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Abstract in order to dramatically reduce contention and allow theead

to enjoy periods of synchronization-free search. PSDD re-
quires the user to supply an abstraction function that maps
multiple states to a single abstract state, calledlapck.

In contrast to previous work, we focus on general best-first
search. Our algorithm is called Parallel BééBlock-First
(PBNF)?! It extends easily to domains with non-uniform and
non-integer move costs and inadmissible heuristics. Using
PSDD with best-first search in an infinite search space can
give rise to livelock, where threads continue to search but a
goal is never expanded. We will discuss how these conditions
can be avoided in PBNF using a method we balinblocks
as well as our use of formal methods to validate its effec-
tiveness. We study the empirical behavior of PBNF on three
popular search domains: STRIPS planning, grid pathfinding,
and the venerable sliding tile puzzle. We compare against
several previously proposed algorithms, as well as novel im
provements of them, using a dual quad-core Intel machine.
Our results show that PBNF yields faster search than alfothe
algorithms tested.

To harness modern multi-core processors, it is im-
perative to develop parallel versions of fundamen-
tal algorithms. In this paper, we present a general
approach to best-first heuristic search in a shared-
memory setting. Each thread attempts to expand
the most promising open nodes. By using abstrac-
tion to partition the state space, we detect duplicate
states without requiring frequent locking. We al-
low speculative expansions when necessary to keep
threads busy. We identify and fix potential livelock
conditions in our approach, verifying its correct-
ness using temporal logic. In an empirical com-
parison on STRIPS planning, grid pathfinding, and
sliding tile puzzle problems using an 8-core ma-
chine, we show that A* implemented in our frame-
work yields faster search than improved versions of
previous parallel search proposals. Our approach
extends easily to other best-first searches, such as
Anytime weighted A*.

2 Previous Work

1_ In_troduct.lo.n . _ Early work on parallel heuristic search investigated depth
It is widely anticipated that future microprocessors witltn  fipst approachelPowleyet al, 199d. But because it does not
have faster clock rates, but rather more computing cores p§iep a closed list, depth-first search cannot detect duelica
chip. Tasks for which there do not exist effective parallel a states and is thus doomed to failure on domains with many
gorithms will suffer a slowdown relative to total systemper qypiicate states, such as grid pathfinding and some planning
formance. In artificial intelligence, heuristic search i®&B-  domains.
damental and widely-used problem solving framework. In The simplest approach to parallel best-first search is to
this paper, we develop a parallel version of best-first $8arc nave mutual exclusion locks (mutexes) for the open and
a popular method underlying algorithms such as[Wartet  ¢josed lists and require each thread to acquire the lock be-
al.,, 1964. i L fore manipulating the corresponding structure. We ca# thi

In best-first search, two sets of nodes are maintaiopdn  gearch ‘parallel A* (PA*). As we see below, this naive ap-
andclosed Open contains the search frontier: nodes thabroach performs worse than serial A*. Parallel Retracting
have been generated but not yet expanded. In A*, open nodegs (prA*) [Evettet al, 1995 attempts to avoid contention
are sorted by value, the estimated lowest cost for a solution by assigning separate open and closed lists to each thread.
path going through that node. Closed contains all prevousl o' hashing scheme is used to assign nodes to the appropriate
expanded nodes, allowing the search to detect duplicateead when they are generated. (Full PRA* also includes a
states in the search space and avoid expanding them Myltraction scheme that reduces memory use in exchange for
tiple times. One challenge in parallelizing best-first skar increased computation time; we do not use that featuresn thi

is avoiding contention between threads when accessing theyper.) The choice of the hashing function is crucial to the
open and closed lists. We will use a technique catledhllel

structured duplicate detectiafSDD), originally developed !peanut Butter 'N’ (marshmallow) Fluff, also known as a fluffe
by Zhou and Hansen (2007) for parallel breadth-first searchutter, is a well-known children’s sandwich in the USA.



performance of the algorithm, since it determines the waywhen itsc = 0. PSDD only uses a single lock, controlling
that work is distributed. Note that with PRA* each thread manipulation of the abstract graph, and it is only acquingd b
needs a synchronized open list or message queue that otttereads when finding a new fresdlock to search.

