Adaptive Tree Search

A thesis presented

by
Wheeler Ruml

to
The Division of Engineering and Applied Sciences
in partial fulfillment of the requirements
for the degree of
Doctor of Philosophy
in the subject of

Computer Science

Harvard University

Cambridge, Massachusetts

May, 2002

To my family.

Copyright (© 2002 by Wheeler Ruml.

All rights reserved.

Advisor: Stuart M. Shieber Adaptive Tree Search Wheeler Ruml

Abstract

Combinatorial optimization and constraint satisfaction problems are ubiquitous in com-
puter science, arising in areas as diverse as resource allocation, automated design, planning,
and logical inference. Finding optimal solutions to such problems often entails searching an
intractably large tree of possibilities. Problems beyond the reach of exhaustive enumeration
require methods that exploit problem-specific heuristic knowledge to find the best solution
possible within the time available. Previous algorithms typically follow a fixed search order,
making inefficient use of heuristic information. For a new problem, it is not always clear
which predetermined search order will be most appropriate.

I propose an adaptive approach in which the search order is adjusted according to
heuristic information that becomes available only during the search. By adapting to the
current problem, this approach eliminates the need for pilot experiments and enables the
use of good search orders that would be too complicated to program explicitly.

To demonstrate the feasibility of the approach, I first present a simple but incomplete
technique, adaptive probing. Empirical results demonstrate that the method can effectively
adapt on-line, surpassing existing methods on several synthetic benchmarks. I then intro-
duce a general framework for complete adaptive tree search, best-leaf-first search, and show
how previous work can be viewed as special cases of this technique. Incorporating different

sources of information into the framework leads to different search algorithms. Five dif-

iii

ferent instantiations are tested empirically on challenging combinatorial optimization and
constraint satisfaction benchmarks, in many cases yielding the best results achieved to date.
Best-leaf-first search can be understood as an extension of traditional heuristic shortest-path
algorithms to combinatorial optimization and constraint satisfaction. By extending heuris-

tic search to these new domains, I unite these previously separate problems.

v

Contents

List of Figures e
List of Tables e
Acknowledgments oL
Introduction
1.1 Types of Search Problems
1.1.1 Combinatorial Optimization
1.1.2 Shortest-path Problems
1.1.3 Adversarial Search
1.1.4 Improvement Search
1.2 An Adaptive Approach
1.3 Outline e
Tree Search Under Time Constraints
2.1 Greedy Construction e
2.2 Depth-First Search
2.3 Tterative Broadening L
2.4 Limited Discrepancy Search
2.5 Depth-bounded Discrepancy Search
2.6 Tunable Techniques
2.7 Conclusions e

Learning How to Search: Adaptive Probing

3.1 The Algorithm
3.2 An Additive Cost Model
3.2.1 Learning the Model
3.2.2 Using the Modelo
3.3 Empirical Evaluation
3.3.1 An Abstract Tree Model
3.3.2 Boolean Satisfiability
3.3.3 Number Partitioning oL
3.3.4 Summary of Results
3.4 Using Previous Experienceo o oL
3.4.1 Reusing Learned Models
3.4.2 Blending Search Policies
3.4.3 Summary of Results
3.5 Parametric Action Cost Models
3.5.1 Evaluation

14
14
16
19
20
23
26
26

3.6 Summary of Results

3.7 Related Work
3.71 Tree Probing
3.7.2 Learning to Search o
3.7.3 Decision-theoretic Search
3.7.4 Reinforcement Learning L.

3.8 Limitations e e

3.9 Other Possible Extensions

3.10 Conclusions e

Best-Leaf-First Search

4.1 The BLFS Framework
4.2 The Tree Model e
4.2.1 Propertiesof f(n)
4.2.2 Estimating the Cost Bound
4.2.3 On-line Learning
4.3 Rational Search o
4.4 Relations to Shortest-path Algorithms
4.5 Conclusions e e

BLFS with a Fixed Model: Indecision Search

5.1 Two Tree Models
5.2 The Algorithm
5.3 Estimating the Allowance,
5.4 Implementation
5.4.1 Manipulating Distributions
5.4.2 Finding an Appropriate Allowance
5.5 Evaluation
5.5.1 Latin Squares
5.5.2 Binary CSPs
5.5.3 Time Overhead
5.6 Related Work
5.7 Possible Extensions e
5.8 Conclusions
BLFS with On-line Learning
6.1 The Tree Model
6.2 Evaluation
6.2.1 Greedy Number Partitioning
6.2.2 CKK Number Partitioning
6.2.3 Time Overhead
6.3 Integrating Multiple Sources of Information
6.3.1 Evaluation
6.4 Summary of Results o
6.5 Possible Extensions

vi

71
72
74
()
76
77
78
80
85

86
87
88
90
95
95
97
98
98
101
104
105
106
107

7 Conclusions
7.1 Future Directions e

References

vii

List of Figures

1.1
1.2
1.3
14
1.5

2.1
2.2
2.3
24
2.5
2.6
2.7

2.8

2.9

2.10

2.11

3.1
3.2

3.3

3.4

3.5

A tree representation of alternatives in a small combinatorial problem. . . .
A tree representing a combinatorial optimization problem.
A tree representing a shortest-path problem..
A tree representing a game against an adversary.
A graph representing an improvement-based search.

Pseudo-code for greedy construction.
The path explored by a greedy construction algorithm.
Pseudo-code for depth-first search (DFS).
The paths explored by DFS after visiting three leaves.
The second pass of iterative broadening restricts search to a binary subtree.
Each iteration of iterative broadening (IB) restricts the effective branching
factor of the tree.
The second pass of limited discrepancy search (LDS) visits all leaves with
zero or one discrepancies in their path from theroot.
Each pass in a limited discrepancy search (LDS) visits all leaves whose path
from the root contains allowance discrepancies. This pseudo-code shows the
variant that explores discrepancies at the top of the tree first.
Improved limited discrepancy search (ILDS) only enters subtrees that con-
tain paths with the desired number of discrepancies. This variant explores
discrepancies at the top of the tree first.
The second through fourth iterations of depth-bounded discrepancy search
(DDS). The depth bound is 0 for the second iteration (top), then 1 (middle),
and then 2 (bottom). Lo

Depth-bounded discrepancy search (DDS) is greedy below the depth bound.

Pseudo-code for adaptive probing.
The parameters of a separate cost action model for a binary tree of depth
three. e
Probability of finding a goal in trees of depth 100 with m = 0.1 and p linearly
varying between 0.9 at the root and 0.95 at the leaves.
Performance on trees of depth 100, m = 0.1, and p varying from 0.9 at the
root to 0.98 at the leaves.
Performance on trees of depth 100, m = 0.1, and p varying from 0.98 at the
root to 0.9 at theleaves.

viii

0 ~J O W N

15
16
17
19
20

21

21

22

24
25

29

30

38

39

3.6

3.7

3.8

3.9

3.10

3.11

3.12
3.13
3.14

3.15

3.16
3.17

3.18

3.19

4.1
4.2

5.1

5.2
5.3
5.4

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

Fraction of random 3-satisfiability problems solved. Error bars indicate 95%
confidence intervals around the mean over 1000 instances, each with 200
variables and 3.5 clauses per variable. (The DFS and DDS means are lower
bounds.) 42
Searching the greedy representation of number partitioning. Error bars indi-
cate 95% confidence intervals around the mean over 20 instances, each with

128 44-digit numbers. 45
Performance on the greedy representation of number partitioning as a func-
tion of nodes generated. 46
Searching the CKK representation of number partitioning. Each instance
had 64 25-digit numbers. L 48
Performance on the CKK representation of number partitioning as a function
of nodes generated. 49

Searching the greedy representation of number partitioning. Error bars indi-
cate 95% confidence intervals around the mean over 20 instances, each with

128 44-digit numbers. 52
Performance on the greedy representation as a function of nodes generated. 52
Searching the CKK representation of number partitioning problems. 53
Searching the greedy representation of number partitioning instances, each

with 64 25-digit numbers. 55
Searching the CKK representation of number partitioning instances, each

with 64 numbers. 56
Searching the CKK representation of instances with 128 numbers. Y4
The action costs learned for an 18-number partitioning problem using the

CKK representation. Filled circles represent the non-preferred actions. . . . 59
Adaptive probing in the CKK space using 128 numbers and a model which

constrains action costs to be a quadratic function of depth. 60
A quadratic action cost model learned by adaptive probing for searching the

CKK representation. i e 61
Simplified pseudo-code for best-leaf-first search. 73
Pseudo-code for the inner loop of iterative-deepening A* search (IDA*). . . 81
Indecision search treats the BLFS cost bound as an allowance that is spent

to visit non-preferred children. L. 89
The process of estimating the number of nodes at the next level of the tree. 90
The process of estimating the allowance available at the next level. 92
Performance on completing 21 x 21 latin squares that already have 30% of

the cells assigned. 99
Simplified pseudo-code for best-leaf-first search using on-line learning. . . . 109
Greedy partitioning of 128 numbers, 113
Greedy partitioning of 256 numbers 114
CKK representation for partitioning 128 numbers 115
CKK representation for partitioning 256 numbers 115
Performance on 64-number problems. 118
Performance on 128-number problems. 0oL, 119
Performance on 256-number problems. o0 L. 119

ix

List of Tables

4.1

5.1

5.2

5.3

5.4

A comparison of BLFS and IDA*. 82

The number of nodes generated to solve latin square completion problems,
represented by the 95th percentile of the distribution across random instances.101
The number of nodes generated to solve 100 instances of binary CSPs in the

(30,15,.4,pa) class. 102
The number of nodes generated to solve 100 instances of binary CSPs in the
(50,12,.2,pa) class. 102

The number of nodes generated to solve 100 instances of binary CSPs in the
(100, 6, .06, p2) class.

Acknowledgments

Stuart Shieber and Joe Marks, with help from Tom Ngo, showed me how research could be
serious fun. Thanks guys! You changed my life.

Stuart has been an excellent research advisor, always willing to let me explore and
yet always happy to offer insightful suggestions. His clear thinking, good humor, high
standards, and intellectual curiosity will forever be a model for me. Barbara Grosz showed
me firsthand what it means to care about teaching and was always willing to share her
hard-won wisdom. Her dedication to community-building, from the AI Research Group
to the international level, has been inspirational. Yu-Chi Ho generously welcomed me to
meetings of his research group and kindly agreed to serve on my thesis committee.

The Harvard Al Research Group has been a wonderfully friendly and supportive environ-
ment. Avi Pfeffer suffered through many conversations about work that became Chapter 3
and offered key suggestions. I hope to someday be able to explain things as calmly and
clearly as he can. I have been blessed with fantastic officemates. Rebecca Hwa was a burst
of sunshine. Her high standards for civilized life remain inspirational. Luke Hunsberger was
a rock of integrity—talking with him always left me better connected to reality. Mookie
Wilson provided welcome comic relief. The burning intellect that is Ken Shan left delightful

and refreshing sparks all over the office. I miss Joshua Goodman’s incisive, unpretentious

xi

analyses. I wish Kobi Gal peace and prosperity. David Parkes, Jill Nickerson, Lillian Lee,
Stan Chen, Ellie Baker, Kathy Ryall, Tamara Babaian, Tim Rauenbusch, Dave Sullivan,
Emir Kapanci, and Marco Carbone also enriched my time at Harvard, and I learned from
each of them. While not official members of AIRG, Rocco Servedio, Joe Marks, Ric Crabbe,
Christian Lindig, Norman Ramsey, and Harry Lewis offered friendship and support that
was much appreciated.

While his influence is not directly present in this work, Alfonso Caramazza left an
indelible mark. It was an honor to work with him. Michele Miozzo’s patience was invaluable,
as was his friendship. Josh Tenenbaum also humored me good-naturedly when I indulged
my weakness for cognitive science.

Other important inspirations who deserve mention here include Julia Child, Harry Oli-
var, Brian Kernighan, and John A. and Janette H. Wheeler. I would also like to thank

Harvard University, my pleasant home for so many years.

This thesis is dedicated to my family, especially Kate, Mom, Dad, Anton, Frances, and
Fred. Without you, none of this would have happened. Thanks for encouraging me to do

whatever I wanted and for your unwavering support along the way.

This research was supported in part by NSF grants CDA-94-01024 and IRI-9618848
and by DARPA contract F30602-99-C-0167 through a subcontract with SRI International.
Portions of Chapter 3 were described in the Proceedings of IJCAI-01 (Ruml, 2001a), the

Proceedings of the IJCAI-01 Workshop on Stochastic Search (Ruml, 2001b), and the Pro-

xii

ceedings of the 2001 AAAI Fall Symposium on Using Uncertainty Within Computation

(Ruml, 2001c).

xiii

Chapter 1

Introduction

This thesis proposes a new approach to solving combinatorial search problems. In guises
such as mazes, puzzles, and games, such problems have fascinated people for millennia
(Herodotus, 440 BC, 148). They present a simplified version of everyday decision-making,
capturing the essential fact that the best choice for one decision often depends on the choices
that are made for the other decisions. In abstract formulations such as Hamiltonian path
problems, bin packing, or propositional satisfiability, such problems have long been at the
core of computer science (Euler, 1759; Dantzig, Fulkerson, and Johnson, 1954). We can
think of a combinatorial problem as a fixed set of decision variables, each of which must
be assigned a value selected from a set of discrete alternatives. For instance, the variables
might represent the actions to take at each step in a puzzle and their possible values would
represent the choices available at the corresponding step.

Unfortunately, many combinatorial problems are NP-hard and the only known methods
for solving them optimally require enumerating all possible assignments to the variables
(Garey and Johnson, 1991). One can conceptualize these methods as traversing a tree that

compactly represents the possibilities. As shown in Figure 1.1, each internal node in the

decision 1

option 1 option 2

decision 2 decision 2

option 1 option 2

(1,1) (1,2) (2,1) (2,2)

Figure 1.1: A tree representation of alternatives in a small combinatorial problem.

tree represents a decision variable in the problem and each branch represents a possible
value for that variable. The leaves of the tree represent candidate solutions. Clearly, the
computation time required to exhaustively search such a tree for the optimal solution is
exponential in the size of the problem. For large problems or in real-time applications,
our only hope is to find the best solution possible within a given time bound. This thesis
introduces a new rational framework for approaching this vexing yet ubiquitous problem
and demonstrates that algorithms derived within the framework can surpass existing ad
hoc methods.

The central idea is to use problem-specific information that arises during the explo-
ration of the tree to adapt the search to the specific problem being solved. A tree search
algorithm can be viewed as an agent gathering information as the exploration proceeds,
making inferences about where good solutions might lie, and selecting appropriate actions
to reach them. Any prior information one might have about the nature of the problem
can be easily incorporated into this learning process. One might assume that this rational
approach to search would have impractical overhead. However, as we will see, an adaptive
search algorithm for combinatorial optimization need not be complex to be efficient and

effective. Furthermore, by pursuing the idea of the search algorithm as an agent with ex-

1.6 2.3 2.1 3.9 1.5 2.6 6.2 4.4

Figure 1.2: A tree representing a combinatorial optimization problem.

plicit knowledge, we will show how combinatorial tree search can be elegantly unified with

traditional work on shortest-path problems.

1.1 Types of Search Problems

Combinatorial tree search problems arise in any situation in which the best course of action
is not immediately evident and one may need to return to a previously visited state. These
states form the internal nodes in the tree. There are four main kinds of combinatorial search
problems: combinatorial optimization problems, shortest-path problems, adversarial search
problems, and improvement search problems. In this thesis, we will mainly be concerned

with combinatorial optimization. A brief review will make these distinctions clear.

1.1.1 Combinatorial Optimization

As we mentioned above, a combinatorial optimization problem consists of a fixed set of
variables, each of which must be assigned a value drawn from a set of discrete possibilities.
For instance, we might be trying to decide which machine to use for manufacturing each

component of a product. An optimization problem also specifies an objective function which

assigns a numerical value to every possible set of assignments. In our example, each complete
manufacturing configuration might have an associated production cost. Solving the problem
means finding the minimum cost solution. We will view this as the task of finding the best
leaf in the tree of possibilities, as illustrated in Figure 1.2. The tree’s depth is bounded by the
number of problem variables and its branching factor is bounded by the maximum number
of possible values for any variable. This general problem formulation covers an enormous
number of problems, including the traveling salesman problem, automated design problems,
scheduling problems, combinatorial auctions, and many problems in machine learning.

Much work in operations research considers how to construct pruning rules and cutting
planes that use information about the current problem instance to quickly eliminate many
candidate solutions from consideration and thus reduce the size of the search tree. For
instance, assigning a certain machine to manufacture a certain component might turn out
to be so costly that it is immediately clear that no solution that includes this assignment
could be better than the best solution found so far. Such techniques can be used as a
pre-processing step as well as during the course of the search. Of course, even after such
pruning, one is usually still left with a tree to search, so such techniques are orthogonal
to our concerns here. For large problems, we will always be reduced to finding the best
solution we can in a bounded-depth tree that is too large to enumerate.

For some applications, such as automatically laying out graphics in an interactive inter-
face, time constraints will apply even for a relatively small problem. Similarly, the increasing
diversity in computing platforms motivates consideration of anytime algorithms, which can
provide mediocre solutions quickly and then improve them if given additional computation
time. Such software can perform well across multiple platforms, flexibly adapting its perfor-

mance to the resources at hand. With the current interest in intelligent embedded systems,

sophisticated real-time search and optimization algorithms will increasingly find application
on computationally limited devices.

Constraint satisfaction problems are very similar to combinatorial optimization prob-
lems. One is given a fixed number of variables and each of them can take one of a finite
number of values. However, instead of finding the assignment that minimizes the value of an
objective function, one merely attempts to find a solution that does not violate any of the
given constraints. Matching up sports teams for a season’s worth of games is a problem of
this sort. The possibilities are discrete and various constraints must be satisfied, such as an
equal number of home games and away games, no more than two away games or two home
games in a row, and the inclusion of traditional rivalry matches. Many other problems,
such as configuration, graph coloring, and propositional inference can also be viewed as
constraint satisfaction problems. Sophisticated constraint processing techniques can often
be used to help reduce the size of the corresponding search tree, setting certain variables
automatically and skipping decisions known to be irrelevant. For this reason, some authors
treat constraint satisfaction separately from combinatorial optimization.

Since we are concerned with tree search, rather than with particular problem-specific
kinds of constraint processing, we will just treat constraint satisfaction problems as an
additional kind of combinatorial optimization problem. The objective function will be a
measure of the degree of constraint violation, such as the number of variables that remained
to be assigned when the first constraint violation was detected. Any leaf that represents a
successful assignment to all the variables will have a lower score than any leaf representing a
partial assignment that violates a constraint, so finding the best leaf will return a satisfying
solution if one exists. This generic point of view is completely compatible with the use of

constraint processing techniques.

initial state

4.5 7.6 3.5%

Figure 1.3: A tree representing a shortest-path problem.

1.1.2 Shortest-path Problems

In a shortest-path problem, one attempts to find the cheapest path from a given initial node
to any goal node that meets certain criteria. This problem has been the focus of much work
in artificial intelligence. It arises in planning, for instance, in which one might want to find
the cheapest set of actions that incrementally transform an initial state into a goal state
exhibiting some desired properties. Figure 1.3 shows a search tree resulting from a small
shortest-path problem. The branches represent the possible actions from each state and they
are labeled with their costs. Leaves represent states consistent with the goal conditions.
The optimal goal node is labeled with an asterisk (*). As in the problem of combinatorial
optimization mentioned above, there are discrete choices at each step. A solution consists
of a sequence of choices and can be given a value. Solving the problem means finding the
minimum cost solution. But a combinatorial optimization problem involves a fixed and
known number of variables, whereas the number of choices that will need to be made in a
shortest-path problem is not clear in advance. Because of this, it is difficult to bound the

depth of a tree search for a shortest-path problem.

1.6 2.3 21 3.9 1.5 2.6 6.2 4.4

Figure 1.4: A tree representing a game against an adversary.

