The Joy of Forgetting:

Faster Anytime Search via Restarting

Silvia Richter
Griffith University & NICTA, Australia

Jordan T. Thayer & Wheeler Ruml

University of New Hampshire, US

July 10, 2009

Origin: developing a planner for IPC-2008

IPC-2008 requirement: find best possible plan within 30 minutes.
This suggested an anytime approach:
o Find a solution as quickly as possible
(any solution is better than none).
~ greedy best-first search

@ While there is still time, try to improve the solution.
~ weighted A* with decreasing weights

Interesting finding:

A series of independent runs of weighted A* seemed to perform
better than one continued search.

Continued WA*

Basic algorithm:

@ Set weight and bound
bound = cost of best known solution, initially oo

@ Update open list w. r.t. weight if necessary
© Conduct WA* search, using bound for pruning

@ Upon new best solution: report solution, goto 1.

Variants used in literature:
@ Anytime A* (Zhou & Hansen 2001, 2004)
e ARA* (Likhachev et al. 2003)

Example: Blocksworld task 11-2

Plan lengths found over time:
o GBFS + iterated WA*: 72 50 46 36 34
@ GBFS + continued WA*: 72 68 46 38 34

Plan qualities (best length / current length):

L T T 34

0.9 4 36
=3 H
5 08| 5 1 .
K2 : s
2 . g
s 07 : 146 &
5 : c
S 06 : {50 &
5] 6 F :]
o :

05 [terated WA

0.4 L clontinued WA*I --------- . 92

o1 1 10

Time (s)

The problem: low-h bias

S

g2

gl

The problem: low-h bias

g2

gl

The problem: low-h bias

greedy solution h=38 h=4.0
optimal solution | |

g2

The problem: low-h bias

h-values
less accurate the further from goal

less accurate on the left

38/38|38| S |4.0]4.0

26(26|26]|26(19]20]20

26(18|18(1818(19|1.0]1.0

26 (18|10|1/0|1.0(19|1.0]| g2

1.8(10|gl |1.0[19]|1.0] 1.0

The problem: low-h bias

f'-values, w =2

106{9.6 (86| S |9.0

9.8 |8 12.0

9.2 (8.2 |8}2|8.2(7.8]09.0/10.0

10.2| 76 |76 |76 (7.6 |7.8|7.0|8.0

10.2| 86 | 7.0|7/0|7.0(8.8|7.0]| g2

96 (8.0| gl |80]9.8|8.0][8.0

The problem: low-h bias

f'-values, w =2
x expanded states

10.6| 9.6 | 8.6 9.0

xWun

9.8 | 8.8 12.0

9.2 (8.2 |8.2|8.2(7.8]09.0/10.0

10276 |76 |76 (7.6 |7.8|7.0|8.0

10.2| 86 | 7.0|7.0|7.0(88|7.0]| g2
X

96 (8.0| gl |80]|9.8|8.0[8.0

The problem: low-h bias

f'-values, w =2
x expanded states
(O states in open list

MK
X X

8.8 12.0
X

9.2 8.2 7.8 1 9.0 |10.0
pi

10.2| 7.6 7.6 7.8 7.0]8.0
X

10.2| 8.6 7.0 8.8 7.0 g2
X

9.6 gl 9.8 | 8.0 8.0
X

The problem: low-h bias

f'-values, w =2
x expanded states
(O states in open list

must expand for optimal path

59| 8
X X

8.8 12.0
X

9.2 8.2 7.8 1 9.0 |10.0
pi

10.2| 7.6 7.6 7.8 7.0]8.0
X

10.2| 8.6 7.0 8.8 7.0 g2
X

9.6 gl 9.8 | 8.0 8.0
X

The problem: low-h bias

f'-values, w =2 .
must expand for optimal path

but many open states have lower f'-value

X X

8.8 12.0
bid

9.2 8.2 7.8 1 9.0 |10.0
X

10.2| 7.6 7.6 7.8 7.0]8.0
X

10.2| 8.6 7.0 8.8 7.0 g2
X

9.6 gl 9.8 | 8.0 8.0
X

The problem: low-h bias

f'-values, w = 1.5 (reduced weight)
~> search less greedy

OOFE
X X
7.1 10.5
X
7.9 6.9 6.85| 8.0 | 9.0
X
8.9 (6.7 6.7 6.85 6.5 7.5
X
89|77 6.5 7.85 6.5 | g2
X
8.7 @ gl @8.85 75|75
X

The problem: low-h bias

f'-values, w = 1.5 (reduced weight)
~> search less greedy
but effect still persists

OOLIE
X X
7.1 10.5
pi
7.9 6.9 6.85(8.0 | 9.0
pi
8.9 (6.7 6.7 6.85 6.5 (7.5
Pl
8.9 (7.7 6.5 7.85 6.5 | g2
pi
8.7 @ gl @8.85 75|75
X

The problem: low-h bias

f'-values, w = 1.5 (reduced weight)

(8.7)(1.7) .

xWun

7.1 10.5
pi
6.9 | 6.9 9.0
X pi
8.9 6.7 | 6.7 | 6.7 6.5 (7.5
X Pl X
8.9 @ 6.5 6.5 6.5 6.5 | g2
X pi X
@ gl @8.85 75|75
X

The problem: low-h bias

f'-values, w = 1.5 (reduced weight)

(8.7)(1.7) .

xWun

7.1 10.5
pi
6.9 | 6.9 9.0
X pi
8.9 6.7 | 6.7 | 6.7 6.5 (7.5
X Pl X
8.9 @ 6.5 6.5 6.5 6.5 | g2
X pi X
@ gl @8.85 75|75
X