threads can add nodes to. While this is less of a bottleneck Zhou and Hansen2007 used PSDD to parallelize
than having a single global, shared open list, we will see bebreadth-first heuristic sear¢Zhou and Hansen, 200bbIn

low that it can still be expensive. We present two variatiohs each thread of the search, only the nodes at the currentisearc
this algorithm, the primary difference being hashing fimtt  depth in amblock are searched. When the currehbtock has
While PRA* uses a simple representation-based node haslmo more nodes at the current depth, it is swapped for a free
ing scheme , APRA* makes use of a state space abstractionblock that does have open nodes at this depth. If no more
We define an abstraction function with the goal of limiting nblocks have nodes at this depth, all threads synchronize and
the number of successors, thus limiting the number of othethen progress to the next depth. An admissible heuristic is
threads’ open lists a given thread will insert nodes into- Ab used to prune nodes below the current solution upper bound.
stract states are distributed evenly among all threadspesio

that open nodes will always be available to each thread. 2.2 Improvements to PSDD

One way of avoiding contention altogether is to allow one g jmplemented by Zhou and Hansen, PSDD uses the heuris-
thread to handle synchronization of the work done by the;c estimate of a node only for pruning; this is only effeetiv
other threads. K-Best-First Search (KBFSJFelneret al, i 5 tight upper bound is already available. To cope with sit-
2009 expands the best nodes at once, each of which can \;ations where a good bound is not available, we have imple-
be handled by a different thread. In our implementation, dnented a novel variation of PSDD that uses iterative deepen-
master thread takes tiebest nodes from open and gives onej,q (|ppSDD) to increase the bound. As we report below, this
to each worker. The workers expand their nodes and the magy, ,5ach is not effective in domains such as grid pathfinding
ter checks the children for duplicates and inserts them int@, 4+ 4o not have a geometrically increasing number of nodes
open. This allows open and closed to be used without lockyithin successive bounds.
ing, but requires the master thread to wait for all workers to A, 5ther drawback of PSDD is that breadth-first search can-

finish their expansions_ before h_anding out new node_s t0 adsy guarantee optimality in domains where operators have
here to a strick best first ordering. The approach will not yigtering costs. In anticipation of these problems, Zhod an
scale if node expansion is fast compared to the number 01

anser{ 2004 suggest two possible extensions to their work,
Processors. best-first search and a speculative best-first layeringoampbr
2.1 Parallel Structured Duplicate Detection that allows for Iarge_r layers in the cases where there are few
) ) ) ) nodes (omblocks) with the sam¢ value. To our knowledge,
The intention of PSDD is to avoid the need to lock on everyye are the first to implement and test these algorithms. Best-
node generation. It l_)UlIds on t_he; idea of structured dugica fjrst PSDD (BFPSDD) useg value layers instead of depth
detection (SDD), which was originally developed for extrn |ayers. This means that all nodes that are expanded in a given
memory searcliZhou and Hansen, 20§4SDD uses amb-  |ayer have the same (lowesf)value. BFPSDD provides a
straction functiona many-to-one mapping from states in the pest-first search order, but may incur excessive synchaeniz
original search space to states in an abstract space. The afyn overhead if there are few nodes in egdayer (as in grid
stract node to which a state is mapped is callethisge An pathfinding or when using a weighted heuristic). To ame-
nblock is the set of nodes in the state space that have the samgrate this, we enforce that at least nodes are expanded
image in the abstract space. We will use the terms ‘abstra(Before abandoning a non-emptbk)ck_ (Zhou and Hansen
state’ and hblock’ interchangeably. The abstraction func- credit Edelkamp and Schrof200d with this idea.) When
tion creates aabstract graptof nodes that are images of the populating the list of freeiblocks for each layer, all of the
nodes in the state space. If two states are successors in thkaS that have nodes with the current laygf'salue are
state space, then their images are successors in the abstrgged or a minimum of: nblocks are added wheteis four
graph. ) ) _ times the number of threads. This allows us to add additional
For efficient duplicate detection, we can equip eablock  ;,hlocks to small layers in order to amortize the cost of syn-
with its own open and closed lists. Note that two nodes reprechronization. The value four gave better performance than
senting the same statewill map to the sameblockb. When  other values tried. In addition, we tried an alternative lieap
we expand, its children can map only s successorsinthe mentation of BFPSDD that used a rangefofalues for each
abstract graph. Thesgblocks are called thduplicate detec-  |ayer. This implementation did not perform as well and we
tion scopeof b because they are the oniyplocks whose open  do not present results for it. With either of these enhance-
and closed lists need to be checked for duplicate states WhQﬁentS' threads may expand nodes Vyitm|ues greater than
expanding nodes it that of the current layer. Because the first solution foungl ma