There are many existing algorithms for shortest-path problems. Some of them require
that the entire tree or graph be explicitly represented in the computer at one time. But
in many problems, the tree is much too large to represent explicitly and child nodes must
be generated dynamically from their parent when needed. The process of generating the
children is also known as expanding the parent. We will be assuming henceforth that
dynamic tree expansion is necessary and we will be evaluating search algorithms based
on the number of nodes they generate. Although this thesis focuses on combinatorial
optimization, we will briefly return to shortest-path problems in Section 4.4, where we
will see how the two different problems can be approached using a common algorithmic

framework.

1.1.3 Adversarial Search

Combinatorial optimization also seems superficially similar to game playing. Games can
be modeled as optimization problems in which we must select a sequence of actions so as
to minimize (or maximize) a scoring function. In games, however, there is an adversary

who can influence the score we can achieve. A game with alternating turns, such as chess,

1.6

Figure 1.5: A graph representing an improvement-based search.

might be modeled as in Figure 1.4, in which every other level of the tree corresponds to the
decisions made by the adversary. In large games like chess, a depth cut-off is usually applied
and the scores at the leaves represent an estimate of the strength of the corresponding board
position, or the probability of winning from that position, rather than an actual win or loss
score from a terminal state of the game.

But merely finding the best leaf in a game search tree is not sufficient, as it was in
combinatorial optimization. Even if we take the first action along the path toward the best
leaf, our adversary might easily respond with an action that prevents us from reaching that
leaf. Instead, one usually seeks to find the top-level decision whose worst case leaf outcome
is best, assuming that the adversary is trying to reach the leaves that are poorest for us.
This type of multiple-agent strategic search is sufficiently different from the single-agent

case that we will not consider it further in this thesis.

1.1.4 Improvement Search

Searching a tree of possibilities is not the only way to attack a combinatorial optimization
problem. Another popular method is to construct an initial solution (perhaps even ran-
domly) and then attempt to improve it incrementally by making modifications. Because

the changes are typically small, this approach is also called ‘local search.” An improvement-

based approach leads to a very different type of search problem. In a tree-based approach,
many nodes represent partial solutions in which some variables have not yet been assigned
values. In an improvement-based approach, one moves from one complete solution to the
next, trying to find one with a good score. This can be visualized as traversing a graph
in which possible modifications lead to neighboring nodes, each of which is annotated with
its cost. Figure 1.5 shows the graph corresponding to the search tree in Figure 1.2. As the
figure suggests, the search graph often has the structure of an n-dimensional hypercube,
where n is the number of variables in the problem.

One disadvantage of improvement search methods is that they are incomplete: there is
no guarantee that they will find the optimal solution within a bounded amount of time. In a
tree search for combinatorial optimization, one will eventually traverse the entire tree. But
when moving through a graph, the high connectivity of the search space makes it difficult
to keep a concise record of the states that have and have not been visited. This means that
there is no guarantee that every part of it will eventually be explored.

In practice, however, most problems are so large that complete enumeration is infeasible,
so the incompleteness of improvement search is not a handicap. Improvement methods are
usually simple to implement and they can work very well. In fact, it is not uncommon
for researchers to conflate the ideas of improvement search and incomplete search. Of
course, the superior performance displayed by improvement search over tree search on many
problems may be merely the result of having poor algorithms for incomplete tree search.
Many of the results in this thesis will show that the most widely used tree search method,
depth-first search, is in fact a terrible choice in many applications.

Further understanding the relative merits of improvement search and tree search is an

important direction for future research. The trade-off between the flexible movement af-

forded by improvement search and the ease with which tree search can incorporate problem-
specific information is complex. For the remainder of this thesis, however, we will focus our
attention on how best to explore tree-structured spaces. By developing principled meth-
ods for tree search under time constraints, this thesis will provide a sound basis for future

comparisons with other approaches to search.

1.2 An Adaptive Approach

This thesis approaches the problem of finding good leaves using decision-making concepts
from artificial intelligence. The central idea is to adapt during the search process to the
particular tree that is being searched. When faced with a new type of optimization problem,
or even a new instance from a known type, the optimal search order is not clear a priori. So
we will view the search algorithm as a rational agent making decisions about which leaf to
visit next. New information, such as the costs of the solutions at the visited leaves, becomes
available as the algorithm explores the tree. This information is valuable because it can
reflect important properties of the current search tree. A rational algorithm would combine
this new information with any current beliefs it might have to help infer where to explore
next.

Traditional search algorithms for combinatorial optimization, such as depth-first search
(DFS), visit leaves in a fixed order, making no use of any information gathered about the
nodes visited. Such thoughtless repetition of preprogrammed behavior is an embarrassing
caricature of automated problem solving. Although search algorithms are traditionally
viewed as lying at the core of an intelligent agent, there is no reason why they should not

also be viewed as intelligent agents in their own right. In fact, as we will see, this can lead

10

to both improved algorithms and conceptual advances.

Having an adaptive algorithm considerably lightens the burden for the user, who cur-
rently must carry out extensive preliminary experiments to determine which prespecified
search order works best for each new problem. Furthermore, because the next action of
an adaptive algorithm can be predicated on the complete set of observations to date in a
particular tree, an adaptive algorithm can effectively implement a search order that would

be very difficult to prespecify.

1.3 Outline

The ability of a search algorithm to adapt intelligently to a particular tree depends on the
information that is available during the search. The branching structure of the tree itself
typically gives little information—many search trees are uniformly binary branching with
a fixed maximum depth. At the very least, however, solution costs are available at leaf
nodes. This information is usually computed anyway, to enable the search to remember the
best solution seen. After a brief review in Chapter 2 of previous algorithms for tree search,
Chapter 3 presents adaptive probing, a method for exploiting this leaf cost information
during search. We will see that it is possible, using relatively weak assumptions, to efficiently
infer the location of good leaves from the positions and costs of the leaves that have already
been observed. This is done by learning a model that predicts the costs of leaves based
on their location. In a manner reminiscent of reinforcement learning, the model is both
learned and exploited during the search. Empirical tests of the algorithm’s behavior on
both combinatorial optimization and constraint satisfaction problems demonstrate that an

adaptive approach can lead to good performance and very robust behavior.

11

While adaptive probing flexibly adapts to each search tree it encounters, it is not guar-
anteed to visit every leaf within bounded time. In Chapter 4, we will overcome this in-
completeness by proposing a general framework for adaptive tree search called best-leaf-first
search (BLFS). BLFS follows adaptive probing in using a predictive model of leaf costs
to guide search. However, BLFS ensures completeness by using systematic search and an
expanding search horizon. BLFS is rational, in the sense that it attempts to maximize its
performance based on its current information. As we will discuss, BLFS can be seen as a
model-based extension of the iterative deepening A* (IDA*) shortest-path algorithm (Korf,
1985). Their common framework of single-agent rationality provides a clean unification
of search for combinatorial optimization and constraint satisfaction with the tradition of
heuristic search in AI for shortest-path problems.

BLFS is a general framework that can be specialized according to the particular infor-
mation that is available in a given application. Often, domain-specific knowledge is available
about the likely suitability of each choice at a decision node. These heuristic preferences are
usually computed as a numeric score for each child. In Chapter 5, we consider a particular
instantiation of BLF'S, called indecision search, that exploits this information to guide its
search. The idea is to backtrack first to those nodes where the children had very similar
scores. Intuitively, these are the nodes at which the scoring function was least sure which
child was better. The BLFS framework allows this process to be done efficiently. Results on
constraint satisfaction problems show indecision search to be superior to existing methods
on most classes of difficult problems.

The child scores used in indecision search only become available during the search itself.
While these scores are used as input to the leaf cost model to guide the search, the leaf

cost model itself remains fixed. In Chapter 6, we investigate an instantiation of the BLFS

12

framework that learns the parameters of the cost model online. This algorithm is essen-
tially a complete and deterministic analogue of the adaptive probing method of Chapter 3.
Empirical tests on the combinatorial optimization problem of number partitioning demon-
strate that the method yields the best performance known. On a different, less effective
formulation of the problem, BLFS is competitive with the best method known.

These results show that an adaptive approach to tree search can be practical, general,
and effective. Adaptive algorithms are extremely robust, yielding performance that is either
competitive or superior to the best existing techniques in each domain tested. This advance
has far-reaching consequences, as combinatorial optimization and constraint solving are
ubiquitous problems. In addition, by improving the performance and robustness of opti-
mization in tree-structured search spaces, this approach opens avenues toward quantifying
the value of various kinds of heuristic knowledge and comparing the relative advantages of

tree-based versus improvement-based problem formulations.

13

Chapter 2

Tree Search Under

Time Constraints

We briefly review previous work on tree search for combinatorial optimization.

Our observations will inform the proposals of subsequent chapters.

We are approaching the problem of combinatorial optimization as a search for the lowest-
cost leaf in a tree of bounded depth. Many algorithms have been proposed for this setting
and we will briefly review some of them. The algorithms we will consider later can be

viewed as generalizing these methods in various ways.

2.1 Greedy Construction

Probably the most common way of dealing with a combinatorial problem is not to search
the tree of possibilities at all, but merely to try to construct as good a solution as possible on
the first try without backtracking. This is called the greedy construction technique because,
at every decision, the algorithm takes what seems at that time to be the best choice. These

decisions will never be reconsidered, even if the resulting solution is suboptimal. Pseudo-

14

Greedy (node)
1 If is-leaf(node)

2 Return node
3 else
4 Greedy (best-child(node))

Figure 2.1: Pseudo-code for greedy construction.

Figure 2.2: The path explored by a greedy construction algorithm.

code for this method is shown in Figure 2.1. A greedy algorithm can be viewed as visiting
one leaf in the tree of all possibilities, as shown in Figure 2.2. Note that the tree is drawn
such that the left child of each internal node is the one that is seen as more desirable by the
greedy algorithm. The leftmost leaf corresponds to the greedy solution. We will continue
this convention throughout this thesis.

The greedy algorithm chooses between the available alternatives at each decision point
on the basis of some heuristic information. This might be an estimate of the quality or
number of solutions available under each child node. For constraint satisfaction problems,
where the objective is to find an assignment that violates no constraints, one might use
an estimate of the probability that a solution lies below each child. For some problems, a
lower bound on solution quality can be calculated and used to order the choices. Often,

quantitative heuristic values can be derived as solutions to relaxed versions of the original

15

DFS (node)

1 If is-leaf(node)

2 Visit(node)

3 else

4 For ¢ from 0 to num-children
5 DFS(child(node, 7))

Figure 2.3: Pseudo-code for depth-first search (DFS).

problem. We will refer to this general kind of child preference information as ‘child ordering’
or ‘node ordering’ information.

Of course, the greedy solution is rarely optimal, but much theoretical research has been
done to determine exactly how poor it will tend to be for certain problems. For some
problems, bounds can be proved on how far from optimal the greedy solution will be.
Constructive algorithms with such bounds are known as approximation algorithms. Such
algorithms can provide a good starting point for optimization. But if one has extra time

available, one might wish to visit other leaves in the hopes of obtaining a better solution.

2.2 Depth-First Search

Every rational algorithm will first explore the path generated by expanding the most pre-
ferred child at every decision node.! The challenge comes in deciding what to do next.
Current algorithms make various assumptions about where to go against the heuristic pref-
erence. The most popular backtracking algorithm for exploring a bounded-depth tree is a
simple depth-first search (DFS). Pseudo-code for DFS is presented in Figure 2.3. Visiting

a leaf, as in step 2 of the pseudo-code, involves computing its cost, checking whether it is

! As we will discuss briefly in Section 4.3, active learning may be preferable if both the deadline and the
uncertainty of the algorithm’s beliefs are known.

16

Figure 2.4: The paths explored by DFS after visiting three leaves.

the best leaf seen so far, and exiting if it is recognizably optimal. The backtracking order
of depth-first search will visit the second-ranked child of the last internal branching node
before reconsidering the choice at the next to last branching node.

If one insists on finding the best leaf in the tree and this leaf cannot necessarily be
recognized when it is encountered, then the entire tree must be enumerated. DF'S is optimal
in this case, because it visits every leaf and generates each internal node only once. The
number of internal nodes expanded per leaf visited is at most 1 and even less in non-binary
trees. Of course, for most trees, complete enumeration will be out of the question.

DFS can easily take advantage of the same kind of child ordering information as is used
by the greedy algorithm. By expanding the children of a node in rank order, DFS will
visit first the subtree thought to contain better solutions. As illustrated in Figure 2.4, DFS
completely enumerates the subtree below every left child before expanding the right sibling.
The convention that the children of a node are ranked left to right in tree diagrams and in
decreasing order of desirability according to the heuristic function in pseudo-code will be
continued in the remainder of this thesis.

Child ordering information is a form of weak heuristic knowledge that is not necessarily

correct. Sometimes, information is also available in the form of provably correct knowledge,

17

such as a lower bound on the cost of any solutions in a particular subtree. In the traveling
salesman problem, for instance, the cost of the tour so far plus the cost of the minimum
spanning tree of the remaining unvisited cities gives a provably optimistic estimate. In a
constraint satisfaction problem, the constraints themselves may be represented in a form
that allows early detection of subtrees that cannot contain solutions. Because these stronger
forms of knowledge are known to be accurate, they can be used to prune the search tree,
eliminating poor regions and reducing its size. This technique is widely used in branch-and-
bound algorithms for combinatorial optimization and constraint satisfaction. Of course,
even after these strong forms of knowledge have been exploited, one is usually left with
a tree to search. Because the weaker forms of knowledge are possibly inaccurate, they
cannot be used to prune the tree and hence they can only be exploited to order search
in the parts of the tree that are left. In this sense, they are orthogonal to the pruning
information. Throughout this thesis, we will assume that any available pruning methods
have been applied and focus exclusively on exploiting heuristic knowledge.

DFS enumerates leaves very quickly. But when there is not enough time to enumerate
the entire tree, or when the best leaf can be immediately recognized when it is encountered,
then it may be advantageous to visit the leaves in a different order. Following Harvey
and Ginsberg (1995), we will call each decision at which a non-preferred child is chosen a
discrepancy. Depth-first search will visit the leaf whose path from the root has all discrep-
ancies below depth ¢ before visiting the leaf with a single discrepancy at depth . Its search
order implicitly represents the assumption that the cost of every leaf whose path includes a
discrepancy at the root is greater than the cost of the worst leaf that does not. Equivalently,
the penalty for taking a discrepancy at a given depth is assumed to be greater than the

cost of taking discrepancies at all deeper depths. This strong assumption is not necessarily

18

Figure 2.5: The second pass of iterative broadening restricts search to a binary subtree.

correct in a given tree. This will be vividly illustrated in Section 5.5.1 (page 98), where
we will see that DFS can exhibit very brittle behavior, performing well for some problem
instances and very poorly on others, even when the instances are from the same problem
domain. We will now turn our attention to some alternative search methods that rely on

different assumptions.

2.3 Iterative Broadening

When the search tree has a high branching factor, the behavior of DFS can seem too
stubborn. By trying every child at a given node before backtracking to a previous decision,
DFS can become trapped in the lower left portion of the tree. Figure 2.4 illustrates this
phenomenon on a small scale. For a large problem, the decision nodes higher in the tree
will probably never be revisited by DFS.

Iterative broadening (IB), proposed by Ginsberg and Harvey (1992), attempts to modu-
late the behavior of DFS. IB works by running a sequence of restricted depth-first searches,
each of which considers a larger subset of the tree than the previous. The first iteration

treats each node as having only one child: the heuristically preferred one. The second it-

19

IB (node, bound)

If is-leaf(node)
Visit(node)

else
For ¢ from 0 to bound

IB(child(node, i), bound)

QU W N =

Figure 2.6: Each iteration of iterative broadening (IB) restricts the effective branching
factor of the tree.

eration treats each node as having two children, which will be the two top-ranked children
from the original tree. Figure 2.5 gives an example in a ternary tree. In general, iteration
k in a tree of depth d visits k% leaves. Pseudo-code is given in Figure 2.6.

The search order of IB corresponds to the rather loose assumption that the cost of a leaf
is proportional to the maximum rank of any child in its path to the root. For a relatively
shallow and bushy tree, this may be appropriate. Unfortunately, many trees are dozens or
hundreds of levels deep and so even the binary tree explored during the second iteration of
IB is too large to enumerate completely. Many problems give rise to trees that are uniformly
binary. IB reduces to DFS in such situations. Finer-grained control of the search order is
needed. Perhaps because of this flaw, I am not aware of any systems that actually use IB

in practice.

2.4 Limited Discrepancy Search

Because DFS and IB will probably never revisit the first decisions they make in large
trees, their search orders are implicitly assuming that those decisions were correct. Limited
discrepancy search (LDS), introduced by Harvey and Ginsberg (1995), was designed with

a different assumption in mind. It assumes that the child ordering function is equally

20

Figure 2.7: The second pass of limited discrepancy search (LDS) visits all leaves with zero
or one discrepancies in their path from the root.

LDS (node, allowance)

1 If is-leaf(node)

2 Visit(node)

3 else

4 If allowance > 0

5 LDS(child(node, 1), allowance — 1)
6 LDS(child(node, 0), allowance)

Figure 2.8: Each pass in a limited discrepancy search (LDS) visits all leaves whose path
from the root contains allowance discrepancies. This pseudo-code shows the variant that
explores discrepancies at the top of the tree first.

21

ILDS (node, allowance, remaining)
1 If is-leaf(node)

2 Visit(node)

3 else

4 If allowance > 0

5 ILDS(child(node, 1), allowance — 1, remaining — 1)
6 If remaining > allowance

7 ILDS(child(node, 0), allowance, remaining — 1)

Figure 2.9: Improved limited discrepancy search (ILDS) only enters subtrees that contain
paths with the desired number of discrepancies. This variant explores discrepancies at the
top of the tree first.

likely to make mistakes at every level and thus that discrepancies at any depth are equally
disadvantageous. LDS visits all leaves with k discrepancies anywhere in their paths before
visiting any leaf with k& + 1 discrepancies. The algorithm proceeds in passes, with pass k
exploring paths with & or fewer discrepancies and therefore visiting O(d¥) leaves for a tree
of depth d. Figure 2.7 shows the leaves visited when k equals one. Note that a leaf in the
right subtree from the root is visited on this early pass, but would probably never be visited
when running DFS under time constraints. Pseudo-code for a single iteration of LDS is
shown in Figure 2.8.

Noting that each iteration of LDS generates a strict superset of the tree explored during
the previous iteration, Korf (1996) proposed a modification in which pass k of the algorithm
attempts to traverse only those paths containing exactly k& discrepancies. This can be done
if one knows the maximum depth of the tree, by tracking the remaining depth and making
sure that enough decisions are always left to use up the desired number of discrepancies.
Pseudo-code for the resulting algorithm, which is called improved limited discrepancy search
(ILDS), is shown in Figure 2.9.

ILDS visits (Z) leaves on pass k, which leads to a large improvement over LDS when

22

O(n) passes are performed. When many passes are performed, later iterations of plain LDS
will generate more previously-seen nodes than new ones. However, in most applications,
n is very large and only the first few passes are ever performed. In the first few passes,
both LDS and ILDS must generate O(n) internal nodes to reach each leaf, because only
the greedy path above the discrepancy point can be shared across leaves. Thus they have
higher overhead per leaf than DFS. As we will see later, experimental results show that
the improved search order of ILDS can often overcome this overhead (Korf, 1996; Meseguer
and Walsh, 1998), although this depends on the accuracy of the heuristic and the density
of recognizably optimal solutions.

Unfortunately, it is not clear how to employ ILDS on a non-binary tree. Some researchers
have suggested that all non-preferred children should count as one discrepancy (Korf, 1996;
Meseguer and Walsh, 1998), although there is little evidence to suggest that this is preferable
to considering less-preferred children to count more. It is also not clear whether to take
discrepancies at the top or bottom of the tree first. Such decisions must be made on an ad

hoc basis by running pilot experiments.

