Puzzles
Our last test domain is the venerable sliding tile puzzle.
We tested on the 100 benchmark 15-puzzle instances from
Korf (1985) using the standard Manhattan distance heuris-
tic. Because A* cannot solve these instances within a rea-
sonable memory bound, we normalize the number of nodes
generated against iterative deepening A*. Several of the al-
gorithms we tested ran into the same memory limitation as
A*, so we show results only for weights of 1.075 and above.

Figure 6 shows the results. In the upper image we show
the performance of all the algorithms, while below we show
how the most competitive algorithms performed in this do-
main. Once again, optimistic search appears to be outper-
forming the other algorithms, and once again it appears to
behave as if it were weighted A*, run with a higher weight.
Although we can not provide measurements close to the
optimal solution, we speculate that the algorithms behave
much as they did in Grid-world. These two domains share a
common trait in that they have many paths for reaching iden-
tical states. It is curious that dropping these duplicate states
does not improve the performance ofwA∗ with duplicate
dropping. While this might be a property of the problem,
it seems more likely that it is merely a result of the higher
suboptimality bounds being used here. A similar effect is
present in grid-world, thought at a higher weight.



Traveling Salesman USquare

N
o

d
e 

G
en

er
at

io
n

s 
R

el
at

iv
e 

to
 A

*

0.9

0.6

0.3

0.0

Sub-optimality bound

1.21.11.0

A* eps
dyn wA*

wA*
BAwA*

Optimistic

Pearl and Kim Hard

N
o

d
e 

G
en

er
at

io
n

s 
R

el
at

iv
e 

to
 A

*

0.9

0.6

0.3

0.0

Sub-optimality bound

1.21.11.0

A* eps
dyn wA*

BAwA*
wA*

Optimistic

Figure 5: Performance on traveling salesman problems.

Korf’s 15 Puzzles

N
o

d
e 

G
en

er
at

io
n

s 
R

el
at

iv
e 

to
 I

D
A

*

0.3

0.2

0.1

0.0

Sub-optimality bound

2.01.81.61.41.2

A* eps
dyn wA*

wA* dd
BAwA*

wA*
Optimistic

Korf’s 15 Puzzles

N
o

d
e 

G
en

er
at

io
n

s 
R

el
at

iv
e 

to
 I

D
A

*

0.09

0.06

0.03

0.0

Sub-optimality bound

2.01.81.61.41.2

wA* dd
BAwA*

wA*
Optimistic

Figure 6: Performance on 100 15-puzzle benchmark prob-
lems.

Discussion
When abandoning optimality, there are two basic strategies
for retaining some control of the search: bound the time
taken or bound the quality of the resulting solution. Anytime
algorithms and real-time search are the main approaches

used for finding solutions in a bounded time. For problems
in which a solution with bounded sub-optimality is desir-
able, weighted A* has reigned for decades as the technique
of choice. We have presented a new approach for using an
inadmissible heuristic function in search and shown that it
can deliver a solution within a desired sub-optimality bound
faster than weighted A*.

Unlike previous techniques which expand only those
nodes which are certain to lead to aw-admissible solu-
tion, optimistic search expands nodes which may not meet
this strict criteria, which allows us to find solutions faster
and widens the family of solutions available for search with
bounded suboptimality. We have presented results using
weighted A* as the aggressive search component; however,
the only restriction on the aggressive component is that
it must use an open list. The clean-up phase transforms
an arbitrary inadmissible search into one that can provide
bounded suboptimality. The expectation that the aggressive
search will return a solution within the desired bound need
only be reasonable, not absolute. Ideally, the method would
be responsive to the provided bound, in that an increase in
bound should allow for faster, if more costly, solutions. For
example, if one were to use RTA* (Korf 1990), perhaps the
depth of the look ahead should be proportional to the tight-
ness of the suboptimality bound.

If one were solving many similar problem instances from
the same domain, gathering data on the typical solution qual-
ity as a function of the search aggressiveness, as we saw dis-
played in Figure 1, might provide a basis for choosing the
level of optimism that is appropriate for the desired bound.
The2(bound− 1) + 1 formula we experimented with here
is, judging by Figure 1, quite conservative. However, it al-
ready gives encouraging results. Presumably, a well tuned
optimistic search would have even better performance.

Characterizing domains in which optimistic search per-
forms poorly is difficult. A large part of the performance
is dependant on the initial aggressive search. If this search
performs poorly, the whole search will suffer. Even if the
initial aggressive search returns a solution within the bound
in a short amount of time, it is possible for optimistic search



to struggle with the cleanup phase. It must expand all nodes
whosef value differs from the cost of the solution returned
by the aggressive search by more than a factor of the desired
suboptimality bound. If there are many such nodes, opti-
mistic search will struggle to prove that the answer it has in
hand is admissible.

Conclusions
We have addressed the problem of heuristic search with
bounded suboptimality by introducing a new approach: op-
timistic search. In contrast to the strict approach of weighted
A*, optimistic search couples an aggressively greedy search
that risks expanding nodes outside the bound with a clean-
up phase that proves the resulting solution does lie within the
bound. In experiments across four different types of prob-
lems, we showed that this simple technique is predictable
and effective, yielding results similar to those of weighted
A* running with a looser bound. Guided by its proof ofw-
admissibility, we gained some intuition about why it should
be expected to perform well. Given its simplicity, we believe
optimistic search can find wide use in AI systems.

Acknowledgments
Many thanks to Minh B. Do for the temporal planner used
in these experiments and to Richard Korf for publishing his
sliding tile instances.

References
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search.Artificial Intelligence129(1–2):5–33.

Hansen, E. A., and Zhou, R. 2007. Anytime heuristic
search.Journal of Artificial Intelligence Research28:267–
297.

Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE Transactions of Systems Science and Cyber-
neticsSSC-4(2):100–107.

Haslum, P., and Geffner, H. 2001. Heuristic planning with
time and resources. InProceedings of ECP-01.

Helmert, M., and Röger, G. 2007. How good is almost
perfect? InProceedings of the ICAPS-2007 Workshop on
Heuristics for Domain-independent Planning: Progress,
Ideas, Limitations, Challenges.

Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search.Journal
of Artificial Intelligence Research14:253–302.

Korf, R. E. 1985. Iterative-deepening-A*: An optimal
admissible tree search. InProceedings of IJCAI-85, 1034–
1036.

Korf, R. E. 1990. Real-time heuristic search.Artificial
Intelligence42:189–211.

Likhachev, M.; Gordon, G.; and Thrun, S. 2004. ARA*:
Anytime A* with provable bounds on sub-optimality. In
Proceedings of NIPS 16.

Pearl, J., and Kim, J. H. 1982. Studies in semi-admissible
heuristics.IEEE Transactions on Pattern Analysis and Ma-
chine IntelligencePAMI-4(4):391–399.
Pearl, J. 1984.Heuristics: Intelligent Search Strategies for
Computer Problem Solving. Addison-Wesley.
Pohl, I. 1970. Heuristic search viewed as path finding in a
graph.Artificial Intelligence1:193–204.
Pohl, I. 1973. The avoidance of (relative) catastro-
phe, heuristic competence, genuine dynamic weighting and
computation issues in heuristic problem solving. InPro-
ceedings of IJCAI-73, 12–17.
Zhou, R., and Hansen, E. 2006. Breadth-first heuristic
search.Artificial Intelligence170(4–5):385–408.