In parallel SDD (PSDD), the abstract graph is used to finthot be optimal, search continues until all remaining nodes a
nblocks whose duplicate detection scopes are disjoint. @hespruned by the incumbent solution.

nblocks can be searched in parallel without any locking. An

nblock b is considered to bé&ee iff none of its successors :

are being used. Freeblocks are found by explicitly tracking 3 Parallel Best:VBlock-First (PBNF)

o(b), the number ofiblocks among’s successors that are in Ideally, all threads would be busy expandinglocks that
use by another processor. Aublock can only be acquired contain nodes with the lowest values. To achieve this,



1. while there is amblock with open nodes this enhanced algorithm ‘Safe PBNF

2. lock;b — best freenblock; unlock We define thénterference scopef annblockb to be those
3. whileb IS no worse than the best fradlock or nblocks whose duplicate detection scopes overlap Wwih
4. we've done fewer tham expansions In Safe PBNF, whenever a thread checks the heap of free
S. n < best open node ib nblocks, it also ensures that itblock is better than any of
6. if f(n) > f(incumben}, prune allopen nodes i those in its interference scope. If it finds a better one, isfla
7. else ifn is a goal it as ‘hot. Any thread that finds a hetblock in its interfer-
8. if f(n) < f(incumbent ence scope releases itblock in an attempt to free the hot
9. lock;incumbent— »; unlock nblock. For eacmblock b, o, (b) tracks the number of hot
10. else for each childof n , nblocks ind’s interference scope. t,(b) # 0, bis removed
11. insert in the open list of the appropriatélock  from the heap of freeblocks. This ensures that a thread will

not acquire amblock that is preventing a hatblock from
becoming free.

we combine PSDD’s duplicate detection scopes with an idea There are threg cases to Qon5|derwhen attempting to set an
from the Localized A* (LA*) algorithm of Edelkamp and nblock b to hot_W|th an undirected abstract graph: 1) none
SchrodI[200d. LA*, which was designed to improve the of the nblocks in the mterference_ Scope bfare hot, sc
locality of external memory search, maintains sets of node§2" l.)e set to hot; 2) a betteblock in the mterfergnce SCope
that reside on the same memory page. Decisions of whicR' ? IS already hot, sé must not be set to hot; and 3) an
set to process next are made with the help of a heap of se lock v’ that is worse tham is in the interference scope of

ordered by the minimunf value in each set. By maintaining and i§ already hot. In this gaéémust b.e l_m-flagged as hot
a heap of freeblocks ordered on their begtvalue, we can  (UPdatingo;, values appropriately) and in its plases set to

: . ; . hot. (Thisresetis also done if threads ever notice ablmick
gr;g;tl)lg:rgitsetpf]);:(;(éﬁ?llirr);r?l_l’lgleg)arch. We call this alganit worse than themselves.) Directed graphs have two additiona

. cases: 4) amblock &’ hasb in its interference scopé/ is
In PBNF, threads use the heap of frelglocks to acquire hot and’ is worse tharb, then un-flagy’ as hot and sel

the freenblock with the best open node. A thread will search . , L >
its acquirednblock as long as it contains nodes that are bet-:]oothg:; d5b? gnggtlfe (iktga?bastf\éﬂ '(;‘Z 'Sé?r;(;;;etgcﬁostc?gg; e;j
ter than those of theblock at the front of the heap. If the ' '

. ot. This scheme ensures that there are never twolllotks
acquirednblock becomes worse than the best free one, th%ﬂerfering with one another and that thblock that is set to

thread will attempt to release its curreritiock and acquire iot is the bestiblock in its interference scope. As we verify

the better one. There is no layer synchronization, so thie fir elow, this approach guarantees the property thatitdack
solution found may be suboptimal and search must contlnuls flagged as hot it will eventually become free. Full pseudo-

until all open nodes havg values worse than the incumbent. A : .
Figure 1 shows pseudo-code for the algorithm. code for Safe PBNF is given in Appendix A.
Because PBNF is only approximately best-first, we can in-a Formal Model
troduce optimizations to reduce overhead. It is possitdé th
annblock has only a small number of nodes that are bette

