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■ Finding optimal solutions is prohibitively expensive.

Four-way Grid Pathfinding (Unit cost)

N
o

d
es

 g
en

er
at

ed
 (

re
la

ti
v

e 
to

 A
*)

200,000

100,000

0

Problem Size

1,000800600400200

A*
Four-way Grid Pathfinding (Unit cost)

S
o

lu
ti

o
n

 C
o

st
 (

re
la

ti
v

e 
to

 A
*)

1.6

1.4

1.2

1.0

Problem Size

1,000800600400200

A*



Motivation

Introduction

■ Motivation

Weighted A
∗

Clamped Adaptive

Optimistic Search

Conclusion

Jordan Thayer (UNH) Fast Bounded Suboptimal Search – 3 / 35

■ Finding optimal solutions is prohibitively expensive.
■ Its nice to limit suboptimality.

Four-way Grid Pathfinding (Unit cost)
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■ Finding optimal solutions is prohibitively expensive.
■ Its nice to limit suboptimality.
■ Weighted A* is a popular method for doing that.
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■ Finding optimal solutions is prohibitively expensive.
■ Its nice to limit suboptimality.
■ Weighted A* is a popular method for doing that.
■ This talk: two algorithms which are often better.

Four-way Grid Pathfinding (Unit cost)
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■ Background
Weighted A*

■ Strict Approach: Clamped Adaptive
Correct for underestimating h(n)
Bound correction to ensure w-admissibility

■ Loose Approach: Optimistic Search
Greedily search for a solution
Enforce suboptimality bound afterwards
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A∗ is a best first search ordered on f(n) = g(n) + h(n)
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A∗ is a best first search ordered on f(n) = g(n) + h(n)

Weighted A∗: f ′(n) = g(n) + w · h(n)
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A∗ is a best first search ordered on f(n) = g(n) + h(n)

Weighted A∗: f ′(n) = g(n) + w · h(n)

What does w do?
breaks ties on f(n) in favor of high g(n)
corrects for underestimating h(n)
deepens search / emphasises greed
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p is a node in open on an optimal path to opt

f(n) = g(n) + h(n)
f ′(n) = g(n) + w · h(n)

g(sol)
f ′(sol) ≤ f ′(p)

g(p) + w · h(p) ≤ w · (g(p) + h(p))
w · f(p) ≤ w · f(opt)

w · g(opt)

Therefore, g(sol) ≤ w · g(opt)
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■ Weighted A*
Pohl (1970)

■ Dynamically Weighted A*
Pohl (1973)

■ Aǫ

Ghallab & Allard
(1983)

■ A∗

ǫ

Pearl (1984)
■ AlphA*

Reese & Frichs
(unpublished)

Eight-way Grid Pathfinding (Unit cost)
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■ Background
Weighted A*

■ Strict Approach: Clamped Adaptive
Correct for underestimating h(n)
Bound correction to ensure w-admissibility

■ Loose Approach: Optimistic Search
Greedily search for a solution
Enforce suboptimality bound afterwards
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■ If h were perfect, solutions would be found in linear time.
■ How do we improve h(n)?

By correcting for the error in h(n)
■ We’ll ensure w-admissibility shortly.
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Consider the single expansion: p

bc

Recall that f(n) = g(n) + h(n)

■ f(n) should remain constant across parent and child.
if f(n) = g(n) + h∗(n) this would be true.
g(n) is exact.
All the error in f(n) comes from h(n).

■ errh = f(bc) − f(p)

Track a running average of errh.
f̂(n) = g(n) + ĥ(n)
ĥ(n) = h(n) · (1 + errh)
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Consider the single expansion: p

bc

Recall that f(n) = g(n) + h(n)

■ f(n) should remain constant across parent and child.
if f(n) = g(n) + h∗(n) this would be true.
g(n) is exact.
All the error in f(n) comes from h(n).