2.5 Depth-bounded Discrepancy Search

Of course, the basic assumption that discrepancies at each level are equally disadvantageous
is itself merely plausible and not necessarily correct. Depth-bounded discrepancy search
(DDS), introduced by Walsh (1997), uses a still different assumption: a single discrepancy
at depth 7 is worse than taking discrepancies at all depths shallower than 7. Motivated
by the idea that node-ordering heuristics are typically more accurate in the later stages

of problem-solving, when local information better reflects the remaining subproblem, this

23

Figure 2.10: The second through fourth iterations of depth-bounded discrepancy search
(DDS). The depth bound is 0 for the second iteration (top), then 1 (middle), and then 2
(bottom).

24

DDS (node, remaining)

1 If is-leaf(node)

2 Visit(node)

3 else

4 If remaining < 1

5 DDS(child(node, 0), remaining)

6 else if remaining = 1

7 DDS(child(node, 1), remaining — 1)
8 else

9 DDS(child(node, 0), remaining — 1)
10 DDS(child(node, 1), remaining — 1)

Figure 2.11: Depth-bounded discrepancy search (DDS) is greedy below the depth bound.

assumption is directly opposed to the one embodied by depth-first search. The algorithm
proceeds in passes, iteratively lowering a depth bound. Above the bound, it behaves like
DFS, exploring all possible paths. Below the bound, it always selects the preferred child.
In this way, discrepancies are always taken high in the tree.

Note, however, that each pass of DDS includes all the leaves that were visited on the
previous pass. In a clever improvement, Walsh prevents duplication by having the algorithm
take only non-preferred children at the level of the current depth bound. Because we can
be certain that the previous pass, with its depth bound higher in the tree, selected only
the preferred child at that level, this ensures that each pass only visits leaves that have not
been visited before. Figure 2.10 shows the leaves visited by DDS when the depth bound is
zero, one, and two. Pseudo-code for the algorithm is given in Figure 2.11.

DDS can be used with a non-binary tree. In a tree with branching factor b, DDS visits
b* leaves on iteration k. Like ILDS, DDS suffers from O(n) overhead per leaf in the early
iterations, although the overhead for DDS is slightly worse because no significant sharing
of internal nodes takes place along the paths to one visited leaf and the next. As we will

see, experimental results tend to indicate that DDS expands leaves in an excellent order

25

but that this often does not compensate for its overhead (Meseguer and Walsh, 1998).
Both ILDS and DDS have recently been added to the commercial ILOG Solver product,
and have enabled the solution of previously unsolved scheduling problems (Toby Walsh,

personal communication).

2.6 Tunable Techniques

In addition to the methods we have discussed so far, there are other, more complicated
tree search techniques that rely on adjustable parameters. Most of these are incomplete
stochastic methods, which we will discuss later in Section 3.7. Meseguer (1997), however,
has proposed a systematic search technique called interleaved depth-first search (IDFS).
The algorithm simulates running multiple DFS processes, each exploring a different subtree.
While this algorithm has been shown to be effective on certain CSP problems, it depends
on parameters which are not obvious to set, such as the number of simulated processes and
the depth at which the tree is divided between them. Chu and Wah (1992) have proposed
a similar technique which they call band search. At any given setting of these algorithms’

parameters, each of them follows a deterministic ordering.

2.7 Conclusions

Every tree search technique we have discussed either visits leaves in a predetermined order,
making strong fixed assumptions about the relative costs of leaves in the tree. Some even
require manual tuning of parameters, essentially asking the user to select the most appropri-
ate assumptions from a predefined family. None of the techniques adapts its actions based

on its experience in the tree. What we would like is a search method whose cost predictions

26

are based on the current search tree. In the next chapter, we will examine a technique for

guiding search based on cost predictions that are learned during the search itself.

27

Chapter 3

Learning How to Search:

Adaptive Probing

We show that a learning approach to tree search can be efficient and effective.
The adaptive probing algorithm is introduced, which uses leaf costs to infer
the costs of choosing the various children at each level of the tree. Empirical
results on both combinatorial optimization and constraint satisfaction problems
demonstrate that an adaptive approach can lead to good performance and very

robust behavior.

We saw in the previous chapter that existing algorithms can be viewed as making strong
assumptions about the locations of good leaves. Limited discrepancy search (LDS), for
instance, assumes that all discrepancies are equally disadvantageous and that any two dis-
crepancies are worse than any single discrepancy. In this chapter, we will investigate a
simple algorithm that incorporates explicit learning in order to avoid strong a priori as-
sumptions. In this adaptive approach to tree search, we will use the costs of the leaves we
have seen to estimate the actual mean cost of a discrepancy at each level. Simultaneously,

we will use these estimates to guide search in the tree. Because the cost predictions are

28

AdaptiveProbing (root)
1 Initialize model
2 Loop until time runs out:

3 Probe(root)

Probe(node)

4 If is-leaf(node)

5 Visit(node)

6 Update model based on node

7 else

8 Choose a child of node using current model
9 Probe(child)

Figure 3.1: Pseudo-code for adaptive probing.

made dynamically at run-time, they can reflect observed properties of the current search
tree. We would thus expect them to lead to better performance than assumptions that are
fixed a priori. We will see that these expectations are in fact fulfilled. However, the simple
algorithm we will consider here has the disadvantage of being incomplete. Later chapters

will consider a more elaborate scheme which retains completeness.

3.1 The Algorithm

We will use a very simple framework for the algorithm. To visit a leaf, we will always begin
at the root of the tree and select children until we reach a leaf. This lets us avoid having
to decide when to return to the root. The choice of child at each node will be guided by
the model we have learned so far. Initially, the model has no information about the relative
merits of particular children. Starting with no preconceptions, we randomly probe from the
root to a leaf. Observing the cost of the solution at that leaf will let us update our model
of the actions we took to reach that leaf. By sharpening our action cost estimates based

on the leaf costs we observe and choosing children with the probability that they lead to

29

Figure 3.2: The parameters of a separate cost action model for a binary tree of depth three.

solutions with lower cost, we will focus the probing on areas of the tree that seem to contain
good leaves. Pseudo-code is given in Figure 3.1.

This stochastic probing approach is incomplete because the method cannot easily keep
track of which leaves remain to be visited. Thus, adaptive probing cannot be used to prove
the absence of a goal leaf. In addition, it generates the full path from the root to every leaf it
visits, incurring overhead proportional to the depth of the tree when compared to depth-first
search, which generates roughly one internal node per leaf. However, the problem-specific
search order of adaptive probing has the potential to lead to better leaves much faster. Since
an inappropriate search order can trap a systematic algorithm into exploring vast numbers
of poor leaves, adaptive probing would be useful even if it only avoided such pathological

performance on a significant fraction of problems.

3.2 An Additive Cost Model

There are many different ways to instantiate the general algorithm outlined above. We will
begin by considering a very simple (yet plausible) model of the search tree. Recall that the

model must relate the choice taken at each decision node to the observed cost of the leaf

30

that is eventually reached. We will do this by predicting the cost of every leaf as simply the
sum of certain costs, one cost for each choice made along the path from the root. Each cost
will depend only on the level at which the choice was made and the rank of the child that
was chosen. The model assumes, for instance, that the effect of choosing the second-most-
preferred child at level 23 is the same for all decisions at level 23, no matter which choices
are made at previous or subsequent levels. We will call this the separate action cost model.
Figure 3.2 shows an example for a small binary tree. A tree of depth d and branching factor
b requires db parameters, one for each action at each level.

The separate action cost model is just a generalization of the assumptions used by DFS
and the other search algorithms discussed in Chapter 2. DFS uses an exponential cost
assumption in which later children high in the tree have costs greater than the sum of the
worst choices at all lower levels. For a tree of depth d and maximum branching factor b, DFS
assumes that the cost of child r at level [is 7b%~!. In iterative broadening, later children
are assumed to be more expensive than taking any combination of lower ranked children.
In other words, child r costs roughly d". ILDS assumes that each non-preferred child costs
the same, no matter what the depth. (One could model slight differences between levels,
depending on whether ILDS was implemented to explore discrepancies at the top or bottom
of the tree first.) DDS assumes that discrepancies at the bottom of the tree are expensive,
essentially assuming a cost of rb! for child r at level I. And for interleaved depth-first search
(IDFS), the assumptions depend on the parameters used but are roughly equivalent to DFS
with the additional stipulation that all actions in the first few levels of the tree cost 0. This
yields depth-first searching within multiple subtrees.

Although the model generalizes many current tree search algorithms, there are, of course,

many orderings it cannot represent. The model generalizes across the breadth of the tree,

31

assuming that all children of a particular rank at a given depth have the same cost no matter
how they were reached. The effect of decisions at each level is assumed to be independent
from those at other levels. This disallows a model in which taking many poor actions has
an effect only slightly worse than taking a few poor actions.

The separate action cost model is simple and can be related directly to observed leaf
costs because that is what the model attempts to predict. But recall that the adaptive
probing algorithm also needs a method for using the model to decide which child to choose
at each decision node. We do not want to always choose the action with the lower estimated
cost because the difference between actions might be tiny and our estimates might be
inaccurate. Instead, we will use a technique from reinforcement learning called Q-value
sampling (Wyatt, 1997; Dearden, Friedman, and Russell, 1998) in which actions are selected
with the probability that they are best. To calculate these probabilities in adaptive probing,
the model will need a notion of action cost variance. In addition to estimating of the costs
of each action, we will estimate the variance of the action costs by assuming that each
estimated cost is the mean of a normal distribution, with all actions having the same

variance.

3.2.1 Learning the Model

This model is easy to learn during a search. Each probe from the root corresponds to a
sequence of actions and results in an observed leaf cost. If a; is the cost of taking action

a at depth 7 and [is the cost of the kth leaf seen, probing three times in a binary tree of

32

depth three might give the following information:

Lo + Ly + Ry =l
Ro+ L, + Lo =9

We can then estimate the a; using a least squares regression algorithm. In the experi-
ments reported below, the Widrow-Hoff procedure was used to estimate the parameters
incrementally on-line (Bishop, 1995; Cesa-Bianchi, Long, and Warmuth, 1996).

This simple gradient descent method (also known as LMS, and very similar to the
Perceptron) updates each cost according to the error between a prediction of the total leaf
cost using the current action estimates, ik, and the actual leaf cost, l;. If d actions were
taken, we update each of their estimates by

. (e — 1)
d

where 7 controls the learning rate (or gradient step-size). All results reported below use
n = 0.2, although similar values also worked well. (Values of 1 and 0.01 resulted in reduced
performance.) This update requires little additional memory, takes only linear time, adjusts
d parameters with every leaf, and often performed as well as an impractical O(d?) singular
value decomposition estimator. It should also be able to track changes in costs as the
probing becomes more focused, if necessary. Essentially, though, we regard the target
values as fixed. More complex approaches, such as the Kalman filter , are required to deal
with time-varying state estimation, which is a slightly different problem.

Because we assume that it is equal for all actions, the variance is also straightforward to

33

estimate. If we assume that the costs of actions at one level are independent from those at
another, then the variance we observe in the leaf costs must be the sum of the variances of
the costs selected at each level. The only complication is that the variance contributed by
each level is influenced by the mean costs of the actions at that level—if the costs are very
different, then we will see variance even if each action has none. More formally, if X and Y
are independent and normally distributed with common variance 0%, and if W takes its

value according to X with probability p and Y with probability 1 — p, then

ofy = E(W?) — iy
= puk +o%ky) + (1 —p) (3 + oky) — (pux + (1 — p)py)?

= oy +pk + (1 —ppd — (pux + (1 —p) py)?

Since we can easily compute p by recording the number of times each action at a particular
level is taken, and since the action costs are estimates of the p;, we can use this formula
to subtract away the effects of the different means. Following our assumption, we can then

divide the remaining observed variance by d to distribute it equally among all levels.

3.2.2 Using the Model

Using the model during tree probing is also straightforward. If we are trying to minimize
the leaf cost, then for each decision, we want to select the action with the lower expected
cost (i.e., the lower mean). As discussed above, we do not always want to select the child
with the lower estimated cost. Rather, we merely wish to select each action with the
probability that it is truly best. Given that we have estimates of the means and variance of
the action costs and we know how many times we have tried each action, we can compute

the probability that one mean is lower than another using a standard test for the difference

34

of two sample means. We then choose each action according to the probability that its
mean cost is lower. (Preliminary experiments in which an action was chosen according to
the probability that a sample from its cost distribution will be less than one from the other’s
gave worse performance, as expected.)

For deciding between more than two actions, we can just sample from the distributions
of the sample means and choose the action whose distribution gave the lowest sampled value.
(Note that this is different from sampling from the distributions of the costs themselves.)
This gives the desired result without computing any explicit probabilities. To eliminate any
chance of the algorithm converging to a single path, the probability of choosing any action
is clamped at 0.05Y% for a depth d tree, which ensures at least one deviation on 95% of
probes.

Now we have a complete adaptive tree probing algorithm. It assumes the search tree
was drawn from a simple model of additive discrepancy costs and it learns the parameters
of the tree efficiently on-line. Exploitation of this information is balanced with exploration
according to the variance in the costs and the number of times each action has been tried.
The method extends to trees with large and non-uniform branching factors and depths.
The underlying model should be able to express assumptions similar to those built into
algorithms as diverse as depth-first search and depth-bounded discrepancy search, as well

as many other weightings not captured by current systematic methods.

3.3 Empirical Evaluation

Because the model class we are using can express such a wide range of trees and because a

learning algorithm exists for the incremental setting, it seems as if the algorithm is guaran-

35

teed to perform well. However, there are several challenges facing the algorithm. Learning

could fail for several reasons:

1. Most learning algorithms, including the one used here, have been proved effective only
for the case in which samples are drawn at random. But because we are using the
model to guide search, the samples are not random at all. After many leaves have
been seen, the probing algorithm is likely to find one particular action more likely to

have lower cost than another and it will bias the sampling accordingly.

2. Learning is driven entirely by the leaf costs. If the level of noise is high and they are

not informative enough, no useful information will be extracted.

3. A useful model must be learned quickly enough that the search can adapt to the
current problem instance. Slowly learning a general trend may not be enough to

achieve good performance within a reasonable amount of time.

We first investigate the performance of this adaptive probing algorithm using an abstract
model of heuristic search. This gives us precise control over the density of good leaves and
the accuracy of the heuristic. We will find that adaptive probing outperforms systematic
methods on large trees when the node-ordering heuristic is moderately inaccurate, and ex-
hibits better worst-case performance whenever the heuristic is not perfect at the bottom of
the tree. To ensure that our conclusions apply to more complex domains, we will also evalu-
ate the algorithm using two NP-complete search problems: the combinatorial optimization
problem of number partitioning and the goal-search problem of boolean satisfiability. It
performs well on satisfiability and the naive formulation of number partitioning, but when
using the powerful Karmarkar-Karp heuristic, it is competitive only for long run-times or

when exploiting significant prior knowledge.

36

3.3.1 An Abstract Tree Model

In this model, introduced by Harvey and Ginsberg (1995) for the analysis of limited dis-
crepancy search, one searches for goal nodes in a binary tree of uniform depth. This is an
abstraction of the search trees arising in constraint satisfaction problems. (In combinatorial
optimization, each leaf would have a score, rather than either being a goal or not.) Each
node either has a goal below it, in which case it is good, or does not, in which case it is bad.
The root is good and bad nodes only have bad children. Goals are distributed according to
two parameters: m, which controls goal density, and p, which controls the accuracy of the
heuristic. The generation of children from the root can be thought of as a kind of extinction
process, whereby goodness is passed on to one or both of the children. The probabilities of

the various configurations of parent and children are:

P(good — good good) = 1 —2m
P(good — bad good) =1-p

P(good — good bad) = 2m — (1 —p)

The expected number of goal nodes is (2 — 2m)d, where d is the depth of the tree.
Following Walsh’s (1997) analysis of depth-bounded discrepancy search (DDS), we will
estimate the number of leaves that each algorithm must examine before finding a goal using
empirical measurements over random trees. Random trees can be generated lazily during
the search by deterministically propagating seed values for a random generator down the
tree. To provide a leaf cost measure for adaptive probing, we continue the analogy with the
constraint satisfaction problems that motivated the model and define the leaf cost to be the
number of bad nodes in the path from the root. (If we were able to detect failures before

reaching a leaf, this would be the depth remaining below the prune.) The results presented

37

Adaptive —
DDS------
ILDS---
Biased --—-

0.8

—_— f—"
=T

Fraction of Problems Solved

400 800 1,200 1,600 2,000
L eaves Seen

Figure 3.3: Probability of finding a goal in trees of depth 100 with m = 0.1 and p linearly
varying between 0.9 at the root and 0.95 at the leaves.

below are for trees of depth 100 in which m = 0.1. The probability that a random leaf is a
goal is 0.000027. By investigating different values of p, we can shift the locations of these
goals relative to the paths preferred by the heuristic.

Figure 3.3 shows the performance of DFS, Korf’s (1996) improved version of limited
discrepancy search (ILDS), DDS, and adaptive probing on 2,000 trees. A heuristic-biased
probing algorithm is also shown. This algorithm selects the preferred child with the largest
probability that would be allowed during adaptive probing. Following Walsh, we raise the
accuracy of the heuristic as depth increases. At the root, p = 0.9 which makes the heuristic
random, while at the leaves p = 0.95 for 75% accuracy. ILDS was modified to incorporate

this knowledge and take its discrepancies at the top of the tree first.

38

Adaptive —
ILDS---
Biased -

Fraction of Problems Solved

1,000 2,000 3,000 4,000
L eaves Seen

Figure 3.4: Performance on trees of depth 100, m = 0.1, and p varying from 0.9 at the root
to 0.98 at the leaves.

Adaptive probing quickly learns to search these trees, performing much better than the
other algorithms. Even though DDS was designed for this kind of tree, its assumptions
are too strong and it only branches at the very top of the tree. ILDS wastes time by
branching equally often at the bottom where the heuristic is more accurate. The ad hoc
biased probing algorithm, which branches at all levels, is competitive with ILDS (and will
actually surpass it, given more time) but fails to exploit the structure in the search space.
DFS vainly branches at the bottom of the tree, ignorant of the fatal mistake higher in
the tree, and solves almost no problems within 2,000 leaves. The superiority of adaptive
probing over the heuristic-biased sampling indicates that the tree model is providing a
benefit. Adaptive probing’s performance cannot be explained simply by its basic stochastic

sampling framework.

39

-§ 0.8 1

(2]

% 0.6 1

o)

o

a

%5 04-

c

©

§ 0.2 1 ,

L A Adaptive —
/ DFS -

400 800 1,200 1,600 2,000
L eaves Seen

Figure 3.5: Performance on trees of depth 100, m = 0.1, and p varying from 0.98 at the
root to 0.9 at the leaves.

DDS does better when the heuristic is more accurate, since its steadfast devotion to
the preferred child in the middle and bottom of the tree is more often correct. Figure 3.4
shows the algorithms’ performance on similar trees in which the heuristic is accurate 90%
of the time at the leaves. DDS has better median performance, although adaptive probing
exhibits more robust behavior, solving all 2,000 problems within 4,000 leaves. DDS had
not solved 1.4% of these problems after 4,000 leaves and did not complete the last one
until it had visited almost 15,000 leaves. In this sense, DDS has a heavier tail in its cost
distribution than adaptive probing. Similar results were obtained in trees with uniform
high p. Adaptive probing avoids entrapment in poor parts of the tree at the expense of an

initial adjustment period.

40

Even with an accurate heuristic, however, the assumptions of DDS can be violated.
Figure 3.5 shows what happens in trees in which the heuristic is accurate 95% of the time
at the top of the tree and random at the very bottom. DDS still has an advantage over
ILDS because a single bad choice can doom an entire subtree, but adaptive probing learns
a more appropriate strategy.

To ensure that our insights from experiments with the abstract tree model carry over
to other problems, we will now evaluate the algorithms on three additional kinds of search

trees.

3.3.2 Boolean Satisfiability

Boolean satisfiability is the problem of determining whether a given formula in propositional
logic can ever be true (has any satisfying models) or whether it is self-contradictory, as in
p A —p. It is a fundamental problem in logical inference and, in recent years, it has been
used as a target representation for compilers from problems such as planning and graph
coloring. It is also used for circuit verification.