}Ohan the best freablock, so vl;/e a\;md excessive Sw't.Ch'nlg_TLA+ [Lamport, 2002. The model describes an abstract ver-
y requiring a minimum nNUMDEr of €xpansions. LUr IMpIe-g;,, o the homblock procedure in which the abstract graph
mentation also attempts to reduce the time a thread is forcq connected in a ring (eaokblock is connected to two ad-
to Waglon E'Ct’ﬁk bt%usmlg ther y__!c oclk f;mt'on ;/vbhenever_ jacentnblocks). Additionally we modelled the hatolocks
poss: e.k ‘a erd_ ar} S eepmgf| 'Ia ocT;]:_anr}lo N a%qu'rgdhethod using a directed abstract graph with eigblocks.
trylockimme |g.te y returns %luri‘ if r']s"‘ll O‘liv.s abt read The search procedure itself is not modeled, since this is not
e o . EGUId 10 prove e desied proprts. DTG asearh ac
lative’ expansiorrjls that would not have been perforng in fion in the model_, a threaq can opt|onally set arjock that_

) : dis interfering with to hot if that:block is not already hot, if
serial best-first search. nothing in its interference scope is hot and if it is not in the
. interference scope of another hdilock. These cases corre-
3.1 Livelock spond to the five cases mentioned above, and the final one is
The greedy free-for-all order in which PBNF threads acquireonly required if the abstract graph is directed. After skarc
freenblocks can lead to livelock in domains with infinite state ing, a thread will release itsblock and try to acquire a new
spaces. Because threads can always acquirenidacks  freenblock.
without waiting for all open nodes in a layer to be expanded, While this model is a greatly abstracted version of the Safe
it is possible that thesblock containing the goal will never PBNF algorithm, it is actually able to show a stronger prop-
become free. This is because we have no assurance that alty. Since the model does not take into accountftlalues
nblocks in its duplicate detection scope will ever be unusedf nodes within eaclublock, a thread has the ability to set
at the same time. To fix this, we have developed a methodnynblock it interferes with to hot (assuming that no hot in-
called ‘hotnblocks’ where threads altruistically release their terference is created), rather than being restricted todfo
nblock if they are interfering with a bettetblock. We call  nblocks. Using this model, we hope to prove that aiWock

Figure 1: A sketch of basic PBNF search, showing locking.

To help ensure that the hablock method works properly,
{ve have constructed a formal model using the temporal logic



that is set to hot (regardless of thblock’s bestf value) will  to scale reasonably as threads are added, the lack of a tight
eventually be added to the heap of frelelocks. We have upper bound hurts its performance. We have implemented
used the TLC bounded model check¥u et al, 1999 to  the IDPSDD algorithm, but the results are not shown on the
show that livelock arises in the plain (unsafe) algorithrd an grid pathfinding domains. The non-geometric growth in the
that the hotblock method is effective at fixing the livelock number of states when increasing the cost bound leads to very
for all cases of up to 12blocks and three threads on the ring poor performance with iterative deepening.

abstraction and 8 nblocks and three threads on the directed The upper left plot in Figure 2 shows our novel APRA¥*,

abstraction. BFPSDD, PBNF and Safe PBNF algorithms on the same
unit-cost four-way problems. PBNF and Safe PBNF are su-
4 Empirical Evaluation perior to any of the other algorithms, with steadily deciregs

