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Origin: developing a planner for IPC-2008

IPC-2008 requirement: find best possible plan within 30 minutes.
This suggested an anytime approach:
o Find a solution as quickly as possible
(any solution is better than none).
~ greedy best-first search

@ While there is still time, try to improve the solution.
~ weighted A* with decreasing weights

Interesting finding:

A series of independent runs of weighted A* seemed to perform
better than one continued search.




Continued WA*

Basic algorithm:

@ Set weight and bound
bound = cost of best known solution, initially oo

@ Update open list w. r.t. weight if necessary
© Conduct WA* search, using bound for pruning

@ Upon new best solution: report solution, goto 1.

Variants used in literature:
@ Anytime A* (Zhou & Hansen 2001, 2004)
e ARA* (Likhachev et al. 2003)



Example: Blocksworld task 11-2

Plan lengths found over time:
o GBFS + iterated WA*: 72 50 46 36 34
@ GBFS + continued WA*: 72 68 46 38 34

Plan qualities (best length / current length):
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The problem: low-h bias
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The problem: low-h bias

greedy solution h=38 h=4.0
optimal solution | |
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The problem: low-h bias

h-values
less accurate the further from goal

less accurate on the left
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The problem: low-h bias

f'-values, w =2
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The problem: low-h bias

f'-values, w =2
x expanded states
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The problem: low-h bias

f'-values, w =2
x expanded states
(O states in open list

MK
X X

8.8 12.0
X

9.2 8.2 7.8 1 9.0 |10.0
pi

10.2| 7.6 7.6 7.8 7.0]8.0
X

10.2| 8.6 7.0 8.8 7.0 g2
X

9.6 gl 9.8 | 8.0 8.0
X




The problem: low-h bias

f'-values, w =2
x expanded states
(O states in open list

must expand for optimal path
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The problem: low-h bias

f'-values, w =2 .
must expand for optimal path

but many open states have lower f'-value
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The problem: low-h bias

f'-values, w = 1.5 (reduced weight)
~> search less greedy
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The problem: low-h bias

f'-values, w = 1.5 (reduced weight)
~> search less greedy
but effect still persists
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The problem: low-h bias

f'-values, w = 1.5 (reduced weight)
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The problem: low-h bias

f'-values, w = 1.5 (reduced weight)
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The problem: low-h bias

f'-values, w = 1.5 (reduced weight)
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The problem: low-h bias

f'-values, w = 1.5 (reduced weight)
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The problem: low-h bias

f'-values, w = 1.5 (reduced weight)
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The problem: low-h bias

10 expanded states
29 generated states
between finding gl and expanding right of S
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Restarted search

starting from scratch
w=15
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Restarted search

2 expanded state
5 generated states
before expanding right of S to find optimal path
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Continued search may be biased due to early mistakes:
@ Greedy search: suboptimal area of search space
@ Open list: many open states around previous goal

@ Low h-value makes them look attractive
= Biased search explores suboptimal area in depth

Restarts overcome early mistakes of greedy search



Related Work

Restarts used with randomization in CSPs:
@ Local search (Selman et al. 1992)
@ Systematic search (Gomes et al. 1998)

@ Purpose: undo bad random decisions (parameter choices)
~> escape barren areas of search space

We propose restarts for a deterministic, A*-type algorithm
@ Purpose: undo bad greedy decisions (low-h bias)

@ Motivation similar to that of limited-discrepancy search
(Harvey & Ginsberg 1995)



Restarting weighted A*(RWA*)

RWA*: forget open list between iterations:
@ Set weight and bound
@ Clear open list, (re-)start from initial state
© Conduct WA* search, using bound for pruning

@ Upon new best solution: report solution, goto 1.

Re-use previous search effort by
@ Not re-calculating h-values of states seen previously

@ Remembering best known paths to states

Extra cost: re-expansions. But expansions often cheap compared
to evaluations (planning: 20% vs. 80%)



Empirical Evaluation

Implemented in Fast Downward (Helmert 2006)

Replaced greedy BFS with anytime algorithms:
o RWA*
o Anytime A*
o ARA*
o Beam-stack search
o Window A*

Planner-specific search enhancements used

All 1612 classical tasks, 31 domains of previous IPCs

@ Also: 3 other search benchmark domains
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WA* methods much better than others; RWA* best
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RWA* > other WA* methods in 40% of domains, rest on par
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Beam-stack search, Window A* > WA* in some domains,
but much worse in many other domains
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Restarts change beginning of plan rather than end (Gripper #20):

ARA*, Anytime A* RWA*
Plan length 165 163 161 165 165 125
Change index — 153 145 — 153 1



Robotic arm
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RWA* > other WA* methods.
Beam-stack search and Window A* very good here.




Gridworld

1 -
0.95 |
09 |
0.85 |
L RWA* —— |
0.8 ARA* —
Anytime A* ——
0.75 Window A* ——— ]
Beam
07 1 1 2l " " " " M| "
0.1 1 10 100

Time

RWA* = other weight-decreasing WA* methods.
Beam-stack search, Window A*: worse anytime performance.




Sliding-tile puzzle
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RWA* = other weight-decreasing WA* methods.
Window A* very good here.




RWA* dominates other methods in planning
@ Restarts useful if greedy search is highly suboptimal

o E.g. if heuristics vary strongly locally

On par in other domains

o RWA* always > other WA* methods
~> even if restarts do not help, they do not hurt

o RWA* always performs fairly well ~» robust,
while beam-stack search, Window A* vary strongly

Undoing search effort can be worthwhile in anytime algorithms



Thank you!

Questions?