■ errh = f(bc) − f(p)

Track a running average of errh.
f̂(n) = g(n) + ĥ(n)
ĥ(n) = h(n) · (1 + errh)
ĥ(n) is inadmissible.
Clamping enforces w-admissibility.
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p is a node in open on an optimal path to opt

f(n) = g(n) + h(n)
f ′(n) = g(n) + w · h(n)

g(sol)
f ′(sol) ≤ f ′(p)

g(p) + w · h(p) ≤ w · (g(p) + h(p))
w · f(p) ≤ w · f(opt)
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p is a node in open on an optimal path to opt

f(n) = g(n) + h(n)
f̃(n) = min(f̂(n), w · f(n))

g(sol) = f̃(sol)

f̃(sol) ≤ f̃(p)

f̃(p) ≤ w · f(p)
w · f(p) ≤ w · f(opt)

And g(s) ≤ w · g(opt) is still true.
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■ Grid world path finding
Four-way and Eight-way Movement
Unit and Life Cost Models
25%, 30%, 35%, 40%, 45% obstacles

■ Temporal Planning
Blocksworld, Logistics, Rover, Satellite, Zenotravel

See the paper for details.
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zenotravel (problem 2)
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satellite (problem 2)
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logistics (problem 3)
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Clamped Adaptive:

■ On-line heuristic correction seems promising
Performance varies

Does well for small bounds
Fails to become greedy

■ No parameter tuning needed
■ Clamping for admissibility of inadmissible heuristics
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■ Background
Weighted A*

■ Strict Approach: Clamped Adaptive
Correct for underestimating h(n)
Bound correction to ensure w-admissibility

■ Loose Approach: Optimistic Search
Greedily search for a solution
Enforce suboptimality bound afterwards



Weighted A
∗ Respects a Bound

Introduction

Weighted A
∗

Clamped Adaptive

Optimistic Search

■ Loose Bounds

■ Solution Quality

■ w-Admissibility

■ Performance

Conclusion

Jordan Thayer (UNH) Fast Bounded Suboptimal Search – 22 / 35

f(n) = g(n) + h(n)
f ′(n) = g(n) + w · h(n)

g(sol)
f ′(sol) ≤ f ′(p)

g(p) + w · h(p) ≤ w · (g(p) + h(p))
w · f(p) ≤ w · f(opt)

w · g(opt)

Therefore, g(sol) ≤ w · g(opt)
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f(n) = g(n) + h(n)
f ′(n) = g(n) + w · h(n)

g(sol)
f ′(sol) ≤ f ′(p)

g(p) + w · h(p) ≤ w · (g(p) + h(p))
w · f(p) ≤ w · f(opt)

w · g(opt)

g(p) + w · h(p) ≤ w · g(p) + w · h(p)
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■ wA∗ returns solutions bet-
ter than the bound.

■ Be optimistic
■ Run with higher weight

Four-way Grid Pathfinding (Unit cost)
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How do we guarantee a suboptimality bound?
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■ p is the deepest node on an
optimal path to opt

f(p) ≤ f(opt)
f(fmin) ≤ f(p)
fmin provides a lower bound on solution cost.
Determine fmin by priority queue sorted on f

Optimistic Search: Run a greedy search
Expand fmin until w · fmin ≥ f(sol)
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This Paper:

■ Grid world path finding
Four-way and Eight-way Movement
Unit and Life Cost Models
25

■ Temporal Planning
Blocksworld, Logistics, Rover, Satellite, Zenotravel

To Appear in ICAPS:

■ Traveling Salesman
Unit Square
Pearl and Kim Hard

■ Sliding Tile Puzzles
Korf’s 100 15-puzzle instances

See papers for details.
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Four-way Grid Pathfinding (Unit cost)
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Clamped Adaptive:

■ On-line heuristic correction seems promising.
■ No parameter tuning needed.

Optimistic Search:

■ Performance is predictable.
■ Current results are good, could be improved.

We have two algorithms that can outperform weighted A∗

We can use arbitrary heuristics for w-admissible search.
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Tell your students to apply to grad school in CS at UNH!

■ friendly faculty
■ funding
■ individual attention
■ beautiful campus
■ low cost of living
■ easy access to Boston,

White Mountains
■ strong in AI, infoviz,

networking, systems,
bioinformatics
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Four-way Grid Pathfinding (Unit cost)
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