solution times as threads are added and an average speed-up
We have implemented and tested the parallel heuristicseargver serial A* of greater than 4x when using eight threads.
algorithms discussed above on three different benchmark darhe checking of interference scopes in Safe PBNF adds a
mains: grid pathfinding, the sliding tile puzzle, and STRIPSsmall time overhead. The BFPSDD algorithm also gives good
planning. The algorithms were programmed in C++ usingresults on this domain, surpassing the speed of APRA* after
the POSIX threading library and run on dual quad-core In3 threads. APRA*'s performance gets gradually worse for
tel Xeon E5320 1.86GHz processors with 16Gb RAM, ex-more than four threads.
cept for the planning results, which were written in C andfFour-way Life Cost: Moves in the life cost model have a
run on dual quad-core Intel Xeon X5450 3.0GHz processorgost of the row number of the state where the move was
limited to roughly 2GB of RAM. All open lists and free lists performed—moves at the top of the grid are free, moves at
are binary heaps, and closed lists are hash tables. PRA* anlfle bottom cost 1200. This differentiates between the short
APRA* use queues for incoming nodes, and a hash table igst and cheapest paths. The bottom left plot in Figure 2 shows
used to detect duplicates in both open and closed. For gridgese results. PBNF and Safe PBNF have the best perfor-
and sliding tiles, we used the jemalloc librdevans, 2006 mance for two threads and beyond. The BFPSDD algorithm
a special multi-thread-aware malloc implementationgadt has the next best performance, following the same general
of the standard glibc (version 2.7) malloc, because we havgend as PBNF. The APRA* algorithm does not seem to im-
performed experiments demonstrating that the latter scaleyrove its performance beyond four threads.
poorly above 6 threads. We configured jemalloc to use 3Zight-way Unit Cost: In our eight-way movement path plan-
memory arenas per CPU. In planning, a custom memory marhing problems, horizontal and vertical moves have cost one,
ager was used which is also thread_—aware ar_ld uses a memafyt diagonal movements cos2. These real-valued costs
pool for each thread. For the following experiments we shownake the domain different from the previous two path plan-
the performance of each algorithm with its best parametersening domains. The top middle panel shows that PBNF and
tings (e.g., minimum number of expansions and abstractiokzfe PBNF give the best performance. While APRA* is ini-

granularity) which we determined by experimentation. tially better than BFPSDD, it does not scale and is slowet tha
. - BFPSDD at 6 or more threads.
4.1 Grid Pathfinding Eight-way Life Cost: This model combines the eight-way

We tested on grids 2000 cells wide by 1200 cells high, withmovement and the life cost models; it is the most difficult
the start in the lower left and the goal in the lower right.I€el path planning domain presented in this paper. The bottom
are blocked with probability 0.35. We test two cost modelsmiddle panel shows that the two PBNF variants give the best
(discussed below) and both four-way and eight-way moveperformance when using multiple threads. BFPSDD gives an
ment. The abstraction function we used maps blocks of adeverall performance profile similar to PBNF, but consident
jacent cells to the same abstract state, forming a coarser ablower. The APRA* algorithm gives slightly faster solution
stract grid overlaid on the original space. For this domainspeeds then BFPSDD, but it fails to scale after 5 threads.

we are able to tune the size of the abstraction and our results L .

show the best abstraction size for each algorithm where it i4-2 ~ Sliding Tile Puzzle

relevant. SafePBNF, PBNF, BFPSDD use 64 minimum ex-The sliding tile puzzle is a common domain for benchmarking
pansions. They and APRA* use 6400 nblocks. PSDD useheuristic search algorithms. For these results, we usg-fort
625 nblocks. Each plotincludes a horizontal line représgnt three of the easiest Korf 15-puzzle instances (ones that wer
the performance of a serial A* search. solvable by A* in 15GB of memory) because they are small
Four-way Unit Cost: In the unit cost model, each move has enough to fit into memory, but are difficult enough to differ-
the same cost. The upper right plot in Figure 2 shows the peentiate algorithmic performance.

formance of previously proposed algorithms for paralledtbe We found that a smaller abstraction which only considers
first search on unit-cost four-way movement path planninghe position of the blank and 1-tile did not produce a suffitie
problems. The y-axis represents elapsed wall-clock tinne. E number of abstract states for PBNF, IDPSDD, and APRA* to
ror bars indicate 95% confidence intervals on the mean anscale as threads were added, so we used one which takes into
algorithms in the legend are ordered on their average perfoaccount the blank, the 1-tile, and the 2-tile. This is beeaus
mance. The figure in the upper right, shows only algorithmgshe smaller abstraction does not provide enoughsitdecks

that are above the A* line, while the figure in the upper leftat many points in the search, and threads are forced to abnten
shows the more competitive algorithms. While PSDD seeméeavily for the free list. BFPSDD, however, did better with
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Figure 2: Results on grid path planning and the sliding filezzle.