Following Walsh (1997), we generated problems according to the random 3-SAT model
with 3.5 clauses per variable and filtered out any unsatisfiable problems. All algorithms
used unit propagation, selected the variable occurring in the most clauses of minimum size,
and preferred the value whose unit propagation left the most variables unassigned. The
cost of a leaf was computed as the number of variables unassigned when the empty clause
was encountered.

Figure 3.6 shows the percentage of 200-variable problems solved as a function of the
number of nodes generated. The distribution for DDS extends beyond the plot to 10°7.

ILDS, random probing, and adaptive probing solved all problems within 10% nodes. Al-

41

ot —

g 0.8
)
% 0.6
o)
o
x
‘5 0.4
c
=
g 0.2 / ILDS -~
T A DDS -
A Random —-—-
s Adaptive —
e - DFS e
[T T T |
2 3 4 5 6

L og10(Nodes Generated)

Figure 3.6: Fraction of random 3-satisfiability problems solved. Error bars indicate 95%
confidence intervals around the mean over 1000 instances, each with 200 variables and 3.5
clauses per variable. (The DFS and DDS means are lower bounds.)

42

though Walsh used these problems to argue for the suitability of DDS, he measured leaves
seen rather than nodes generated. As we saw in Section 2.5, DDS generates O(n) nodes
for every leaf and so performs worse when performance is measured in nodes. Both ILDS
and purely random sampling perform significantly better than DDS. (Crawford and Baker
(1994) similarly found random sampling effective on scheduling problems that had been
converted to satisfiability problems.) DFS performs very poorly. Adaptive probing per-
forms slightly better than random sampling (this is most noticeable at the extremes of the
distribution). Although slight, this advantage persisted at all problem sizes we examined

(100, 150, 200, and 250 variables).

3.3.3 Number Partitioning

Number partitioning is a simple yet NP-hard combinatorial optimization problem. The
objective is to divide a given set of numbers into two disjoint groups such that the difference
between the sums of the two groups is as small as possible. One might think of a load
balancing problem or dividing a poorly cut pizza between two equally hungry graduate
students. Number partitioning is a notoriously difficult problem: it was used by Johnson
et al. to evaluate simulated annealing (1991), Korf to evaluate ILDS (1996), and Walsh to
evaluate DDS (1997).

When the numbers are chosen uniformly over an interval, the difficulty of the problem
depends on the relation between the number of digits in the numbers and the number of
numbers. With few digits and many numbers, the probability of a partitioning with a
difference of 0 or 1 increases (Karmarkar et al., 1986). This makes the tree search easier,
as the search can terminate once such a partitioning is found. To encourage difficult search

trees, we can reduce the chance of encountering a perfectly even partitioning by increasing

43

the number of digits in each number. The experiments below use instances with enough
digits that, based on the results of Karmarkar et al., we would expect an instance to have

a perfect partition with probability 10~°. For n numbers and perfect partition probability

1o (321557

For 64 numbers, this is 25 digits; for 128 numbers, 44 digits; and for 256 numbers, 82 digits.

p, this is:

These sizes also fall near the hardness peak for number partitioning (Gent and Walsh, 1996),
which specifies log192™ digits for a problem with n numbers.

Common Lisp, which provides arbitrary precision integer arithmetic, was used to imple-
ment the algorithms. Results were normalized as if the original numbers had been between
0 and 1. To better approximate a normal distribution, the logarithm of the partition dif-

ference was used as the leaf cost.

Two Search Representations

There are two popular ways of representing number partitioning as a tree search problem.
The first is a straightforward greedy encoding in which the numbers are sorted in descending
order and then each decision places the largest remaining number in a partition, preferring
the partition with the currently smaller sum.

A more sophisticated representation for number partitioning was suggested by Korf
(1995), based on the heuristic of Karmarkar and Karp (1982). The essential idea is to
postpone the assignment of numbers to particular partitions and merely constrain pairs
of number to lie in either different bins or the same bin. The decisions of the algorithm

build up a simple constraint graph specifying which numbers are in the same or different

44

}.\ Random ----
}‘\,'\. ILDS---
i

T 4
o
)
=
e
S
—
=)
S]
2
-6-

2,000 4,000 6,000 8,000 10,000
L eaves Seen

Figure 3.7: Searching the greedy representation of number partitioning. Error bars indicate
95% confidence intervals around the mean over 20 instances, each with 128 44-digit numbers.
bins as other numbers. As with the greedy representation, a sorted list is maintained in
decreasing order, but instead of assigning numbers to particular partitions, each decision
merely commits to placing the largest two numbers in the same partition or in different
partitions. Different partitions are preferred, and the difference between the two numbers
is then inserted into the list to be dealt with as any other number. Otherwise, the sum is
inserted. When only one number is left, the constraint graph can be two-colored to yield a
partitioning. As we will see, this representation creates a very different search space from

the greedy heuristic.

45

ﬁl DDS------
I¥ Adaptive —
1 ILDS ——-
|
-4 'Il
D 1
S {
o 5
=
0O
=1
-6
o)
o
-
-7

200,000 400,000 600,000 800,000 1,000,000
Nodes Generated

Figure 3.8: Performance on the greedy representation of number partitioning as a function
of nodes generated.

Results with the Greedy Representation

We will consider the plain greedy encoding first. Figure 3.7 compares the performance of
adaptive tree probing with DFS, ILDS, DDS, and completely random tree probing. To
provide a comparison of the algorithms’ search orders, the horizontal axis represents the
number of leaves seen.

The relative performance of the algorithms indicates that, in this search tree, taking
discrepancies in the middle of the tree does not seem to help. ILDS seems to have the
worst search order. Adaptive probing starts off poorly, like random sampling, but surpasses
all other algorithms after seeing about 1,000 leaves. It successfully learns an informative
model of the tree and explores the leaves in a more productive order than the systematic

algorithms.

46

However, recall that adaptive tree probing suffers the maximum possible overhead per
leaf, as it generates each probe from the root. (This implementation did not attempt to
reuse initial nodes from the previous probe.) The number of nodes (both internal and
leaves) generated by each algorithm should correlate well with running time in problems
in which the leaf cost is computed incrementally or in which the node-ordering heuristic is
expensive. Figure 3.8 compares the algorithms on the basis of generated search nodes. (To
clarify the plot, DFS and ILDS were permitted to visit many more leaves than the other
algorithms.) In a demonstration of the importance of overhead, DF'S dominates all the other
algorithms in this view, and ILDS performs comparably to adaptive probing. DFS reuses
almost all of the internal nodes on each leaf’s path, generating only those just above the
leaves. Since ILDS needs to explore discrepancies at every level of the tree, it will usually
need to generate a significant fraction of the path down to each leaf. DDS, which limits
its discrepancies to the upper levels of the tree, incurs overhead similar to that of adaptive
probing because it never reuses internal nodes in the middle of the tree. ILDS finds better
solutions in sudden bursts, corresponding to its exploration of discrepancies at the bottom
of the tree. Its performance then plateaus as it takes discrepancies at other levels, until
another jump (for instance, around 300,000 nodes). The plateaus of ILDS are more evident
than in Figure 3.7 because the leaves with discrepancies at lower levels can be visited using
fewer new internal nodes.

On instances using 64 numbers, adaptive probing again dominated DDS, but was clearly
surpassed by ILDS. (It performed on par with a version of ILDS that visited discrepancies
at the top of the tree before those at the bottom.) This suggests that, in these search trees,

the advantage of adaptive probing over ILDS and DDS increases with problem size.

47

o -7
5
)
=
a)
S 8
—
(@)
o
-
-0

2,000 4,000 6,000 8,000 10,000
L eaves Seen

Figure 3.9: Searching the CKK representation of number partitioning. Each instance had
64 25-digit numbers.

Results with the CKK Representation

Figure 3.9 shows the performance of the algorithms in the alternative CKK encoding of
the partitioning problem. Performance is shown as a function of leaves seen. DDS has
a slight advantage over ILDS, although adaptive probing is eventually able to learn an
equally effective search order. DFS and random sampling too often go against the powerful
heuristic. As in the greedy representation, however, interior node overhead is an important
consideration. Figure 3.10 shows that DDS and adaptive probing are not able to make up
their overhead, and results using 128 numbers suggest that these difficulties increase on
larger problems. Bedrax-Weiss (1999) argues that the CKK heuristic is extraordinarily
effective at capturing relevant information and that little structure remains in the space.

These results are consistent with that conclusion, as the uniform and limited discrepancies

48

Adaptive —

&>
S
o)
£ g
a)
N
o
—
(@)]
(@)
-l -9

-10-

100,000 200,000 300,000 400,000
Nodes Generated

Figure 3.10: Performance on the CKK representation of number partitioning as a function
of nodes generated.

of ILDS appear best.

3.3.4 Summary of Results

We have now seen that an adaptive approach to tree search has substantial promise. In
each search space we examined, the systematic search algorithms ranked differently in per-
formance. A simple adaptive probing technique used with a straightforward action cost
model can adapt its searching behavior to search spaces with different characteristics. It
is therefore more robust across different domains than algorithms with fixed assumptions.
Experiments in an abstract tree model derived from constraint satisfaction problems showed
that adaptive probing could even outperform DDS in the search spaces it was designed for.

On boolean satisfiability problems, adaptive probing surpassed all other methods. Results

49

on greedy number partitioning showed that adaptive probing exhibited an excellent search
order, although its overhead made its performance only competitive instead of superior. The
only disappointment was the method’s performance on the CKK representation of number
partitioning, on which it exhibited very slow improvement. In the following sections, we

will remedy this flaw.

3.4 Using Previous Experience

We have now seen that adaptive probing can successfully adapt to a wide variety of trees
and that it is competitive with systematic algorithms except when the heuristic is very
accurate. When the heuristic is very often correct, adaptive probing suffers the overhead
of having to discover that fact from scratch. In this section, we investigate two methods
for remedying this liability. Both are based on the idea of adding our prior knowledge as
an element of the search. The first approach is simply to re-use a model that was built
during a previous run on a similar problem. This avoids having to specify an initial bias
manually, although it requires identifying classes of similar problems. The second is to
use a pre-specified probing policy initially, but slowly discount its influence in favor of the
learned model. We will empirically evaluate the effectiveness of these approaches on both
representations of the number partitioning problem. We will see that the simpler method

is more robust, while the combination of policies provides a less reliable advantage.

3.4.1 Reusing Learned Models

With db parameters and a single observed leaf cost per probe, adaptive probing will take at
least db probes to estimate the costs of choosing each child. While the ability to adjust to

any possible configurations of costs is admirable, it is unlikely that the heuristically preferred

50

child is actually significantly worse than the others. We would like to avoid having to spend
the time to learn this, while still maintaining the flexibility to change the model if evidence
suggests we have encountered one of these rare situations. Perhaps the simplest way of
avoiding a prolonged initial learning period is to begin with an estimated model. More
specifically, we can use the costs estimated from a previous run on a similar problem, while
resetting the variance to oo and the recorded number of counts for each action to 0. This
should improve the accuracy of our estimated costs, starting the gradient descent learning
procedure in a good part of weight-space and improving our identification of the preferred
child as useful, while still allowing the algorithm plenty of latitude to explore and revise the

costs as it gradually becomes confident in its estimates and focuses the search.

Number Partitioning: Greedy Space

We will first consider the plain greedy formulation of number partitioning. Figure 3.11
compares the performance of adaptive tree probing with DFS, ILDS, DDS, and completely
random tree probing. Adaptive probing was run twice—the first time with its model’s costs
initialized to zero and the second time with the costs that were estimated by a previous run
on a different problem instance. To provide a comparison of the algorithms’ search orders,
the horizontal axis represents the number of leaves seen.

The figure shows that adaptive probing, in addition to learning to explore a profitable
part of the search space, benefits from the prior knowledge. While tabula rasa adaptive
probing needs to see approximately 1,500 leaves before overtaking the systematic algorithms,
the estimates transferred from the previous problem lead the algorithm directly to good
solutions.

Although Figure 3.11 shows that adaptive probing with transferred knowledge quickly

ol

| Random -
1 ILDS ---
H DDS------
B’ DFS —---
N b Adaptive —
* !"‘\‘1 . Adaptive w/ Prior -----
o)
R
a
S 5
—
(@]
o
|
-67

T T T T T T T T 1
2,000 4,000 6,000 8,000 10,000
Leaves Seen

Figure 3.11: Searching the greedy representation of number partitioning. Error bars indicate
95% confidence intervals around the mean over 20 instances, each with 128 44-digit numbers.

M i Random -
b\ DDS -
i\ I Adaptive —
4 !'-.l Adaptive w/ Prior -----
) l‘|‘ e ILDS -—-
)
=
S
—
g
-l
-7

T T T T T T T T 1
200,000 400,000 600,000 800,000 1,000,000
Nodes Generated

Figure 3.12: Performance on the greedy representation as a function of nodes generated.

92

i Random -
! Adaptive —
i Adaptive w/ Prior -----
! DDS------
lli DFS —---
8 1 ILDS -—-
)
o
R
5
S -10
(@]
o
-
-12

T T T T T T T T 1
200,000 400,000 600,000 800,000 1,000,000
Nodes Generated

Figure 3.13: Searching the CKK representation of number partitioning problems.

learns a good search order, it ignores the overhead that is inherent in restarting at the root
with each probe. Figure 3.12 corrects for this factor, showing performance as a function
of the number of nodes (both internal and leaves). Recall that both adaptive probing and
DDS suffer the maximum possible overhead compared to DFS, which generates roughly one
internal node per leaf. This is reflected in the figure, as DFS finds superior solutions when
given the same number of node generations. Although prior knowledge provides a benefit,

it is not enough to overcome the inherent overhead of adaptive probing.

Number Partitioning: CKK Space

Now we will see if these general trends hold up when moving to the CKK search space.
Figure 3.13 presents the performance of the search algorithms as a function of the number

of nodes generated. =~ Random probing would appear off the top of the plot. Ordinary

93

adaptive probing takes a long time to learn that the heuristic is usually accurate everywhere,
although it looks as if it may eventually approach the systematic algorithms’ performance.
When imbued with prior knowledge, adaptive probing quickly approaches DDS (which
suffers similar node generation overhead). The benefit of using prior knowledge seems to
be greater in this search space than in the greedy one, even though it is the harder one for
plain adaptive probing. When the knowledge is harder to acquire, receiving it in advance

represents a greater savings.

3.4.2 Blending Search Policies

While reusing an old model is easy and seems remarkably effective, it is only possible if one
has the luxury of previous experience with a similar problem. If the previous problem has a
very different distribution of leaf costs, the initial bias can be counter-productive. Another
method for taking advantage of our a priori expectation that the heuristic is beneficial is to
behave at first according to that belief, while continuing to learn a fresh model of the tree.
We can then gradually reduce the frequency with which we make our decisions according
to the prejudiced policy and begin to rely more heavily on our experience in the tree at
hand. While this method applies even in the absence of experience with similar problems,
it requires a prior judgment on how quickly to make the switch. This is essentially the same
problem as deciding how much to trust the initial bias.

In the experiments reported below, we used a multiplicative discounting policy. At the
first probe, we use the prior bias with probability 1. After every probe, this probability
is multiplied by a constant less than one. In effect, this creates a changing blend of the
initial policy and the current model. For an initial policy, we use an algorithm which selects

the preferred child with the maximum probability that would be allowed under adaptive

o4

! DDS -
i Biased -
' Blended Adaptive -----
| Adaptive —
PRER Y ILDS-—-
B\
)
— v,
8 l“:-".‘x
o 1M
aj |
g
o
—
(@]
o
-
-6
7
100000 200000 300000 400000 500,000
Nodes Generated

Figure 3.14: Searching the greedy representation of number partitioning instances, each
with 64 25-digit numbers.

probing (recall that we clamped the probability of any child as a safeguard against complete
convergence of the algorithm). We used a multiplicative constant such that, in a tree of

depth d, we are as likely after 15d iterations to use the current estimated model as we are

to use the prior bias. This constant is 0.5/(154)

Evaluation

The empirical performance of blending policies was mediocre. Figure 3.14 shows algorithm
performance using the greedy representation of number partitioning instances with 64 num-
bers. Besides plain adaptive probing and the blended policy, we also show the performance
of a biased probing algorithm that just uses the initial policy of the blended algorithm.

This biased probing algorithm performs on par with DDS in the greedy search space, but

99

'x Adaptive —
{5 Blended Adaptive -
; biased ------
E DDS ---
3
E
7 lf
@ t
Q I
= th
E ‘;““ *,
5 .
g -8
(@]
(@]
|
-9

T T T T T T T T 1
100,000 200,000 300,000 400,000 500,000
Nodes Generated

Figure 3.15: Searching the CKK representation of number partitioning instances, each with
64 numbers.

seems to be a little worse than plain adaptive probing. The blended adaptive probing algo-
rithm seems equivalent to the plain. On larger problems, however, the blended policy was
eventually surpassed by plain adaptive probing.

In the CKK search space, policy blending seemed to work reasonably well. Figure 3.15
shows the performance of the algorithms on 64-number problems. The blended algorithm
follows the biased probing algorithm at first, then switches over to mimic the adaptive
one. Unfortunately, the good performance of the initial biased policy seems to provide little
benefit to the model learned by the adaptive component. Figure 3.16 shows performance on
larger problems. Here, the model learned by the blended algorithm seems to have benefitted
from its initial experience, although the algorithm still suffers a significant stagnant period

during the transition in which little improvement is seen. Use of a shorter or longer blending

o6

i Adaptive —
| Blended Adaptive -----
i
i
-8
o
[&]
9)
I
5
S 10
o)
o
-
-12

T T T T T T T T 1
200,000 400,000 600,000 800,000 1,000,000
Nodes Generated

Figure 3.16: Searching the CKK representation of instances with 128 numbers.

time seemed to result in worse performance in preliminary experiments on small problems.
Using an abrupt changeover rather than a gradual blending also led to the learning of a poor
model. In short, blending policies seems to function more to temporarily override learning

than to assist it.

3.4.3 Summary of Results

We investigated two methods for using prior knowledge with an adaptive probing algorithm.
The simplest one, merely reusing the action costs estimated on a similar problem, seemed
to perform the best. An attempt to blend an a priori policy with the learning algorithm
gave some improvement, but seems prone to leading to ineffective learning. We conclude

that it is better to directly aid the learning process rather than temporarily override it.

o7

3.5 Parametric Action Cost Models

We have seen that aiding learning by using prior experience is effective for improving the
performance of adaptive probing. Another way of making learning easier is to simplify
and restrict the underlying cost model. Our model has so far allowed action costs to vary
arbitrarily much from one depth to another and from one child to another. This seems
unlikely to be necessary. We will now try a more restricted model, forcing all action costs
for the same child rank to be related by a smooth quadratic function of depth. This
restriction means that there will be fewer parameters to learn and that the kinds of trees
that can be modeled will be more limited.

We will model the cost of a leaf as the sum of the costs of the actions taken to reach it,

as before. If cost, 4 is the cost of action k at level d, then

leaf = a + Z costy, 4
d

as before (except for the new parameter a, which will be explained below). But now we

also have the restriction that

COStk’d =ar+ bkd + de2

where ag, bi, and ¢, are the coefficients of the quadratic function, indexed by the child
rank k. Note that the leaf cost will be linear in the quadratic’s parameters. It is these
parameters that we now estimate from the leaf costs, using the same on-line technique as
before. Instead of db parameters for a tree of depth d with branching factor b, we have

3b 4 1 parameters.

o8

Estimated action cost
|

o © o °
[]
0 © ©
o ©
® o o
o
o
[T T T T
0 3 6 9 12
Depth

Figure 3.17: The action costs learned for an 18-number partitioning problem using the CKK
representation. Filled circles represent the non-preferred actions.

