The Joy of Forgetting: Faster Anytime Search via Restarting

Silvia Richter Griffith University & NICTA, Australia

Jordan T. Thayer & Wheeler Ruml University of New Hampshire, US

July 10, 2009

Origin: developing a planner for IPC-2008

IPC-2008 requirement: find best possible plan within 30 minutes. This suggested an anytime approach:

- Find a solution as quickly as possible (any solution is better than none).
 - → greedy best-first search
- While there is still time, try to improve the solution.
 - → weighted A* with decreasing weights

Interesting finding:

A series of independent runs of weighted A* seemed to perform better than one continued search.

Continued WA*

Basic algorithm:

- $\begin{tabular}{ll} \textbf{9} & \textbf{Set weight and bound} \\ & \textbf{bound} & = \textbf{cost of best known solution, initially } \infty \\ \end{tabular}$
- ② Update open list w.r.t. weight if necessary
- Conduct WA* search, using bound for pruning
- Upon new best solution: report solution, goto 1.

Variants used in literature:

- Anytime A* (Zhou & Hansen 2001, 2004)
- ARA* (Likhachev et al. 2003)

Example: Blocksworld task 11-2

Plan lengths found over time:

GBFS + iterated WA*:	72	50	46	36	34
GBFS + continued WA*:	72	68	46	38	34

Plan qualities (best length / current length):

		S	
			g2
	g1		

h-values less accurate the further from goal less accurate on the left

		3.8	3.8	3.8	S	4.0	4.0
		3.4	3.4				3.0
	2.6	2.6	2.6	2.6	1.9	2.0	2.0
2.6	1.8	1.8	1.8	1.8	1.9	1.0	1.0
2.6	1.8	1.0	1.0	1.0	1.9	1.0	g2
	1.8	1.0	g1	1.0	1.9	1.0	1.0

f'-values, w = 2

		10.6	9.	6	8.6	S	9.0	
		9.8	8.	8				12.0
	9.2	8.2	8.	2	8.2	7.8	9.0	10.0
10.2	7.6	7.6	7.	6	7.6	7.8	7.0	8.0
10.2	8.6	7.0			7.0	8.8	7.0	g2
	9.6	8.0	g	1	8.0	9.8	8.0	8.0

f'-values, w = 2**x** expanded states

		10.6	9.6	8.6 X	S	9.0	
		9.8	8.8 X				12.0
	9.2	8.2	8.2 X	8.2	7.8	9.0	10.0
10.2	7.6	7.6	7.6 ×	7.6	7.8	7.0	8.0
10.2	8.6	7.0	7.0 x	7.0	8.8	7.0	g2
	9.6	8.0	g1 ×	8.0	9.8	8.0	8.0

f'-values, w = 2

- x expanded states
- O states in open list

		10.6	9.6	8.6 X	S	9.0	
		9.8	8.8 X				12.0
	9.2	8.2	8.2 ×	8.2	7.8	9.0	10.0
10.2	7.6	7.6	7.6 X	7.6	7.8	7.0	8.0
10.2	8.6	7.0	7.0 x	7.0	8.8	7.0	g2
	9.6	8.0	g1	8.0	9.8	8.0	8.0

 $\begin{array}{ll} \text{f'-values,} & \text{w} = 2 \\ \textbf{x} & \text{expanded states} \\ \bigcirc & \text{states in open list} \end{array} \qquad \text{must expand for optimal path}$

$\overline{}$							
		10.6	9.6	8.6 ×	S	9.0	
		9.8	8.8 X				12.0
	9.2	8.2	8.2 ×	8.2	7.8	9.0	10.0
10.2	7.6	7.6	7.6 ×	7.6	7.8	7.0	8.0
10.2	8.6	7.0	7.0 X	7.0	8.8	7.0	g2
	9.6	8.0	g1 ×	8.0	9.8	8.0	8.0

f'-values, w=2 must expand for optimal path but many open states have lower f'-value

		10.6	9.6	8.6 ×	S×	9.0	
		9.8	8.8 ×				12.0
	9.2	8.2	8.2 ×	8.2	7.8	9.0	10.0
10.2	7.6	7.6	7.6 ×	7.6	7.8	7.0	8.0
10.2	8.6	7.0	7.0 x	7.0	8.8	7.0	g2
	9.6	8.0	g1 ×	8.0	9.8	8.0	8.0

f'-values, w = 1.5 (reduced weight) \rightsquigarrow search less greedy

		8.7	7.7	6.7 X	S	7.0	
		8.1	7.1 X				10.5
	7.9	6.9	6.9 X	6.9	6.85	8.0	9.0
8.9	6.7	6.7	6.7 ×	6.7	6.85	6.5	7.5
8.9	7.7	6.5	6.5 ×	6.5	7.85	6.5	g2
	8.7	7.5	g1	7.5	8.85	7.5	7.5

```
f'-values, w = 1.5 (reduced weight) \rightsquigarrow search less greedy but effect still persists
```

		8.7	7.7	6.7 X	S	7.0	
		8.1	7.1 X				10.5
	7.9	6.9	6.9 X	6.9	6.85	8.0	9.0
8.9	6.7	6.7	6.7 ×	6.7	6.85	6.5	7.5
8.9	7.7	6.5	6.5 X	6.5	7.85	6.5	g2
	8.7	7.5	g1 X	7.5	8.85	7.5	7.5

		8.7	7.7	6.7 X	S	7.0	
		8.1	7.1 ×				10.5
	7.9	6.9 ×	6.9 ×	6.9 X	6.85	8.0	9.0
8.9	6.7	6.7 ×	6.7 ×	6.7 X	6.85	6.5	7.5
8.9	7.7	6.5 ×	6.5 ×	6.5 X	7.85	6.5	g2
	8.7	7.5	g1 X	7.5	8.85	7.5	7.5