the smaller abstraction, presumably because it did nofreequ to perform pruning in the breadth-first heuristic searche Th
switching betweemblocks as often because of the narrowly best result on each problem is marked in bold. PSDD with
defined layer values. In addition, BFPSDD uses 64 minimunoptimal pruning performed better than PBNF by 3% on one
expansions, while PBNF and Safe PBNF only use 32. problem. On average at seven threads, Safe PBNF takes 66%
The bottom right panel in Figure 2 shows the results forof the time taken by PSDD. Interestingly, while plain PBNF
BFPSDD, IDPSDD, APRA*, PBNF and Safe PBNF. The two was often a little faster than the safe version, it faileddives
variants of PBNF show the best performance consistentijfwo of the problems within our time bound. This is most
The APRA* algorithm has very unstable performance, butlikely due to livelock, but could also simply be because the
often performs better than A*. We found that APRA* had hotnblocks fix allows Safe PNBF to follow a different search
a more difficult time solving some of the larger puzzle in- order than PBNF. BFPSDD at 7 threads performs better on
stances, consuming much more memory at higher numbers efferage than PSDD, but does not always outperform it. It
threads. BFPSDD’s performance was poor, but it improvesnly gives better speed than either variant of PBNF in the
consistently with the number of threads added and evegtuallone case where PSDD also does so, aside from the cases
gets faster than A*. The IDPSDD algorithm performed muchwhere PBNF runs out of memory. We see APRA* follow-
worse than the other algorithms on average, but it exhilsited ing the same trend as we have seen elsewhere, improving at
smooth performance increase as more threads were added.some points, but doing so erratically and often getting wors
as threads are added. It also suffered from a large memory
4.3 STRIPS Planning footprint, probably because nodes are not checked aghst t
closed list immediately, but only once they are transferred

In addition to the path planning and sliding tiles domalns,lgliom the queue to the open list.

the algorithms were embedded into a domain-independe
optimal sequential STRIPS planner using regression and the The right-most column shows the time that was taken by
max-pair admissible heuristic of Haslum and Geffigd0d.  the PBNF and PSDD algorithms to generate the abstraction
Figure 3 presents the results for APRA*, PSDD, BFPSDD,function. The abstraction is generated dynamically on a per
PBNF, and serial A* (for comparison.) A value of "M’ indi- problem basis and, following Zhou and Hang2007, this
cates that the program ran out of memory. The PSDD algotime was not taken into account in the solution times pre-
rithm was given the optimal solution cost as an upper boundented for these algorithms. The abstraction functioniis ge
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© <~ © fl' . ~ ; o Some of our results show that, even for a single thread,
o 8 & 5 2 s 3 ) S % PBNF can outperform a serial A* search (see Figure 3). This
§ 8 $ § T &€ § 8§ € § can be attributed to the speculative behavior of the PBNF
£ 8 8 5 8 ¢ £ 8 5 5 algorithm. Since PBNF uses a minimum number of expan-
A* 1 | 23 5.2 118 131 336 199 ™M M M sions before testing if it should switch to ablock with bet-
. 1| 15 71 60 96 213 150 301 322 528 ter f values, it will search some sub-optimal nodes that A*
é 31076 55 51 49 269 112 144 103 M would not search. In order to get optimal solutions, PBNF
o 5112 38 41 66 241 61 M M M gacts as an anytime algorithm; it stores incumbent solutions
71084 37 28 49 169 40 M M M gnd prunes until it can prove that it has an optimal solution.
w 1) 13063 40 68 15/ 186 M M 230 Zhoy and Hansen show that this approach has the ability to
£3/072 38 16 34 56 64 M M perform better than AfHansen and Zhou, 20DBecause of
o 51058 27 11 21 35 44 M M upper bound pruning. We are currently exploring the use of
y 71053 26 86 17 27 36 M M 48 ighted heuristic f . ith the PBNF algorith o
ST 12 62 40 77 150 127 156 154 235 & Weighted heuristic function with the algorithm to in
D 3064 27 17 24 54 47 63 60 98 crease the amount of speculation. In our prel|n_1|nary tests
© 5|05 22 11 17 34 38 43 39 64 With a PBNF variant modeled after Anytime weighted A*
$ 7]062 20 92 14 27 37 35 31 52 [Hansen and Zhou, 20Di@sing a weight of 1.2, we were able
A 1| 21 78 42 62 152 131 167 152 243 tosolve some 15-puzzlestwice as fast as standard Safe PBNF
53|11 43 18 24 59 57 67 62 101 andevensolve some for which PBNF ran outof memory. The
@ 51079 39 12 20 41 48 48 43 71 yseof PBNF asaframework for additional best-first hewristi
w 7071 34 10 14 32 45 43 35 59 gearchesis an exciting area for future work.
Q3|07 36 29 24 63 54 73 63 172
a . : i
2 5] 068 30 22 17 43 46 58 42 121 6 Conclusion )
71064 29 19 13 37 44 55 34 106 We have presented Parallel BeéBlock-First, a parallel
Abst.1| 042 79 08 10 0.7 17 36 9.7 1.1 best-first heuristic search algorithm that combines thdidup