The « in the leaf cost model above is a new additional parameter of the model. This
new parameter helps ensure that the other costs are smooth. When leaves lie at different
levels of the tree due to pruning, the action costs higher in the tree must be quite a bit larger
than those at the bottom, in order that the predicted leaf cost approach the correct order
of magnitude quickly, using only levels above the pruning. This can be seen in Figure 3.17.
These differences in absolute magnitude between levels do not affect the decisions of adaptive
probing because only the actions available at the same level are ever compared. The «
parameter can be thought of as the mean solution cost or the cost of the root node and it
removes any need for the parameters to be very different to accommodate pruning.

To help keep the values of the parameters to be learned roughly similar in terms of their
expected orders of magnitude, the quadratics were expressed not in terms of the usual depth

levels, but in terms of the percentage of the maximum depth. This kept the parameter for

99

Adaptive ------
Adaptive w/ Prior -
Constrained Adaptive —---
DDS——
o | T ILDS —--
D : .
QO
o
O
5
S 104
(@]
o
|
_12 |

T T T T T T T T 1
200,000 400,000 600,000 800,000 1,000,000
Nodes Generated

Figure 3.18: Adaptive probing in the CKK space using 128 numbers and a model which
constrains action costs to be a quadratic function of depth.

the d term from having to be adjusted very much more finely than that for the d? term.

3.5.1 Evaluation

Figure 3.18 shows results of adaptive probing using the quadratic model on the number
partitioning problem. As the figure shows, the model is learned very quickly, and is effective
in guiding search. The knowledge conveyed by the restricted form of the model gives a
performance improvement comparable to reusing a model from a previous run on similar
problem, although the quadratic model does seem to suffer for its inflexibility as the run
becomes longer. Figure 3.19 shows a model that was learned.

One could also imagine requiring action cost estimates at a particular depth to have a

smooth relationship. In the TSP for example, there are O(n) children at each level (one for

60

. /
Non-preferred action ——+
0.6 Preferred action ——

0.4

Estimated cost

0.2

0.0

0.0 02 04 0.6 08
Percentage in depth

Figure 3.19: A quadratic action cost model learned by adaptive probing for searching the
CKK representation.

each unvisited city). Instead of maintaining O(n) costs at each depth, one might maintain
a quadratic curve at each depth.

We explored one way to parameterize the action cost model: forcing the costs for each
child rank to be quadratic in depth. Different domains might benefit from different param-
eterizations, however. In the traveling salesman problem, for example, both the depth and
the branching factor are O(n) (one child for each unvisited city at each level). It may be
useful to constrain the action costs at a particular level to lie in a quadratic relation to each
other, when ordered by child rank. (And if the action costs at a particular depth have a
known relation to each other, it may be possible to choose among them in less than O(n)
time.) One might even imagine constraining the parameters of the quadratics at each level
to vary smoothly with depth, perhaps according to an additional quadratic function. In

this way, the O(n?) parameters for the traveling salesman problem could be represented

61

with nine parameters.

3.6 Summary of Results

The adaptive approach to tree search is promising. Using an explicit model of the search
space, an algorithm can learn which actions lead to better solutions in the current tree. As
expected, we found this approach to be robust both within and across problem domains.
As an added bonus, it was easy to incorporate prior experience on similar problems. Even
when taking its overhead into account, adaptive probing seemed to perform respectably in
every search space. The only space in which it was not the best or near the best was the
CKK space for number partitioning, in which the node-ordering heuristic is very accurate.
Of course, further work is needed to assess its performance in very different domains, such
as those with a high branching factor, and against additional methods, such as interleaved

depth-first search (Meseguer, 1997).

3.7 Related Work

Stochastic tree sampling and using learning to improve search performance have each been
studied before, although never together in the context of combinatorial optimization. We

will briefly review some of the recent work in these areas.

3.7.1 Tree Probing

Crawford and Baker (1994) investigated random tree probing on scheduling problems and
found it remarkably effective when compared against both tree-based and iterative improve-

ment satisfiability procedures.

62

Abramson (1991) used random sampling in two-player game trees to estimate the ex-
pected outcome of selecting a given move. He also discussed learning a model off-line to
predict outcome from static features of a node. In an optimization context, Juillé and
Pollack (1998) used random tree probing as a value choice heuristic during beam search,
although no learning was used.

Bresina (1996) used stochastic probing for scheduling, introducing a fixed ad hoc bias
favoring children preferred by the node-ordering heuristic. One can view adaptive probing as
providing a way to estimate that bias on-line, rather than having to specify it beforehand,
presumably using trial and error. (However, note that adaptive probing will eventually
converge to sampling around a single privileged path once it has enough data.) By making
explicit the dependence of the search on the information observed, an adaptive approach
makes clear what the search depends on, easing design and debugging. Relieving the user
from having to specify parameters also allows the use of a more complex and flexible model.

The Greedy Random Adaptive Search Procedure (GRASP) of Feo and Resende (1995)
is, in essence, heuristic-biased stochastic probing with improvement search on each leaf.
Adaptive probing provides a principled, relatively parameter-free, way to perform the prob-
ing step. By using the cost of the local minimum found by the improvement search as the
leaf cost to learn from, adaptive probing would be learning where to disregard the node
ordering heuristic in order to produce solutions that were the most useful starting points
for the improvement search. (See also the STAGE algorithm, below.)

Finally, one could also interpret aspects of Ant Colony Optimization (ACO) algorithms
(Dorigo and Gambardella, 1997), in which ‘pheromone’ accumulates to represent the in-
formation gathered by multiple search trials, as serving as an approximation of adaptive

probing. In ACO, each search trial can be viewed as a stochastic probe into a tree that

63

uses a different variable ordering. Much work on ACO has focused on the traveling sales-
man problem, so this corresponds to starting at a different city in each trial. Statistics are
recorded for each edge in the graph on how often it is taken, corresponding to an estimation
of the cost of each child at a decision node. By viewing this as adaptive probing, one might

be able to avoid the laborious parameter tuning required in current ACO formulations.

3.7.2 Learning to Search

Squeaky-wheel optimization (Joslin and Clements, 1998) adapts during tree search, al-
though it learns a variable ordering for use with a greedy constructive algorithm, rather
than learning about the single tree that results from using an ordinary variable choice
heuristic. The relative benefits of adapting the variable ordering as opposed to the value
ordering seem unclear at present. Adaptive probing is slightly more general, as the squeaky-
wheel method requires the user to specify a domain-specific analysis function for identifying
variables that should receive increased priority during the next probe.

In the context of short-path algorithms, Korf (1990) introduced the learning real-time
A* algorithm (LRTA*), which updates stored heuristic values to improve subsequent search.
Nilsson (1998) discusses the use of reinforcement learning techniques such as temporal dif-
ference learning to adjusting weights for the components of a heuristic function for shortest-
path search, although empirical results are not mentioned.

Adaptive tree probing is similar in spirit to iterative improvement algorithms such as
adaptive multi-start (Boese, Kahng, and Muddu, 1994), PBIL (Baluja, 1997), and COMIT
(Baluja and Davies, 1998) which explicitly try to represent promising regions in the search
space and generate new solutions from that representation. For some problems, however,

tree search is more natural and heuristic guidance is more easily expressed over extensions

64

of a partial solution in a constructive algorithm than over changes to a complete solution.
Adaptive probing gives one the freedom to pursue incomplete heuristic search in whichever
space is most suitable for the problem. It is a promising area of future research to see how
the two types of heuristic information might be combined.

Adaptive probing is also related to STAGE (Boyan and Moore, 1998), which attempts to
predict promising starting points for hill-climbing given the values of user-specified problem-
specific features. The discrepancy cost model requires less of the user, however, since the
usual node-ordering function is used as the only problem-specific feature. The tree structure
itself can be used to give the geometry for the search space model.

In the previous work on learning for improvement search, there has been some investi-
gation of integrating prior knowledge for transferring problem-solving experience between
problems. The X-STAGE algorithm (Boyan and Moore, 2000) is one example. The STAGE
algorithm learns a model during search that predicts when an initial solution will yield
good results with hill-climbing (or a similar algorithm). This model is used to intelligently
restart after the hill-climbing has reached a local maximum by switching temporarily to
hill-climbing according to the model’s prediction of a solution’s potential as a starting place
(which might be different from its quality). In X-STAGE, several initial training problems
are run and a separate model is learned on each using STAGE. These models are then used
to solve a new problem by having each model vote on whether or not to accept a proposed
modification to the starting solution. This avoids worrying about having to scale a model
to appropriate values for use on a new problem, but does not allow any adaptation to the
new problem instance. Zhang and Dietterich (1995) have also done work on learning to
control an iterative improvement algorithm, although their method is significantly more

complicated.

65

3.7.3 Decision-theoretic Search

The DTS system of Othar and Hansson (1994) uses learning during search to help allocate
effort. Their method learns a function from the value of a heuristic function at a node
to the node’s probability of being a goal and the expected effort required to explore the
node’s subtree. It then explores nodes with the greatest expected payoff per unit of effort.
In a similar vein, Bedrax-Weiss (1999) proposed weighted discrepancy search, which uses a
training set of similar problems to estimate the probability that a node has a goal beneath
it, and uses the distribution of these values to derive an optimal searching policy. Adaptive
probing is less ambitious and merely estimates action costs rather than goal probability.
Horvitz et al. (2001) use runs on training data to learn a model of running time,
and then use this model to derive a restart policy for a randomized backtracking search.
This metareasoning approach focuses on the utility of search when trying to solve as many
problems as possible from a set under time pressure. It could be used on top of the approach
we pursue here, which focuses more on modeling the structure of the search space and using

the model to guide search.

3.7.4 Reinforcement Learning

Although adaptive tree probing seems superficially like traditional reinforcement learning,
since we are trying to find good actions to yield the best reward, important details differ.
Here, we always start in the same state, choose several actions at once, and transition de-
terministically to a state we have probably never seen before to receive a reward. Rather
than learning about sequences of actions through multiple states, our emphasis is on repre-
senting the possible action sets compactly to facilitate generalization about the reward of

various sets of actions. We assume independence of actions, which collapses the breadth of

66

the tree, and additivity of action costs, which allows learning from leaves. Since each state

corresponds to a sequence of actions, we are generalizing over both actions and states.

3.8 Limitations

Adaptive probing is incomplete—even for a small tree, there is no guarantee that all leaves
will be visited within a bounded amount of time. And if the entire tree happens to be
explored by sheer good luck, there is no way to recognize that happy event. Its stochas-
tic, unsystematic probing means that there is no compact representation for recording the
portion of the search space that has been visited—we would have to store all paths ex-
plored. Even if we collapse identical prefixes, this could mean storing most of the search
tree, thereby using space exponential in the problem size.! More generally, it seems as if
the ability to immediately alter the search in reaction to new information must preclude
an efficient way to completely enumerate the space, as each new piece of information might
suggest a new and unrelated direction for subsequent exploration. We will explore this issue
further in the next chapter.

Not only is adaptive probing incomplete, but it has no mechanism to promote exploration
of the search space. The emphasis of adaptive probing is on narrowing the sampling to the
region predicted to contain the best solution. Only the ad hoc limit on the probability that
the best action will be selected prevents the algorithm from converging onto the single path
that it believes is best. By exclusive emphasis on narrowing the search, complete coverage
of the search space is neglected. The algorithm never really tries to explore, but rather

merely tries to avoid premature exploitation.

The worst case occurs when, for all nodes whose children are leaves, all but one of the children has been
expanded. If all children of a node were expanded, we could mark that node as completely explored.

67

It should be possible to mitigate this convergence problem by adding a second phase to
the algorithm. During the first phase, the algorithm attempts to narrow the search down
to a single path. Then, after the probability of the predicted best path reaches a certain
threshold, the maximum probability of selecting the best action could be gradually lowered,
causing the algorithm to explore paths similar to the predicted best path. Although the
algorithm would still be incomplete, its focus of attention would gradually become more

diffuse and it would eventually explore the entire search space with high probability.

3.9 Other Possible Extensions

It may be worthwhile to distribute variance unequally among depths. Because the effects
of variance sum across levels, it may be possible to simply use a second on-line regression
to divide up the mean error. Additional features besides depth might be helpful, perhaps
characterizing the path taken so far. This might take the form of conditioning on the
previous action.

Adaptive probing can be used for goal search, as we saw with boolean satisfiability, as
long as a maximum depth and a measure of progress are available. If a measure of leaf
quality is not available, it may be possible to fit the model using many small instances of
similar problems (or small versions of the current problem) that can be quickly solved and
then to scale up the model to guide probing on the original problem.

In this thesis, we are focusing on searching a tree whose structure has been assumed.
In other words, we have been learning when to disregard the heuristic that choose the
value for the current variable at each decision node. But the adaptive search paradigm is

quite general and could equally well apply to the variable-choice heuristic. In fact, some

68

preliminary experiments on number partitioning have shown that for incomplete search it
can sometimes be more useful to search over the choice of variable than the choice of value
(Ruml, 2001b). One can even conceive of doubling the depth of the tree, first branching on
which variable to choose and then branching on the value to give it. Although this makes
the tree very large, an adaptive search algorithm that can quickly discover where it is most
useful to branch might be able to take advantage of the additional flexibility to find better
solutions.

For some domains, multiple value-ordering heuristics are available and the best one
to use depends on the problem. Lagoudakis and Littman (2001) have done work on using
training experience to generate a policy off-line for selecting the heuristic based on features of
the problem or subproblem under consideration. By using the same techniques as employed
in adaptive probing, one could avoid the training phase and learn to select the appropriate
heuristic on-line. The cost of a leaf would be its depth and the algorithm would try to learn
which heuristics resulted in small subtrees. This on-line approach would also eliminate the

need to characterize a suitable class of training instances

3.10 Conclusions

It is a widely held intuition that tree search is only appropriate for complete searches, while
local improvement search dominates in hard or poorly understood domains. We have seen
how a simple adaptive probing technique can overcome the strong assumptions that are built
into traditional systematic tree search procedures. By learning a model of the tree on-line
and simultaneously using it to guide search, we have seen how incomplete heuristic search

can be effective in a tree-structured search space. When the node-ordering heuristic is very

69

accurate, a suitable learning bias is necessary for acceptable performance in practice. But for
problems with unknown character or domains that are less well-understood, the robustness
of an adaptive approach makes it superior. Its flexibility raises the possibility that, for
difficult and messy problems, incomplete tree search may even be a viable alternative to
local improvement algorithms.

In the next chapter, we will extend this initial exploration of adaptive tree search by

investigating a remedy to adaptive probing’s main limitation: its incompleteness.

70

Chapter 4

Best-Leaf-First Search

We introduce the best-leaf-first search framework for complete adaptive tree
search. The framework relies on a model of leaf costs and it structures the
search to visit leaves in order of increasing predicted cost. Later chapters will
instantiate the framework using different tree models to derive specialized search

algorithms.

In the previous chapter, we saw that an effective model of the distribution of leaf costs
could be learned and exploited for search. However, adaptive probing was incomplete.
Although this is often not an issue for very large problems, for smaller problems it can
be important to guarantee that the best possible solution has been found. In the case of
constraint satisfaction problems, for instance, it is often helpful to know that no feasible
solution exists. Furthermore, as we will see, structuring the search to achieve completeness
can simultaneously provide a principled way to order exploration of the search space.

In this chapter, we will see how a simple and only mildly restrictive framework can be
used to structure an adaptive search while achieving completeness. As with adaptive prob-
ing, we will encapsulate the algorithm’s information about the search tree into a predictive

model of leaf costs. The key idea is to visit leaves in a rational order according to the

71

model. Thus we visit first those leaves that, based on the currently available information,
are predicted to have lower cost. For this reason, the framework is called best-leaf-first
search (BLFS). The general BLFS scheme depends crucially on the model that is used.
After discussing the framework itself in this chapter, the following two chapters will explore

two particular instantiations of the framework using two different tree models.

4.1 The BLFS Framework

Recall that our goal is to visit the best leaf in the tree. When armed with only heuristic
information, the best we can do is to visit leaves in increasing order of their predicted
cost. Even if we assume that an accurate model of leaf costs is provided before the search,
this search order is difficult to accomplish exactly. Given an expressive model, such as the
separate action cost model used in Chapter 3, it is very difficult to enumerate leaf paths in
increasing order.! Any practical strategy must avoid maintaining a potentially enormous
list of backtrack points. We must also be careful to limit the time we spend regenerating
portions of the tree we have already seen.

A straightforward solution to all of these difficulties is to merely approximate increasing
order by adopting a progressively expanding search horizon. At each iteration, we will visit
all leaves whose cost is predicted to fall below some upper bound. At first, we will set the
bound very low, so that only leaves that are predicted to have very low cost will be visited.
By successively raising the bound, we will visit more and more leaves of progressively

increasing predicted cost. Unlike discrepancy search, we cannot increment to the next

LGiven a set A of n positive integers, create a separate cost model with n levels and two children per level
in which all preferred children cost 0 and the other children are assigned unique values from A. If we can
answer the question of which path leads to the cheapest leaf whose cost is greater than some positive integer
B, then we can solve the subset sum problem, which is NP-complete (Garey and Johnson, 1991, problem
SP13), by setting B to be one less than the sum we seek.

72

BLFS(root)

1 Visit a few leaves

2 Nodes-desired < number of nodes visited so far

3 Loop until time runs out:

Double nodes-desired

Estimate cost bound that visits nodes-desired nodes
Call BLFS-expand(root, bound)

If entire tree was searched, return

~N O Ot i~

BLFS-expand(node, bound)
8 If is-leaf(node)

9 Visit(node)

10 else

11 For each child of node:

12 If best-completion(child) < bound
13 BLFS-expand(child, bound)

Figure 4.1: Simplified pseudo-code for best-leaf-first search.

integer because child costs may vary widely. If the bound is too small to afford many new
children, we risk visiting few new leaves while incurring the overhead of regenerating all
nodes visited during the previous pass. But as the increment grows, we lose the desired
search order. During a pass, we will visit all affordable leaves in depth-first order, even
though we would prefer to visit the most expensive of the affordable leaves last.
Zilberstein, Charpillet, and Chassaing (1999) have shown that doubling the length of
successive iterations is the optimal schedule when no information is available about the
deadline. If we can arrange the bound such that we visit twice as many nodes at each
iteration as were visited during the previous iteration, then the overall overhead of the
algorithm will be bounded by 3 and we will visit leaves in an approximation of the optimal

order.? So we will tracking the number of nodes expanded on every iteration and then

2Let the number of nodes visited in the last iteration be n. By definition, this is equal to the number
of nodes in the entire tree. In the worst case, the number of nodes visited on the previous iteration of the
doubling scheme will be n — 1. The number of nodes visited in all prior iterations will be (n —1)/2 4 (n —
1)/4 + ... which sums to about n — 1. The number of nodes visited by the doubling scheme is the number

73

estimate the bound needed to visit twice as many during the next. Pseudo-code for the
BLFS framework is shown in Figure 4.1.

Because each iteration of BLF'S is a depth-first search, BLFS is compatible with all of the
sophisticated backtracking enhancements developed to improve depth-first search. These
include not only branch-and-bound for combinatorial optimization, but also techniques for
constraint satisfaction problems such as backjumping and dynamic backtracking. The cost
model just enforces additional pruning.

The predictive model of leaf costs is used in two places: to decide whether to descend
into a subtree in step 12, and to estimate the next cost bound in step 5. In the next section,

we will explore the role of the model in more detail.

4.2 The Tree Model

BLEFS requires that its model of leaf costs support the following two operations:

compute f(n): In order to visit only subtrees containing leaves whose costs fall under the
current iteration’s bound, we need an estimate of the cost of the best leaf under a
given branching node. In other words, we need an estimate of the cost of the best
completion of the partial solution represented by that node. We will notate this
estimate as f(n) in analogy to terminology used in shortest-path algorithms, as will

be explained later in Section 4.4.

estimate cost bound that yields a given number of nodes: In order to limit the over-

head of BLFS, the number of nodes must grow exponentially across iterations. The

visited on the last iteration, n, plus the number visited on the previous iteration, n — 1, plus the number
visited on all prior iterations, about n — 1. So the total number of nodes visited in the worst case is about
3n.