The problem: low-h bias

f'-values, w = 1.5 (reduced weight)

Ty
X

xWun

7.1 10.5
X
6.9 169]6.9 6.85 9.0
X X X X
6.7 1 6.7 6.7 6.7 6.85 7.5
X X X X X
OORRRTOE
X X X
@ gl @8.85 75|75
X

The problem: low-h bias

f'-values, w = 1.5 (reduced weight)

Ty
X

xWun

7.1 10.5
X
6.9 169]6.9 6.85 9.0
X X X X
6.7 1 6.7 6.7 6.7 6.85 7.5
X X X X X
OORRRTOE
X X X
@ gl @8.85 75|75
X

The problem: low-h bias

f'-values, w = 1.5 (reduced weight)

X
6.9 | 6.9

X X

6.7 | 6.7
X X

6.5 | 6.5
X

X
(o) ¢
X

66
B2 @

The problem: low-h bias

10 expanded states
29 generated states
between finding gl and expanding right of S

X
6.9 | 6.9

X X

6.7 | 6.7
X X

6.5 | 6.5
X

X
(o) ¢
X

66
B2 @

Restarted search

starting from scratch
w=15

Ty
X

xwun

gl

Restarted search

2 expanded state
5 generated states
before expanding right of S to find optimal path

@)s7] s (09)
@ B

gl

Continued search may be biased due to early mistakes:
@ Greedy search: suboptimal area of search space
@ Open list: many open states around previous goal

@ Low h-value makes them look attractive
= Biased search explores suboptimal area in depth

Restarts overcome early mistakes of greedy search

Related Work

Restarts used with randomization in CSPs:
@ Local search (Selman et al. 1992)
@ Systematic search (Gomes et al. 1998)

@ Purpose: undo bad random decisions (parameter choices)
~> escape barren areas of search space

We propose restarts for a deterministic, A*-type algorithm
@ Purpose: undo bad greedy decisions (low-h bias)

@ Motivation similar to that of limited-discrepancy search
(Harvey & Ginsberg 1995)

Restarting weighted A*(RWA*)

RWA*: forget open list between iterations:
@ Set weight and bound
@ Clear open list, (re-)start from initial state
© Conduct WA* search, using bound for pruning

@ Upon new best solution: report solution, goto 1.

Re-use previous search effort by
@ Not re-calculating h-values of states seen previously

@ Remembering best known paths to states

Extra cost: re-expansions. But expansions often cheap compared
to evaluations (planning: 20% vs. 80%)

Empirical Evaluation

Implemented in Fast Downward (Helmert 2006)

Replaced greedy BFS with anytime algorithms:
o RWA*
o Anytime A*
o ARA*
o Beam-stack search
o Window A*

Planner-specific search enhancements used

All 1612 classical tasks, 31 domains of previous IPCs

@ Also: 3 other search benchmark domains

2
T
=)
o
o
(0]
R
g

S RWA* ——

z ARA* ——

Anytime A* ——

Beam
0.4 . AN L X N . Window A* ——
0.1 1 10 100 1000

Time

WA* methods much better than others; RWA* best

0.9
0.88 -
0.86
0.84 -
0.82 -

0.8
0.78

RWA*

0.76 |- Anytime A* wg
0.74 1 Aﬁﬁﬁqe A*
10 100 1000

Time

Normalised Quality

0.72

RWA* > other WA* methods in 40% of domains, rest on par

T T T T T
09
2> 08}
E
o 07
k5
K%} 0.6 [
g
g 05 F
RWA*
0.4 Beam —— |
Window A*
03 1 1
0.1 1 10 100 1000
Time

Beam-stack search, Window A* > WA* in some domains,
but much worse in many other domains

RWA* mmm

Anytime A* WS
ARA* WS

Beam

Window A* s

°

q>) 100 T T T T

2

5 80 .
@

= 60 R
>

& 40+ -
4

£ 20 .
[

O\O

0.7 0.8 0.9 1
Normalised Quality

Restarts change beginning of plan rather than end (Gripper #20):

ARA*, Anytime A* RWA*
Plan length 165 163 161 165 165 125
Change index — 153 145 — 153 1

Robotic arm

098 | ——

> 0.96 | E
S 094} e
o
g 092
R
© 0.9
E RWA* —
S 088 ARA* —— -
Anytime A* ——
0.86 Window A* —— ~
Beam stack
0.84 W el el S
1 10 100 1000

Time

RWA* > other WA* methods.
Beam-stack search and Window A* very good here.

Gridworld

1 -
0.95 |
09 |
0.85 |
L RWA* —— |
0.8 ARA* —
Anytime A* ——
0.75 Window A* ———]
Beam
07 1 1 2l " " " " M| "
0.1 1 10 100

Time

RWA* = other weight-decreasing WA* methods.
Beam-stack search, Window A*: worse anytime performance.

Sliding-tile puzzle

1
0.95 |
09 |
0.85
RWA* ———
ARA* —
0.8 [Anytime A* ——
Window A* ——
Beam
0.75]
0.1 1 10 100

Time

RWA* = other weight-decreasing WA* methods.
Window A* very good here.

RWA* dominates other methods in planning
@ Restarts useful if greedy search is highly suboptimal

o E.g. if heuristics vary strongly locally

On par in other domains

o RWA* always > other WA* methods
~> even if restarts do not help, they do not hurt

o RWA* always performs fairly well ~» robust,
while beam-stack search, Window A* vary strongly

Undoing search effort can be worthwhile in anytime algorithms

Thank you!

Questions?