cate detection scope idea from PSDD with the heap of sets
and speculative expansion ideas from LA*. PBNF approx-

jmates a best-first search ordering while trying to keep all

erated by greedily searching in the space of all possible a ; o
straction functiongZhou and Hansen, 200baBecause the theads busy. To perform PBNF safely in parallel, it is neces

algorithm needs to evaluate one candidate abstraction fary to aV%Iddet‘ﬁr(;ilgll I|vlglocktﬁogd|tlgns. I;or th('js Ipuripok
each of the unselected state variables, it can be trivialiglp we presented a ock’ method and used model check-

. : . : : ing to verify its correctness. In an empirical evaluation on
I;I(;g?g :gls?raa\gtri]gnrgultlple threads working on different ean STRIPS planning, grid pathfinding, and the sliding tile puz-

zle, we found that the PBNF algorithm is most often the best
: : : : among those we tested across a wide variety of domains. It
5 Discussion and Possible Extensions is also easy to use the PBNF framework to implement addi-

We have shown that previously proposed algorithms for partional best-first search algorithms, including weightedatl
allel best-first search can be much slower than running A* seanytime heuristic search.

rially. We presented a novel hashing function for PRA* that
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A Pseudo-code for Safe PBNF

search(initial node)

1. insert initial node into open

2. for eacty € processorsthreadsearct)
3. while threads are still runningyait()
4. returnincumbent

threadsearch()
1.b «— NULL
2. while not done

3. b+ nextnblockb)

4, exp— 0

5.  while—shouldswitckp, exp)

6. n < best open node it

7. if n > incumbenthen prunex

8. if n is a goal then

9. if n < incumbenthen

10. lock;incumbent— n; unlock
11. else ifn is not a duplicate then
12. children«— expandn)

13. for eacfchild € children

14. insertchild into open of appropriate nblock
15. exp«— exp+1

shouldswitch(b, exp)

. if bis empty then return true

. if exp< min-expansionthen return false

.exp—0

. if bestfreelist) < b or bestinterferenceScofe)) < b then
if bestinterferenceScofg)) < bestfreelist) then

sethotbestinterferenceScop#)))

return true

lock

. for eachy’ € interferenceScorjé)

©ONOUTAWNE

1. lock
2. if =hot(b) ando(b) > 0
and—3i € interferenceScop®) : i < b A hot(:) then

4 hot(b) « true

5. for eachn’ € interferenceScoié)
6. if hot(n’) thensetcoldn')

7 if o(n’) = 0andoy(n’) =0

8 andn’ is not empty then

9. freelist— freelist\ {n'}
10. op(n') «—op(n') +1

11. unlock

setcold(b)

1. hot(b) — false
2. for eachn’ € interferenceScopg)

3. op(n) —opn')—1

4. ifo(n') =0ando,(n') = 0andn’ is not empty then
5. if hot(n”) then

6. setcoldn’)

7. freelist— freelistu {n'}

8. wake all sleeping threads

release(b)

1. for eachy’ € interferenceScopg)
o) —oa®) -1
if o(b') = 0 andoy, (b') = 0 andd’ is not empty then
if hot(d') then
setcold?d’)
freelist— freelistu {v'}
wake all sleeping threads

Noghr~wN

nextnblock(b)

1. if b has no open nodes bmwas just set to hot then lock
2. else iftrylock() fails then returrb

3. if b £ NULL then

4.  bestScope- bestinterferenceScogé))

5. if b < bestScopandb < bestfreelist) then
6. unlock

7. returnb

8. releaséb)

9. if (VI € nblocks : o(I) = 0) andfreelistis empty then
10. done« true

11. wake all sleeping threads

12. whilefreelistis empty and-done sleep

13. if donethenn « NULL

14. else

15. n < bestfreelist)

16. foreach’ € interferenceScope)

17. o) —oa®)+1

18. unlock

19. returmn