74

computation of the cost bound need not be exact, but should preserve the general

exponential growth of the search.

In later chapters, we will see how these estimates can be efficiently computed using particular
cost models, such as the separate action cost model used by adaptive probing in the previous
chapter. But first we will delineate some desirable properties these two computations should

have.

4.2.1 Properties of f(n)

The function f(n) controls the expansion of nodes during the search (step 12 in Figure 4.1).
It can be computed using any information available at n or along its path to the root. (Nodes
below n may not have been generated yet so information from the subtree is inaccessible to
f.) For every leaf node [, we will define f(l) to be the predicted cost of the solution at that
leaf. The most basic property that f(n) should have for the rest of the tree is that it be
non-decreasing: its value can become larger as we descend into a tree but not smaller. This
is crucial for BLFS to be able to visit all leaves whose predicted cost is within the current
cost bound. If the f(n) value were to decrease along a path, then BLFS might prune away
that path high in the tree even though deeper down it would have become clear that the
subtree does contain a leaf whose cost is within the bound.

While a decreasing f(n) gives incorrect behavior, an increasing f(n) can result in inef-
ficiency. If f(n) increases along a path, then that path might be pruned away at a deeper
level in the tree than necessary, possibly wasting time. However, the algorithm will still
visit the correct leaves. In fact, no work will have been wasted as long as at least one of the
siblings of the pruned node does lead to a leaf that is within the bound.

Putting these two desiderata together, we see that consistency is a fundamental property

()

we would like f(n) to obey. That is, every branching node should have at least one child
whose f value is equal to that of the parent.?> This ensures that a node is expanded if
and only if it leads to a leaf whose predicted cost is within the cost bound. In other
words, f(n) should return the predicted cost of the best leaf below the given node n. Note
that consistency is different from accuracy in the sense that the predicted leaf costs might
not match the actual solution costs at all. BLFS explores in a manner that makes sense
according to its model and the question of how well the model predicts solution quality in
a specific tree is a separate issue. But given particular values for the leaves of the tree,
consistency tells us what values f(n) should return at the internal nodes.

One easy way to ensure that the estimate is consistent is to represent f as a linear
function of separate costs for each action at each level. This is the type of action cost model
we saw in Section 3.2 with adaptive probing. The estimated cost from the root to a given
node is easy to compute as the sum of the costs of the actions taken, and the estimated

best completion is just the sum of the best actions at the remaining levels.

4.2.2 Estimating the Cost Bound

The second operation that the tree model must support, in addition to f(n), is the esti-
mation of a cost bound that will yield a search generating the desired number of nodes.
This estimate need only be accurate enough to yield the desired doubling behavior across
iterations of search—it can be incorrect by any constant factor.

Even for a relatively simple cost model, this is not a simple task. For the implementa-
tions whose results are reported in this thesis, we will avoid this problem by reversing the

estimation problem: instead of estimating the bound for a given number of nodes, we will

3This is stronger than Pearl’s (1984) use of the term, which is equivalent to mere nondecreasing
monotonicity.

76

use the model to estimate the number of nodes that would be visited for a given bound.
We will then use a simple one-dimensional bisection-style search over bounds until we find
an appropriate one.

This is likely to be more accurate than using analytic approximations to derive a cost
bound. We are most interested in extremely small cost bounds, in the tail of the distri-
bution of possible leaf costs. These extreme values are the least likely to be approximated
accurately. For the cost models we will be considering, it is relatively straightforward to es-
timate the number of nodes for a given bound. And if we happen to know the approximate
value of the desired bound, that value can be used as the starting point of the bisection
search.

We have now seen the two operations that a tree model must support for use with the
BLFS framework. First, a model should supply consistent f(n) values representing the
predicted cost of the best leaf below a given node. Second, it should supply a function for
estimating the number of search nodes that would be generated when using a given cost
bound. This estimation should efficiently mimic the BLFS search procedure, anticipating

the f values that will be encountered and the pruning that will be done.

4.2.3 On-line Learning

BLFS separates the search framework from the tree model used to guide the search. One
advantage of this decoupling is that the model need not be fixed in advance—it can be
learned during the search. This interacts well with the iterative behavior of BLFS. The
initial model at the beginning of the search process will not be very accurate. But because
the early iterations are very short and because each iteration visits strictly more nodes than

the previous one, the effects of the poor initial model are limited. As long as we visit enough

7

new nodes to gather new information and refine the model, it will improve and the search
will take advantage of these improvements.

One important implementation detail should be noted here: we can increase our chances
of visiting exactly the desired number of nodes by based the pruning decisions during each
iteration on a separate, static copy of the model that reflects the state it was in when it
was used to estimate an appropriate cost bound to use, at the start of the iteration. This
concession to efficiency means that the search will take advantage of new information only

after the next iteration begins.

4.3 Rational Search

The term ‘rationality’ has been used in so many different ways and in so many different
contexts that it is worth taking a moment to clarify in what respects BLFS is rational.
BLFS is rational in the sense that, by visiting leaves in order of increasing predicted cost, it
is maximizing the expected solution quality. Visiting any leaf other than the predicted best
would, on the basis of the algorithm’s current information, result in finding a worse solution.
One of our assumptions here is that the error of the tree model is the same for all leaves.
More precisely, we assume that the expected bias in the tree model’s predictions is zero for all
leaves. This is a benign assumption because if the model were systematically biased, it could
be systematically corrected, leaving the resulting corrected model with only unsystematic
unbiased errors. So we can say that BLFS is rational because it maximizes quality given
its beliefs. More precisely, it is approximately rational, because it must approximate the
optimal search order to maintain computational efficiency.

Of course, DFS is also rational in the sense of maximizing quality given current beliefs,

78

because it could be viewed as maximizing quality in the context of fixed beliefs that happen
to be implausible. But BLFS is rational in the additional sense that it can react to new
information. Depending on the tree model in use, information observed during the search
can change the current model in an arbitrarily large way, leading to adaptive behavior. No
previous complete search algorithm has this property. We should note that BLF'S itself only
approximates the ideal of instant adaptation. Because the search is structured in iterations,
each of which is guided with a static copy of the model from the previous iteration, there
will usually be a lag between changes in the model and changes in the algorithm’s behavior.

BLFS is not informed of its time deadline. If one knew that plenty of time remained,
and if an estimate of the uncertainty of the cost model were available, one could implement
a more sophisticated approach that might select seemingly poor actions in order to best
reduce the uncertainty in the model and increase the chance of ultimately selecting the
optimal leaf in the future. Such methods have been explored in the context of game tree
search (Russell and Wefald, 1991) and reinforcement learning (Dearden, Friedman, and
Russell, 1998) and would be an interesting avenue for future extensions of BLFS.

The idea of viewing a search algorithm as a rational agent has been proposed before.
Russell and Wefald (1991) discuss work on metareasoning and search, that is to say, rea-
soning about which search actions (or other work) to perform. Metareasoning applies to
situations in which time is a valuable resource, such as real-time applications with time
penalties. When time can be valued on the same scale as solution quality, further search
may not always be beneficial. Russell and Wefald, as well as Mayer (1994), use past expe-
rience to compute preferences for expanding nodes in a shortest-path algorithm. Hansson
(1998) conducted a preliminary investigation into similar techniques for optimization trees.

This work relies on information already gathered on a corpus of similar problems, rather

79

than learned from the current tree.

In this thesis, we assume that further search is always beneficial, and we merely consider
which searching actions might be most profitable to take. Deciding where to search and
when to stop searching can be regarded as orthogonal issues. Decision-theoretic metarea-
soning methods could certainly be applied on top of BLES to halt the search when the
expected improvement is not worth additional time. The tree model should prove helpful
in estimating the expected improvement. If even the smallest algorithmic actions, such as
node expansion, are expensive, then it may become necessary to weight the benefit to be
gained from visiting the leaf with the lowest predicted cost against the time that would be
necessary to reach it. But in most domains, one has time to visit thousands of leaves, so
we will leave aside issues of node expansion utility and focus on directing the search toward

the most promising leaves.

4.4 Relations to Shortest-path Algorithms

The topic of adapting a search order in light of heuristic information uncovered during the
search has been explored extensively in artificial intelligence in the context of shortest-path
problems. As we recall from Section 1.1.2 (p. 6), the goal in a shortest-path problem is to
find the shortest (or cheapest) path from a given initial state to any state that satisfies a
given goal test function. These desired destination states are also called goal nodes. Tasks
such as planning, puzzle-solving, and navigation can be cast as shortest-path problems in
which one wishes to find a cheapest sequence of actions that transforms an initial situation
into some desired goal situation.

Often, the general term “heuristic search” is equated with the specific framework of

80

IDA*-expand(node, bound)

1 If is-goal(node)

2 Exit, returning node

3 else

4 For each child of node:

5 If f(child) < bound

6 IDA*-expand(child, bound)

Figure 4.2: Pseudo-code for the inner loop of iterative-deepening A* search (IDA*).

best-first search developed for shortest-path problems (Luger and Stubblefield, 1998, p. 124;
Nilsson, 1998, p. 139; Poole, Mackworth, and Goebel, 1998, p. 132). The quintessential
example of best-first search in every Al textbook is the exponential-space A* shortest-path
algorithm (Hart, Nilsson, and Raphael, 1968). A related algorithm, iterative deepening
A* (IDA*), approximates the behavior of A* while taking only linear space (Korf, 1985).
As we will discuss below, these shortest-path algorithms are generally not appropriate for
searching the bounded-depth trees arising in combinatorial optimization and constant satis-
faction (Zhang and Korf, 1993). In many modern Al textbooks, techniques for optimization
such as iterative broadening and node ordering for depth-first search are mentioned in the
same chapter as heuristic shortest-path algorithms, but they appear together as a grab-bag
of techniques for tree search, rather than as cousins related at a fundamental level. A
comparison with BLFS exposes these similarities.

Pseudo-code for IDA* is shown in Figure 4.2. There are obvious similarities with BLF'S,
which was shown in Figure 4.1 on page 73. As in BLFS, IDA* proceeds in passes, each of
which is a depth-first search that visits all nodes within a cost bound.* Table 4.1 summarizes

a comparison of the two algorithms. Both control node expansion according to an evaluation

1Because iterative deepening proceeds by increasing a depth bound and BLFS proceeds by increasing a
cost bound, a better name for BLFS might have been iterative worsening!

81

Table 4.1: A comparison of BLFS and IDA*.

BLFS IDA*
f(n) semantics | best leaf below n best path through n
desired f(n) property | consistent non-overestimating
f(n) non-overestimating | correctness optimality
f(n) non-underestimating | efficiency efficiency
f(n) source | from user or learned = g(n) + h(n)
g(n) source | not necessary from problem
h(n) source | not necessary from user
additive model | convenient required
updating bound | estimation add e
rational optimal

function, notated f(n). In BLFS, the f(n) value of a node is computed as the predicted
cost of the best leaf below it (i.e., the node’s best completion). In IDA*, the f(n) value is
a prediction of the cost of the shortest path to the nearest goal that passes through that
node. In this way, BLFS can be seen as an extension of IDA* to finding good leafs, rather
than good paths.

This difference in the f function’s semantics is reflected in how it is computed. In
IDA*, the f(n) prediction is decomposed into the path cost, notated g(n), which measures
the cost of the shortest path from the root to m, and a heuristic value, notated h(n),
which (under)estimates the cost of the shortest path from n to the goal. The h function
is supplied by the user. This is a natural decomposition for shortest-path problems, but it
does not apply directly to combinatorial optimization problems. BLFS considers f(n) as
the predicted cost of the best leaf in the subtree below n. BLFS uses its leaf cost model to
estimate the entire f(n) function directly. If one considers that model to be the heuristic
information supplied by the user, then BLFS is using the user’s heuristic information to
estimate f, rather than just h, as is done in shortest-path heuristic search.

IDA* can be used for combinatorial optimization—in many domains, it is possible to

82

construct an f function that yields a lower bound on the quality of any leaf below a given
node. However, IDA* is a poor choice for two reasons. First, it visits too many internal
nodes. Because most of the f values will be underestimates, many internal nodes will have f
values lower than the value of the best leaf. IDA* visits all of these nodes before generating
its first leaf. When solving a large problem or when operating under time constraints, this
delay is unacceptable. The second problem with IDA* has to do with updating the cost
bound. The algorithm updates its bound to the smallest f value that was seen on the
previous iteration but that is greater than the current bound. When many nodes have the
same f values, this can work well. But in an optimization problem, it is not uncommon
for every node to have a slightly different f. This leads IDA* to increase its bound too
cautiously, expanding only one new node on each iteration.

BLFS does not suffer those problems. BLF'S uses an explicit representation of its predic-
tive model, rather than relying on a black-box function suppled by the user. Being able to
choose a simple explicit model leads to two important advantages over IDA*. First, we can
choose a model that will give consistent predictions. (As we mentioned in Section 4.2.1, this
means that we can ensure that for every node there exists a child whose best descendant
will have the same evaluation.) This implies that BLFS is certain to reach leaves on every
iteration. It will never expand a node unnecessarily and never overlook a node that has a
descendant within the cost bound. To enforce the consistency of f, one can use leaf cost
models which are represented as a linear function of action costs. This makes it fast and
easy to accurately asses the best descendant’s cost. One can view this model in terms of a
prefix cost and the cost of the best completion, but unlike with IDA*, this separation into
two components is just for convenience.

The second advantage that BLFS enjoys over IDA* is that the cost bound can be

83

updated optimally. Because the predicted costs are generated by a known model, we can
choose cost bounds that can be expected to cause twice as many nodes to be visited as
on the previous iteration. By approximately doubling the number of nodes visited on each
iteration, BLF'S limits its overhead to a factor of less than three in the worst-case situation
in which the entire tree must be searched. There is no reason that this technique could
not also be used with conventional IDA*, although it might be more difficult to achieve
acceptable accuracy than in BLFS because one might not have as much information about
the internal structure of g(n) and h(n), as they are computed from the problem domain
and black-box function supplied by the user rather than from a known model. Wah and
Shang (1995) have explored the case in which the parametric form of the relation between
cost bound and nodes generated is known beforehand.

These differences between BLFS and IDA* ultimately stem from the fact that BLFS can
assume a bound on the depth of the tree. This allows the algorithm to pursue a single line
of inquiry into the tree, easily reach a leaf, and potentially update its model. Shortest-path
algorithms must be more conservative, pushing uniformly into the tree across its entire
breadth. If one probed along a single path into a shortest-path tree, perhaps searching
according to h, there is no guarantee that a goal or even a leaf would ever be reached. The
problem would be worse if h were consistent, because it would be impossible to use a rise
in h to terminate exploration. Using BLFS directly for shortest-path search would likely
fail. Examining combinations of BLFS and IDA* or RBFS (Korf, 1993) for approximate

shortest-path search would be an interesting direction for future work, however.

84

4.5 Conclusions

We have now seen a general framework for using heuristic information to search bounded-
depth trees. BLFS can be seen as an extension of IDA* that uses an explicit model to ensure
efficient search by both guaranteeing consistent node evaluations and allowing appropriate
cost bound updating. By separating the search mechanism from the cost model, BLFS
can learn on-line while suffering worst-case overhead of a factor of three when the entire
tree must be enumerated. In the next two chapters, we will see two different tree models
that illustrate how BLFS can be used in practice to solve combinatorial optimization and

constraint satisfaction problems.

85

Chapter 5

BLFS with a Fixed Model:

Indecision Search

We present an instantiation of the best-leaf-first search framework called indeci-
sion search. 1t uses a cost model based on preference information computed at
branching nodes and it backtracks first to those nodes where the choice of best
child was least clear. Empirical results show that it provides the best results

known for several types of constraint satisfaction problems.

We will now instantiate the general BLFS framework introduced in the previous chapter
with a particular cost model. The tree model that is used with BLFS determines how the
cost estimates are calculated and how quickly BLFS will find the good leaves in the search
tree. As a first test of the BLFS framework, we will investigate a simple model of leaf cost
whose parameters do not need to be learned during the search. To adapt the search to the
particular tree being explored, we will instead take advantage of the same heuristic scoring
information that is used to rank children at each decision node. In the following chapter,

we will investigate a tree model whose parameters are estimated on-line.

86

5.1 Two Tree Models

We will test two very similar tree models. As in the separate action model from Section 3.2,
the cost of a leaf will be predicted to be a linear sum of costs for each child rank at each
depth, but instead of learning the costs of these actions from the leaf costs, we will assume
that the action costs are equal to scores that we will calculate for each child as we go, using
a user-supplied node scoring function. Although this may seem odd, the motivation for this
set-up derives directly from the idea of heuristic child ordering that we discussed briefly in
Section 2.2.

Most heuristic node-ordering functions rank the children of a node based on a numerical
score. For example, when solving a traveling salesman problem, one might order the children
by the nearest city heuristic, which computes the distance to each unvisited city from the
current location. When selecting which nodes to revisit during backtracking, any nodes
at which the children all had the same score and were therefore ranked arbitrarily would
seem to be much better candidates than those nodes at which the best child had a score
that was much better than the score of the second-ranked child. Similarly, we might want
to explore several similarly-valued children at one node before ever considering a relatively
poor-scoring second child at another node. The spread of heuristic scores can be seen as
giving us an indication of the degree of certainty or decisiveness of the heuristic. We can
normalize the scores of siblings by subtracting the score of the best child, so that each child
is given a value according to how much worse it is than the top-ranked child, according to
this node-ordering heuristic.

If we model the cost of a leaf as the sum of these normalized scores, then leaves with

low cost are those whose paths involved choices that were either exactly the preferred ones,

87

or else closely ranked by the heuristic. The cost reflects the total amount of ‘discrepancy’
used at each branching node, and two paths that both have very low cost will differ only
at branches where the children were very similarly scored. When using this cost function,
BLFS will attempt to backtrack first to those nodes whose children were least differentiated
by their heuristic values. In other words, we backtrack by revisiting nodes according to
how decisive the heuristic function was in its ranking. Decisions about which the heuristic
was less certain are revisited sooner than those involving a large difference in child score.
In light of this, we can call this particular specialization of BLFS indecision search. 1t is
an adaptive tree search because the backtracking points will be chosen based on the node
scores encountered during the search. Unlike traditional systematic tree search algorithms,
indecision search does not assume fixed child costs.

We will also test a second, simpler version of indecision search in which the leaf costs
are predicted to be the maximum child cost along the path from the root, rather than the
sum of all the costs. As we will see, this model turns out to be faster to estimate and, for

the benchmarks we investigate, equally effective.

5.2 The Algorithm

Indecision search can be seen as a generalization of discrepancy search in which different
non-preferred children have different costs, rather than all counting as one discrepancy. The
preferred child costs nothing and the cost of any other child is its difference in heuristic
score from the preferred child. If the child scores are ¢, cq, ..., then a child 7 has cost ¢; — ¢g.
We want to visit leaves in increasing order according to the sum of the cost along their path

to the root. As in general with BLFS, it is difficult to know where these leaves are without

88

Indecision-expand (node, allowance)

1 1If is-leaf(node)

2 Visit(node)

3 else

4 Update model of child costs

5 Indecision-expand(child(node, 0), allowance)

6 For i from 1 to number-of-children(node)—1

7 ¢ « child(node, ©)

8 If cost(c) < allowance

9 Indecision-expand(c, allowance — cost(c))

Figure 5.1: Indecision search treats the BLFS cost bound as an allowance that is spent to
visit non-preferred children.

exploring the entire tree, so we will use an iteratively increasing cost bound. Since the cost
is just the sum of the scores at each level, we can visit only those nodes that are within
the bound by considering the bound as a kind of allowance that is spent when we visit a
node. Since the preferred child always costs nothing, we can be assured that an affordable
child lies below any internal node that we can afford to reach. Pseudo-code for a pass of
indecision search is presented in Figure 5.1.