		8.7	7.7	6.7 X	S	7.0	
		8.1	7.1 X				10.5
	7.9	6.9 X	6.9 X	6.9 X	6.85	8.0	9.0
8.9	6.7	6.7 X	6.7 X	6.7 X	6.85	6.5	7.5
8.9	7.7	6.5 ×	6.5 ×	6.5 X	7.85	6.5	g2
	8.7	7.5	g1 ×	7.5	8.85	7.5	7.5

		8.7	7.7	6.7 X	S	7.0	
		8.1	7.1 X				10.5
	7.9	6.9 ×	6.9 X	6.9 X	6.85 X	8.0	9.0
8.9	6.7 ×	6.7 X	6.7 X	6.7 X	6.85 ×	6.5	7.5
8.9	7.7	6.5 X	6.5 ×	6.5 ×	7.85	6.5	g2
	8.7	7.5	g1 ×	7.5	8.85	7.5	7.5

		8.7	7.7	6.7 X	S	7.0	
		8.1	7.1 X				10.5
	7.9	6.9 ×	6.9 X	6.9 X	6.85 X	8.0	9.0
8.9	6.7 ×	6.7 X	6.7 X	6.7 X	6.85 ×	6.5	7.5
8.9	7.7	6.5 X	6.5 ×	6.5 ×	7.85	6.5	g2
	8.7	7.5	g1 ×	7.5	8.85	7.5	7.5

		8.7	7.7	6.7 X	S	7.0	
		8.1	7.1 X				10.5
	7.9	6.9 ×	6.9 ×	6.9 ×	6.85 ×	8.0	9.0
8.9	6.7 ×	6.7 X	6.7 X	6.7 X	6.85 ×	6.5 X	7.5
8.9	7.7	6.5 X	6.5 ×	6.5 X	7.85	6.5 X	g2
	8.7	7.5	g1 ×	7.5	8.85	7.5	7.5

10 expanded states

29 generated states

between finding g1 and expanding right of S

		8.7	7.7	6.7 X	S	7.0	
		8.1	7.1 X				10.5
	7.9	6.9 X	6.9 ×	6.9 X	6.85 ×	8.0	9.0
8.9	6.7 X	6.7 X	6.7 X	6.7 X	6.85 X	6.5 X	7.5
8.9	7.7	6.5 X	6.5 X	6.5 X	7.85	6.5 X	g2
	8.7	7.5	g1 ×	7.5	8.85	7.5	7.5

Restarted search

starting from scratch $w = 1.5 \label{eq:w_scratch}$

	7.7	6.7 X	S	7.0	
	(7.1)				
					g2
	g1				

Restarted search

- 2 expanded state
- **5** generated states before expanding right of S to find optimal path

6.7 X g2g1

Insight

Continued search may be biased due to early mistakes:

- Greedy search: suboptimal area of search space
- Open list: many open states around previous goal
- Low h-value makes them look attractive
 - \Rightarrow Biased search explores suboptimal area in depth

Restarts overcome early mistakes of greedy search

Related Work

Restarts used with randomization in CSPs:

- Local search (Selman et al. 1992)
- Systematic search (Gomes et al. 1998)
- Purpose: undo bad random decisions (parameter choices)
 → escape barren areas of search space

We propose restarts for a deterministic, A*-type algorithm

- Purpose: undo bad greedy decisions (low-h bias)
- Motivation similar to that of limited-discrepancy search (Harvey & Ginsberg 1995)

Restarting weighted A*(RWA*)

RWA*: forget open list between iterations:

- Set weight and bound
- Clear open list, (re-)start from initial state
- Conduct WA* search, using bound for pruning
- Upon new best solution: report solution, goto 1.

Re-use previous search effort by

- Not re-calculating h-values of states seen previously
- Remembering best known paths to states

Extra cost: re-expansions. But expansions often cheap compared to evaluations (planning: 20% vs. 80%)

Empirical Evaluation

- Implemented in Fast Downward (Helmert 2006)
- Replaced greedy BFS with anytime algorithms:
 - RWA*
 - Anytime A*
 - ARA*
 - Beam-stack search
 - Window A*
- Planner-specific search enhancements used
- All 1612 classical tasks, 31 domains of previous IPCs
- Also: 3 other search benchmark domains

WA* methods much better than others; RWA* best

 $\mbox{RWA}^* > \mbox{other WA}^*$ methods in 40% of domains, rest on par

Beam-stack search, Window $A^* > WA^*$ in some domains, but much worse in many other domains

Restarts change beginning of plan rather than end (Gripper #20):

Robotic arm

 $\label{eq:RWA*} RWA^* > \text{other WA* methods}.$ Beam-stack search and Window A^* very good here.

Gridworld

 $RWA^* \approx \text{other weight-decreasing WA}^* \ \text{methods}.$ Beam-stack search, Window $A^*:$ worse anytime performance.

Sliding-tile puzzle

 $\label{eq:RWA*} \text{RWA*} \approx \text{other weight-decreasing WA*} \text{ methods.} \\ \text{Window A*} \text{ very good here.}$

Summary

RWA* dominates other methods in planning

- Restarts useful if greedy search is highly suboptimal
- E. g. if heuristics vary strongly locally

On par in other domains

- RWA* always ≥ other WA* methods
 → even if restarts do not help, they do not hurt
- RWA* always performs fairly well → robust, while beam-stack search, Window A* vary strongly

Undoing search effort can be worthwhile in anytime algorithms

Thank you!

Questions?