Using the BLFS framework lets us avoid maintaining a potentially enormous list of
backtrack points, and limits the time we spend regenerating portions of the tree we have
already seen. In order to predict how many nodes will be visited within a certain cost
bound, we will need to maintain a learned estimate of the expected distribution of child
costs in the tree. After discussing these and other implementation issues, we will evaluate the
performance of the resulting algorithm on two constraint satisfaction problems: latin square
completion and binary CSPs. The results suggest that indecision search is more efficient
than previous search algorithms and that it also avoids the poor worst-case performance of
depth-first search. Indecision search is able to successfully exploit the information provided

by the heuristic function that is ignored by previous algorithms.

89

¥ ¥

o O nodesy,_1

l i I: nodesi—1 X leaf-prob;_,

O O O nodesy = nodesi_1 x (1 — leaf-prob;,_,) X bp_1

Figure 5.2: The process of estimating the number of nodes at the next level of the tree.

5.3 Estimating the Allowance

Estimating the proper value for the allowance is the most challenging part of the algorithm.
Recall that we are finding a good allowance by a reverse process: predicting the number
of nodes that will be generated using a given allowance and then searching over possible
allowance values.

To predict the number of nodes for a given allowance, we will need to estimate the
number of children we will be able to afford at each level, as well as the probability that a
node at that level will be a leaf. Figure 5.2 illustrates this computation. If we can afford
b, children on average at level k with the given allowance and a node at that level is a leaf
with probability leaf-prob;, then the number of nodes at a level, nodesy, can be computed

from the percentage of the nodes that are not leaves, times their fertility:

nodesy = 1

nodes, = nodesi_1 x (1 — leaf-proby,_,) X bp_1

90

The total number of nodes that we will visit can just be summed over the levels:

mazx-depth

nodes = Z nodesy,
k=0

The leaf-prob;, parameters can be easily estimated during the previous iteration. All that
remains is to estimate the by for a given initial allowance. To do this, we will statistically
model the flow and transformation of the allowance that would take place as the search
procedure explored the tree. This requires that we have a model of the costs we would
encounter in the tree. Happily, the information needed to construct this model is easy to
acquire: we will have seen many of the relevant costs already. During the previous pass, we
will note the costs of all the children of the nodes we visit, including the costs of the children
we do not expand further. (The scores underlying these costs will have been computed by
the heuristic already, in order to find the best child.) We use these costs to construct
probability distributions, p.;(x), over the possible costs x for the c-th ranked child at level
i. (These distribution models will be implemented using histograms, as we discuss below.)
For a tree of depth d and maximum branching factor b, we will need to form at most d(b—1)
distributions, one for each rank at each level, ignoring the preferred child which is always
free. This cost model assumes that, for example, the fifth child of a node at level 23 will
have the same cost distribution no matter how we reached that node, which is similar to
the modeling assumptions that worked so well in Chapter 3.

We will use this cost model to decide how many children we can expect to afford at a
given level and, at the same time, to compute a probability distribution over the possible
amounts of allowance that will remain for use at the next level. This process is illustrated

schematically in Figure 5.3. Starting with a spike distribution p,;4(x) that has all its mass

91

allowance after
previous level

. . subtract cost subtract cost
first child of second child of third child
isfree A A

after firstw after second child after third child TR

weighted sum

alowance
for next level

Figure 5.3: The process of estimating the allowance available at the next level.

at the given initial allowance value, we compute the distribution of allowance that is likely
to be left after we visit a particular child. The probability of each possible new amount of
allowance is just a sum over all the possible ways we could have arrived at that amount by
spending allowance on that child, weighting each way by its probability of occurring:

/(pozd(w +Y) X penaa(y))dy if x>0
pnew(w) =

0 ifx <0

We call this operation truncating subtractive convolution, since it computes the convolution
of the two distributions while subtracting the cost from the allowance and squashing the
probability of any negative allowance resulting from unaffordable children. The mass of
probability that survives the convolution equals the probability that we can afford that
child. The sum of the truncated distributions from all the children, plus a copy of the
original allowance distribution to represent the free preferred child, forms the distribution
of the allowance we can expect to have at the next level. (The sum can be performed
over the raw truncated distributions, since we want to weight each one by the probability
we can afford the corresponding child, but the resulting allowance distribution should be
normalized to sum to one.)

We can now compute the expected number of children we can afford for each level, the
b, from our estimated allowance distribution and our estimated child cost distributions.
The expected number of children hinges on the probability that each possible number of

children is the most we can afford, which we write as p(maz is 1):

p(mazx is i) = p(can afford i) x (1 — p(can afford i + 1))

93

maz-num-childreny,

b = Z i X p(max is 1)
i=1

For a given allowance value and child cost distribution, p(can afford i) is simply the amount
of probability in the child cost distribution that is less than or equal to the allowance. By
taking the expectation over the full allowance distribution, we can compute the overall
expected bg. With the by in hand, we have everything we need to compute an estimate of
the number of leaves we would visit for the given starting allowance. '

Unfortunately, the clever trick introduced by Korf (1996) to improve limited discrepancy
search does not apply to indecision search. Noting that every leaf from the previous pass was
revisited during next pass of discrepancy search, Korf modified the algorithm to prune the
preferred child when the discrepancy allowance is equal to the number of levels remaining
in the tree. This forces the algorithm to only visit leaves with the desired number of
discrepancies. In the case of indecision search, we cannot be sure of the costs of leaves
below a given node because we only have a summary distribution. In applications with
heuristic child scores whose range varies widely with depth, it might occasionally be possible
to predict that all leaves beneath a given node are sufficiently good that they have been
visited already. By using conservative estimates in such cases, it may be possible to allow

some pruning. This could reduce the overhead of the algorithm, although the maximum

benefit is a factor of two speed-up. In general, however, we cannot prune reliably and thus

"When recording child costs, we assumed they were independent and recorded them in separate dis-
tributions. But when calculating the number of children we can afford, we want to know the conditional
probability that we can afford a child given that we could afford the previous children. To calculate this
properly, we should instead have stored the difference in cost between each child and the previous one, and
then derived the allowance remaining after each child using successive subtractive convolutions. Empirically,
the two strategies seem to perform similarly (normalizing the non-conditional probabilities of affording each
number of children to sum to one). However, the correct incremental approach does not allow a fast imple-
mentation of the simplified search strategy described later, so we have presented the version that assumes
independence instead.

94

we must revisit previously seen leaves.

The most complicated part of indecision search is the estimation of the allowance per-
colating down the levels of the tree. This can be completely avoided if we use the second,
simpler indecision search cost model. Instead of modeling a leaf’s cost as the sum of the
child costs along its path, we can assume that the cost will just be proportional to the
maximum child cost along the path. This means that we can modify the search algorithm
to visit all children within the same allowance at every level, passing the allowance down
unmodified. The same amount of allowance will be available at every level and subtractive
convolution is unnecessary. This simple indecision search variant can be viewed as a gen-
eralization of iterative broadening, just as indecision search is a generalization of limited
discrepancy search. Simple indecision search only needs to estimate the distributions of the
child scores and then, when estimating the by, find the mass in each distribution lying at

or below a given allowance threshold.

5.4 Implementation

Although the basic ideas of indecision search are straightforward, any implementation must
confront details such as data structures for probability distributions and search algorithms
for cost bounds. We briefly sketch the methods used in the implementation whose results

are reported below.

5.4.1 Manipulating Distributions

To implement indecision search, we must learn and convolve distributions. Rather than
assuming that they follow a particular parametric form (such as a truncated normal distri-

bution) and attempting to derive closed-form solutions for subtractive convolution, we just

95

use histograms. The bin locations are determined adaptively by the data. As new samples
are added to an empty histogram, we record them individually until a fixed size limit is
reached (100 in the experiments reported below). At this point, each sample expands to
become a bin, reaching halfway to its nearest neighbors. Samples on the ends are expanded
symmetrically. When further samples are added, the weights of the appropriate bins are
increased. Because we must locate the appropriate bin, the time to add a sample is loga-
rithmic in the size limit of the histogram. We track the largest weight in any bin and when
this becomes greater than twice the sum of the weights in any adjacent pair of bins, we split
the heaviest bin and merge the smallest adjacent pair. We only need to find the sum of the
weights in the smallest adjacent pair when a bin’s weight becomes larger than the weight
of the heaviest bin.

Subtractive convolution is straightforward, although four cases must be considered de-
pending on whether the distributions involved are represented as individual points or have
expanded into bins. When both are points, we can just construct a new histogram and
add the appropriately weighted samples to it. This is done in a random order to preserve
accuracy if the new histogram converts to bins. When both are bins, we reduce to the points
case by treating the bin centers as samples. When one is bins and the other is points, we
construct a new truncated bins histogram for each point, incrementally accumulating them
into the result. When bin boundaries do not coincide, bins are split. As this may result
in too many bins in the result, we then collapse the smallest adjacent pairs as necessary.
(This can be made efficient by storing adjacent pair weights in a heap and updating after
every merge.) The cost of convolution is bounded by the square of the histogram size limit.

Similarly, four cases must be considered when adding distributions together to comput-

ing a new allowance distribution. Adding points to points and bins to bins works as for

96

convolution. When adding bins and points, the points are treated as new samples for the
binned distribution unless the total weight of the points is greater than the weight of the
bins, in which case the bins are converted to points at their centers and the two point col-
lections are added. This preserves the accuracy of the distribution with the greatest mass.
When adding points to bins, we also check to be sure that the histogram has the maximum
number of bins, as truncating convolution may have reduced the number of bins. If there

is room for an extra bin, we split the bin to which the point is added.

5.4.2 Finding an Appropriate Allowance

Now that we can manipulate cost distributions, we can use them to predict the number
of leaves we would see for a given allowance. To find an appropriate allowance given our
model of the tree, we use a simple binary search. The allowance for the first pass is always
zero. This causes the search to explore all ties after visiting the greedy child. For later
iterations, we choose a starting point by increasing the previously used allowance by 20%
(or arbitrarily using 1 if the previous iteration was the first). The allowance is increased
until more leaves are predicted than we desire to visit. The resulting interval around the
correct allowance is then reduced by half until the prediction is sufficiently close (or until
seven splits have occurred). Any prediction within 5% of the desired value or greater by less
than 50% is deemed sufficient. If we attempt to predict the number of leaves that would
be seen with an allowance that is greater than the sum of the largest costs at every level,
we recognize that the desired number of nodes may be larger than the size of the current
tree and we simply return the attempted allowance immediately. To cope with inaccurate
estimates that result in few new leaves being seen, the number of desired leaves is twice

the number of leaves seen on the previous pass or twice the number we had wanted to see,

97

whichever is greater.

Since finding the next allowance forms most of the overhead of indecision search, an
optimized implementation would retain information across iterations and use interpolation
and extrapolation to guess good allowance values and make maximum use of the expensive
estimates. Estimates need only be accurate within a constant factor, since the desired
number of leaves increases multiplicatively. During early iterations, many histograms will

contain exact samples and convolution will be quite accurate.

5.5 Evaluation

We have seen how the underlying idea of backtracking to points of indecision can be turned
into a practical algorithm using the BLF'S framework. Now we must verify that it is effective
in practice and test whether it provides any advantage over discrepancy search algorithms
that simply assume fixed child costs. The most obvious candidates for indecision search are
constraint satisfaction problems (CSPs), as they are commonly solved using quantitative
heuristic node scoring functions. We will evaluate the algorithm’s performance on two
types of problems: latin squares and binary CSPs. (Additional results on the combinatorial

optimization problem of number partitioning will be discussed in Section 6.3.)

5.5.1 Latin Squares

A latin square is an n by n array in which each cell has one of n colors. Each row and
each column must contain each color exactly once. Although constructing a latin square
from scratch is not difficult, completing a partially-filled latin square can be difficult or
impossible. Gomes and Selman (1997) proposed latin square completion as a challenging

benchmark problem for constraint satisfaction techniques. They note that, like many real-

98

0.8 |
e
(]
2
o)
n
w0
R T AR
2 ___________________
S
[a i
© 04
c
o
9]
s
o
N Indecision -
ILDS (bottom) ——
ILDS (top) ———
DDS ------
DFS - —--
27 a0 a3 e S

Logl0(Nodes Generated)

Figure 5.4: Performance on completing 21 x 21 latin squares that already have 30% of the
cells assigned.

world problems, it exhibits both regular structure, due to the row and column constraints,
and random elements, due to the preassigned cells.

We used a forward-checking algorithm, choosing variables to assign according to the
classic most-constrained variable heuristic of Brélaz (1979). Values were ordered according
to the promise heuristic of Geelen (1992), which estimates the number of solutions below
each child. For indecision search, the logarithm of the promise was used as the heuristic
score of a node. Following Meseguer and Walsh (1998), we used a test set of 1,000 latin
squares, each with 30% of the cells assigned, filtering out any unsatisfiable problems. We
tested depth-first search (DFS), two version of Korf’s improved limited discrepancy search
(ILDS), one taking discrepancies at the top first and the other taking them at the bottom
first, depth-bounded discrepancy search (DDS), and the plain and simplified versions of

indecision search.

99

The performance of the algorithms is shown in Figure 5.4 in terms of the fraction of
problems solved within a given number of node generations. Small horizontal error bars
mark 95% confidence intervals around the means. Depth-first search was limited to 10,000
nodes per problem, hence its mean is a lower bound. (In fact, Gomes et al. (2000) have
noted that the cost distribution of depth-first search on this problem is heavy-tailed and
seems to have essentially infinite mean!)

From the figure, we see that 25% of the problems were solved by visiting a single leaf (the
greedy solution). Depth-first search enumerates leaves very efficiently, but soon becomes
mired at the bottom of the tree. The discrepancy search algorithms immediately retreat
to the root and must visit many nodes before reaching another leaf. Indecision search first
explores all ties, which may occur at intermediate levels of tree. As the search progresses,
the algorithms biased toward discrepancies at the top seem to be paying a price, as their
progress comes in spurts. Indecision search makes more efficient use of its time, exhibiting a
smooth performance profile, and it solves all the problems within 4,000 nodes. The simple
variant seemed to perform identically to the plain version shown in the figure. Variants
that took the most expensive affordable child first (thus branching at the top first) also
performed similarly.

To test how important the later stages of indecision search are, we tested a hybrid
algorithm that first visits all leaves of cost zero (as in indecision search) and then carries
out the same ordering as ILDS, oblivious to the heuristic function. This hybrid algorithm
exhibits behavior similar to indecision search for the easiest 70% of problems, but then
exhibits the same longer tail as ILDS, taking over 20,000 nodes to solve the last problem.
This demonstrates that the later stages of indecision search are an important component

of its robustness and that it is not simply exploiting the leaves tied for zero cost.

100

Table 5.1: The number of nodes generated to solve latin square completion problems,
represented by the 95th percentile of the distribution across random instances.

n DFS | Indec. | ILDS | DDS | Indec. / ILDS
11 7,225 173 183 206 .945
13 | 888,909 284 | 303 | 357 937
15 o0 427 621 642 .688
17 00 621 | 1,047 | 1,176 .593
19 so | 871 1,609 | 1,852 541
21 oo | 1,339 | 2,812 | 3,077 476

Similar behavior was observed on smaller instances, although the advantage of indecision
search over the discrepancy methods seemed to increase as problems grew larger. Table 5.1
summarizes these experiments by listing the 95th percentile of the distribution of nodes
generated by each algorithm. The rightmost column compares the performance of indecision
search and its nearest competitor, ILDS. (The superior variant of ILDS, that takes its

discrepancies at the bottom of tree first, is the one shown here.)

5.5.2 Binary CSPs

Binary CSPs are those in which all constraints refer to only two variables. This is a canonical
form for constraint satisfaction problems, as any problem can be made binary by introducing
additional variables. Binary CSPs have received much attention in the literature because it
is relatively easy to generate synthetic instances with known properties, allowing researchers
to test how algorithmic performance varies with different features of the problems.
Meseguer and Walsh (1998) used binary CSPs to evaluate depth-bounded discrepancy
search and interleaved depth-first search, testing on satisfiable problems of the (n, m,p1,p2)
type. These problems have n variables, each with m possible values. Exactly pin(n —1)/2

of the possible pairs of variables are constrained and exactly pam? of the possible value

101

Table 5.2: The number of nodes generated to solve 100 instances of binary CSPs in the

(30,15, .4, p2) class.

p2 quantile DFS | S. Indec. Indec. ILDS DDS
.307 50% 40 99 102 60 96
95% 241 391 396 456 424

.320 50% 100 258 272 288 282
95% 1,119 884 1,094 1,122 1,115

.333 50% 520 878 912 933 2,044
95% 4,881 4,501 4,991 5,862 8,014

.347 50% 3,187 4,705 5,511 6,191 16,305
95% 42,025 | 28,294 | 33,155 | 30,996 100,387

.360 50% | 24,214 49,672 | 33,324 | 38,108 141,290
95% | 103,878 | 536,716 | 612,628 | 309,848 | 1,642,806

Table 5.3: The number of nodes generated to solve 100 instances of binary CSPs in the

(50,12, .2, p2) class.

p2 quantile DFS | S. Indec. Indec. ILDS DDS
.306 50% 52 108 118 90 137
95% 164 320 296 358 408

319 50% 63 188 204 237 373
95% 1,450 984 1,098 1,271 1,301

333 50% 250 785 900 1,277 2,478
95% 3,156 3,410 3,942 6,389 12,790

.347 50% 1,646 4,173 5,099 4,663 26,277
95% | 22,852 28,630 | 49,051 | 52,491 187,856

.361 50% | 27,953 40,454 | 52,994 | 83,980 372,064
95% | 352,788 | 387,432 | 463,774 | 554,036 | 3,546,588

combinations are disallowed for each of those pairs. As ps increases from 0.25 toward 0.36,
the constraints become tighter and the problems become more difficult to solve, exposing
differences in performance between the algorithms. We will use the same heuristics we
employed above with latin squares.

As with latin squares, there is enormous variance in the number of nodes generated by
each algorithm within each set of 100 similar instances. We focus on the upper tail of the

distribution because it essentially controls the expected value. We avoid the maximum,

102

Table 5.4: The number of nodes generated to solve 100 instances of binary CSPs in the
(100, 6, .06, p2) class.

p2 quantile DFS | S. Indec. | Indec. ILDS DDS
.306 50% 102 146 158 147 152
95% 110 676 858 646 826

.333 50% 110 336 514 770 1,490
95% | 31,910 3,344 3,527 4,012 11,845

.361 50% | 3,432 5,896 9,810 | 19,454 125,488
95% | 208,112 70,664 | 62,118 | 127,712 | 2,048,320

as it is subject to sampling error. Tables 5.2 through 5.4 show both the median and the
95th percentile of each distribution. The results obtained for DFS, ILDS, and DDS were
consistent with those reported by Meseguer and Walsh, although the algorithms seem to
visit slightly more nodes, presumably because our heuristic is less accurate than the one
they use (Larrosa and Meseguer, 1995). At very low tightness, problems are easy and DFS
is sufficient. DFS always exhibits the best median performance, but as tightness increases
the tail of its distribution grows rapidly. Indecision search is either the best or within
25% of the best in every instance class except (30, 14, .4,.360).2 DDS seems to fare poorly.
Indecision search performs better on these problems than the discrepancy search algorithms.
Although its median is not as low as DFS’s, it is more robust and tends to have a lower
maximum search cost. Overall, the simpler variant seems to perform better than the plain.
This is presumably due to its different modeling assumption, in which the cost of a leaf is
the maximum cost of any child along its path rather than the sum of all children along the

path.

2This single poor performance seems to be due to inaccuracies when updating the cost bound—rather
than visiting twice as many nodes with each iteration, indecision search visits only a constant number more.
In practice, a simple mechanism to detect and correct such systematic mispredictions should be easy to
implement.

103

5.5.3 Time Overhead

Asymptotically, indecision search does not increase the complexity of a search. The ad-
ditional computation comes in two places: during the search and when updating the cost
bound. During the search, two computations must be done. The first is to calculate the
f(n) values for a node’s children. This is only a small constant number of additional in-
structions per child. The second operation at each node is to store the observed cost values.
For each observed value, this takes time logarithmic in the histogram size (for locating the
correct bucket to increment) and so is also constant as problem size increases.

Estimating the next cost bound is more difficult. Although histogram computations are
bounded by the square of the histogram size, the remaining allowance must be estimated
at each level of the tree, introducing a dependence on problem size. However, this is only
a linear dependence (in each of the maximum branching factor and number of variables),
and starting the search for a cost bound at a good initial value can reduce the number of
estimations required. The search among cost bounds can also be limited to a small constant
number of iterations.

An empirical analysis of an optimized implementation in terms of running time would
be useful. The main overhead seems to be convolution during leaf estimation, in particular
the adding together of the many slightly modified copies of the allowance distribution. On
the problem sizes investigated here, plain indecision search currently seems to take longer
than limited discrepancy search, although simple indecision search has almost no overhead
and runs very quickly.

In addition to optimizing the implementation, it would also be interesting to investigate

the sensitivity of the algorithms to accuracy parameters such as the maximum histogram

104

size. Informal experiments on small generic trees indicate that 50 bins give performance

equal to 100, which should allow a factor of four speed-up during bound estimation.

5.6 Related Work

Bedrax-Weiss (1999) has proposed an algorithm called weighted discrepancy search, based
on similar motivations. Her method is more ambitious and involves estimating the proba-
bility that a child’s subtree contains an optimal solution. (This requires training data from
previous similar problems.) Rather than using the raw heuristic scores, weighted discrep-
ancy search uses probabilities, which can presumably be combined more rationally across
levels. The algorithm assumes lognormal distributions of probabilities and attempts to pre-
compute a schedule of probability thresholds that will maximize the probability of finding
a goal given a particular time limit (and certain assumptions). Indecision search just uses
the difference in heuristic scores, assuming that they are comparable across levels, and at-
tempts to find good allowance values on-line. It would be very interesting to combine the
probabilistic framework of weighted discrepancy search with the on-line and non-parametric
modeling approach of indecision search. The work of Hansson and Mayer (1994) on learning
relations between heuristic scores and search costs may also be applicable. Accumulating
enough training data to support accurate probability estimates would appear to be the main
hurdle.

Along a similar vein, Ruml, Ginsburg, and Shieber (1999) used training examples to
estimate the probability that a subtree (characterized by real-valued features) contains a
solution, and then used that data to prune a tree search. In indecision search, the heuristic

directly provides the information necessary for backtracking, so no training problems are

105

needed.

Gomes, Selman, and Kautz (1998) and Gomes et al. (2000) have suggested a random-
ized restarting policy to avoid the poor performance of depth-first search. By randomly
reordering children that have very similar heuristic scores, they produce different search
trees on different runs. By frequently restarting the search from the beginning, they ex-
plore the closely ranked children. (A similar strategy is used in the GRASP procedure (Feo
and Resende, 1995).) One can view this technique as an ad hoc approximation to indecision
search. One would expect indecision search to perform better, as it does not throw away
information regarding close-scoring children. It also does not require manual tuning to set

a threshold value.

5.7 Possible Extensions

This work can be extended in a number of ways. While we have demonstrated indecision
search on constraint satisfaction problems, it should apply naturally to any tree-structured
search space that uses a quantitative heuristic. Many combinatorial optimization applica-
tions meet these criteria.

More generally, if the number of nodes one will have time to see is given ahead of time, it
might be possible to set the allowance early on in the search to yield exactly the number of
nodes we have time for. This would avoid regenerating portions of the tree, for an expected

speed-up of a factor of two.

106

5.8 Conclusions

We have introduced a new backtracking algorithm, indecision search, that attempts to
revisit first those nodes where the child-ordering heuristic function was least certain of its
ranking. The algorithm can be seen as a generalization of limited discrepancy search and
a simpler variant of it generalizes iterative broadening. Empirical results on the standard
benchmark problems of latin square completion and binary CSPs suggest that indecision
search visits fewer nodes than limited discrepancy search and depth-bounded discrepancy
search and has more robust worst-case performance than depth-first search. It successfully
adapts its behavior to the tree it finds itself in, taking advantage of information in the
heuristic values that other algorithms ignore.

Indecision search, while it will repeatedly regenerate nodes, is guaranteed to eventually
traverse the entire tree if necessary. (This is because the allowance must increase on every
pass.) However, the adaptive probing technique discussed in Chapter 3 was able to learn
its costs directly from an objective function on the leaves and did not require a quantitative
heuristic function. Although it was incomplete, it could be applied to any bounded-depth
tree search problem. In the next chapter, we will see how BLFS can combine the best

features of these two methods in a single algorithm.

107

Chapter 6

BLFS with On-line Learning

We present an instantiation of the best-leaf-first search framework in which
the cost model is learned on-line during the search. Using the separate action
cost model, this provides a complete and deterministic analogue of the adaptive
probing algorithm of Chapter 3. Empirical results show that this algorithm
is the best method yet devised for the combinatorial optimization problem of

number partitioning.

Adaptive probing buys its flexibility at the price of completeness. But the action cost
model that it learns can be considered a form of child preference information, of the kind
used by indecision search. The learning of actions costs performed by additive probing can
be done during each pass of an indecision search and these costs can be used to guide the
search instead of child scores. The result is a version of BLF'S that represents a deterministic
and complete analogue of adaptive probing. This is a more complex realization of BLFS
than indecision search was, because we are now learning the parameters of the leaf cost
estimating function during the search itself. (In indecision search, we merely stipulated a
priori that the cost of a leaf was proportional to the sum of the normalized child scores,

rather than grounding the estimates in actual observed leaf values.)

108

BLFS(root)
Visit a few leaves
Initialize the model
Nodes-desired «— number of nodes visited so far
Loop until time runs out:
Double nodes-desired
Estimate cost bound that visits nodes-desired nodes
Make static copy of model
BLFS-expand(root, bound)
If entire tree was searched, return

© 00 O U i W N~

BLFS-expand(node, bound)
10 If is-leaf(node)
11 Visit(node), updating model with leaf cost

12 else

13 For each child of node:

14 If best-completion(child) < bound
15 BLFS-expand(child, bound)

Figure 6.1: Simplified pseudo-code for best-leaf-first search using on-line learning.

6.1 The Tree Model

We will first consider the same type of separate action cost model that we used with adaptive
probing, in which each child rank at a particular depth is assumed to correspond to the
same cost, and we learn the cost of each rank at each depth, for db parameters overall.
(Figure 3.2 on page 30 showed an example.)

Figure 6.1 sketches the pseudo code of BLFS, with additional steps in lines 2, 7, and 11
to account for on-line learning. Recall from our previous discussion of BLFS (Section 4.1)

that there are two main operations that must be supported by the tree model:

compute f(n): Given estimated action costs, predict the cost of the best leaf below a node.
This is straightforward for the separate action cost model. As the search descends the
tree, one can accumulate the cost of the actions chosen so far. A table of the costs of

the best possible completions from each level can be precomputed before each BLFS

109

iteration. Starting from the bottom of the tree, one selects the lowest cost action at
each level, accumulating the cost while working back up the tree. This yields, for a
node at any depth, the cost of the best possible subsequent sequence of actions. The
f value of a child node is then just the sum of the actions taken to the parent plus
the cost of the action associated with the child’s rank plus the best completion from

the next level of the tree.

estimate number of nodes within a cost bound: This estimation is easier than in in-
decision search because the costs of the children at each level do not depend on
observed heuristic scores but are instead fully known and given by the model. To
estimate the number of children we will take at nodes at each level, we need to know
the various possible sums of action costs we will have experienced up to that level.
We can then combine those with the action costs at this level and the cost of the
best completion from the following level to determine how many children will be ex-
panded and to derive the cost sums for the next level. We will maintain a histogram
of the action costs experienced so far. This is analogous to the allowance distribu-
tion used with indecision search, but progressing additively rather than subtractively
(recall Figure 5.3). We can initialize it at the root to a spike at zero. To compute
the distribution at the next level, we just create several shifted copies of the current
distribution, one for each child cost, to represent the path costs at the following level.
Each of these distributions is then truncated at a value corresponding to the given cost
bound, minus the best possible completion cost. Any child values that, when added
to the best completion cost, go over the bound will be pruned by the search and

should be discarded during estimation. The probability mass that survives this shift-

110

ing and truncation represents the expected number of children that will be expanded
at this level. To prepare for the next level, the distributions are added together and

renormalized to sum to one.

Given these estimates of the expected number of children at each level, we can use
the straightforward equations from Section 5.3 to compute the total number of nodes

in the resulting search tree.

Given a model which can estimate the number of nodes that will be visited for a given
cost bound, we will search over possible values of the bound until we find one which yields
the desired number of nodes. In the experiments reported below, we use a simple ‘bracket
and bisection’ approach (Press et al., 1992), although one could certainly imagine using
more sophisticated interpolation and learning schemes. To bracket the desired bound,
one can either use numerical approximations to co and —oo or, if the model can easily
compute them, the largest and smallest possible predicted costs. Since it is not important
to generate exactly the desired number of nodes, the search was terminated when a bound
yielded within 10% of the desired number, or more than desired but fewer than 150% more,
or after 10 bisections were carried out. The number of nodes in the entire search tree was
also estimated, and the largest possible bound was returned if more than the maximum

number of nodes was desired.

6.2 Evaluation

Two additional implementation details should be mentioned. The first concerns pruning.
As discussed in Section 5.3, the percentage of time that nodes at a given level were leaves

and thus did not give rise to children was recorded for each depth individually, and that

111

information was used to refine the estimated tree size for each given cost bound. This
information was not taken into account when computing the best completions, however—
it was assumed that actions must be chosen until the deepest tree level ever visited was
achieved. The alternative, weighting action costs by the probability that a level would be
reached, resulted in dramatic failures to reach leaves during early iterations, as the search
could not afford to progress beyond the middle of the tree. As an additional measure to
alleviate this problem, the search always expanded the best child of every internal node,
ensuring that an internal node would never be visited in vain but would always contribute
to updating the model.

The other detail concerns the learning rule. In adaptive probing, we used the basic
Widrow-Hoff update rule to learn the parameters of the model from the observed leaf costs.
In the experiments reported below, we use a slightly more sophisticated algorithm due to
Murata et al. (1997), which attempts to adjust the learning rate automatically. Standard
parameter settings were used, with no attempt to optimize them for each problem: initial
learning rate 0.2, meta-learning rate («) 0.002, normalization factor (4) 20/(max ||r||),
leakiness (0) 0.05, learning rate clamped between 0.001 and 1.9. (In informal tests using
random probing, this procedure seemed to give slightly better learning than plain Widrow-
Hoff or the K1 method proposed by Sutton (1992), although it is not clear if it made a
difference in the search results reported below.) To aid learning, we forced the learned costs
at each level of the tree to be very mildly increasing with child rank. In other words, we
assumed that the heuristic ordering function, while not necessarily very helpful, was not
deceptive. This was implemented by performing isotonic regression at each level in the
model before the start of each iteration.

We tested this BLFS version of adaptive probing on the number partitioning problem.

112

Probing ——-
ILDS------
BLFS—

DFS-----

LoglO(Difference)

T T T T T T T T 1
200,000 400,000 600,000 800,000 1,000,000
Nodes Generated

Figure 6.2: Greedy partitioning of 128 numbers

In the experiments reported below, the model was initialized by probing into the tree 10

times, choosing a random child at every decision node.

6.2.1 Greedy Number Partitioning

The number partitioning problem was introduced in Section 3.3.3 (page 43). There are
two popular formulations of the problem as a tree search. The first is the straightforward
greedy encoding. Figures 6.2 and 6.3 compare the performance of BLFS with DFS, ILDS,
DDS, and the adaptive probing algorithm of Chapter 3, which guides search using a similar
learned cost model but is stochastic and incomplete. As usual, error bars in the figures
indicate 95% confidence intervals around the mean. Although BLFS does not surpass DFS
in this search space, it does seem to consistently track DFS as the problem size increases,

unlike ILDS and DDS, whose solution quality actually decreases on the larger problems.

113

-2
ll DDS -
LDS
e I Probing ——-
- _ BLFS—
\ U e DFES-.---
Q
[&]
o
I
[a)
S
D 6
o
-
-8

" T " " " T " " " T " " " T " " ")
400,000 800,000 1,200,000 1,600,000 2,000,000
Nodes Generated

Figure 6.3: Greedy partitioning of 256 numbers

6.2.2 CKK Number Partitioning

The second search space for number partitioning is the CKK representation, due to Korf
(1995). Figure 6.4 and 6.5 compare the performance of BLFS with DFS, ILDS, and DDS.
(Adaptive probing takes too long to learn to follow the powerful heuristic in this space
and would be off the top of both plots.) As in the greedy search space, BLFS successfully
adapts and tracks the performance of the best non-adaptive algorithm. In the greedy space,
this was DF'S, while in the CKK space ILDS outperforms DFS. In fact, BLFS surpasses the
performance of ILDS as the problems get larger (Figure 6.5). For larger number partitioning

problems, BLFS in the CKK representation yields the best performance known.

114

LoglO(Difference)

Logl0(Difference)

-10.4
-10.8
-11.2
-11.6

-12.0

-12.8
-13.2
-13.6

-14.0

T T T T T T T T 1
200,000 400,000 600,000 800,000 1,000,000
Nodes Generated

Figure 6.4: CKK representation for partitioning 128 numbers

T T T T T T T T T T T T T T T T T]
400,000 800,000 1,200,000 1,600,000 2,000,000
Nodes Generated

Figure 6.5: CKK representation for partitioning 256 numbers

115

6.2.3 Time Overhead

Using BLFS with on-line learning does not change the time complexity of the search pro-
cess. Guiding the search requires only a constant-time table look-up to assess action costs.
Updating the model at a leaf is linear in the number of parameters, which is linear in the
number of problem variables. This is comparable to recording the best solution seen so far.
Empirically, the largest source of overhead is in updating the cost bound, just as it was
with indecision search. Propagating the distribution of allowance values down the tree is
linear in the number of parameters, because the histograms are bounded by a constant, but
can take significant time. The cost bound is updated a logarithmic number of times, so for
long runs this overhead will be negligible, but for the prototype implementation and run

lengths reported here the overhead consumed 20-30% of the total search time.

6.3 Integrating Multiple Sources of Information

So far, our models have exploited either heuristic child scores or leaf costs, but not both.
Child scores provide local information, as they are usually computed using information
pertaining only to the part of the problem under immediate consideration. For instance,
in a constraint satisfaction problem, the value that is involved in the fewest active con-
straints might be chosen without regard for its influence in later stages of the problem. In
the traveling salesman problem, the next city to visit might be selected according to the
nearest-neighbor heuristic. Leaf costs provide global information, as they depend on all of
the problem variables. They are the only source of guidance in many improvement-based
algorithms such as hill-climbing and simulated annealing. In this section, we will show how

the cost model of BLFS provides a convenient way to combine the two forms of information.

116

We will use a simple extension of the model used in indecision search in Chapter 5. In
that model, the heuristic scores for each child were normalized by subtracting the score of
the best child to produce a cost for choosing that child. If the child scores were cg,c1, ...,
then child ¢ had cost ¢; — cg. The cost of a leaf was either the sum of the costs of the nodes
along its path from the root or the maximum of these costs. We now extend the sum model
to include a separate weighting coefficient at each level of the tree. These weights will be
estimated during the search using the observed leaf costs, using the same on-line regression
method we used earlier in this chapter. The weights allow us to relax the assumption that
heuristic score differences are strictly comparable across levels of the tree. We will also
include an additional parameter into the model to serve as a constant term in the weighted
sum.

We can compare the performance of BLFS using the new weighted sum cost model with
its performance using the plain unweighted sum of normalized costs to see how helpful the
leaf cost information is in improving the model. We will also see BLFS with the cost model
explored earlier in this chapter, using only the leaf cost information to learn costs for each
child rank at each depth. This is different than the new model that uses heuristic scores
for two reasons: 1. the preferred child is not always free, and 2. the cost of a child at a

particular level is constant and does not depend on its heuristic score.

6.3.1 Evaluation

To allow easy comparison with the methods we discussed earlier in this chapter, we will
evaluate the new model on the problem of number partitioning. In particular, we will use
the greedy search space formulation in which each decision places the largest remaining

number into one of the partitions. The partition with the currently smaller sum is preferred

117

i BLFS: scores——-
HE BLFS: leaf costs —
P BLFS: wt. scores ------
o
Q
9)
=
=1
—
o)
]
—
-7

T T T T T T T T 1
100,000 200,000 300,000 400,000 500,000
Nodes Generated

Figure 6.6: Performance on 64-number problems.

and the logarithm of the absolute difference between the partitions is used as the normalized
heuristic score of the second child. Clearly, it seems less sensible to place a number in the
currently larger partition the greater its sum is than that of its competitor. One might
reasonably expect a correlation between the current difference and the cost of the final
solution obtained.

Figures 6.6 through 6.8 present the performance of DFS, ILDS, and BLFS using the
three cost models we have discussed. ‘Scores’ refers to the original indecision search model
that only uses the heuristic child scores, ‘leaf costs’ refers to the model that only uses leaf
costs, and ‘wt. scores’ refers to the new model that uses both sources of information in a
weighted scores model. The performance of DDS is not shown, as it failed to surpass the
performance of random sampling on the 256-number problems. Random sampling is also

not shown, as it always performed worse than the remaining algorithms.

118

LoglO(Difference)

Logl0(Difference)

i BLFS: scores —--
| BLFS: leaf costs —
|

|

BLFS: wt. scores------

T T T T T T T T 1
200,000 400,000 600,000 800,000 1,000,000
Nodes Generated

Figure 6.7: Performance on 128-number problems.

‘\‘ BLFS: scores ——-

) BLFS: leaf costs —
\ BLFS: wt. scores------

T T T T T T T T T T T T T T T T T]
400,000 800,000 1,200,000 1,600,000 2,000,000
Nodes Generated

Figure 6.8: Performance on 256-number problems.

119

The figures show that using the leaf cost information to learn weights for the heuristic
scores leads to a large improvement in performance over the unweighted use of the same
scores. However, the combined model does not seem to perform significantly better than
using leaf costs alone to estimate child costs.

The particular model we examined is just a simple example of the ease with which BLFS
allows multiple sources of information to be combined. Other models may lead to improved
performance. One obvious avenue for future work would be a model closer to the one that
only uses leaf costs. For instance, leaf cost could be predicted as the sum of child costs, each
of which is the sum of a weighted heuristic score (with the weight depending quadratically

on depth) and a constant (depending on depth and child rank).

6.4 Summary of Results

We have seen in this chapter that BLFS can successfully adapt to different search spaces,
even given only observed leaf costs. Different forms of heuristic information can be combined
in a principled way in the tree cost model and exploited for search. BLFS is more robust
than any other known algorithm, always performing competitively with or better than the
best previously known strategy for each of our benchmark domains. For cases in which
ILDS was the best method known, BLFS exhibited superior performance. For cases in
which DFS is the best method known, BLFS tracked its performance. Unlike DFS, BLFS
never exhibited pathological behavior such as taking orders of magnitude more time than
other algorithms.

The main drawback of BLFS seems to be its time overhead for bound estimation during

short runs. For domains in which many short runs will be performed, each on a similar prob-

120

lem, one way around this problem would be to reuse the cost model and its corresponding

bound estimates across problems.

6.5 Possible Extensions

We investigated five different tree models for use with BLFS:

plain indecision: the cost of a leaf is assumed proportional to the sum of the normalized

child scores along its path from the root.

simple indecision: the cost of a leaf is assumed proportional to the maximum of the

normalized child scores along its path from the root.

separate action costs: as in adaptive probing, each child rank at each depth is a separate

cost and the cost of a leaf is predicted as the sum of the costs along its path

quadratic action costs: all the children of a particular rank (e.g., all children ranked

second) have action costs which are a quadratic function of depth

weighted heuristic scores: the cost of a leaf is predicted as the weighted sum of the
heuristic scores of the nodes along its path, with a separate weight for each level in

the tree.

There is no reason why other models could not be tried. For instance, one might suppose
that the cost of an action at a given level was a linear function of two variables: the depth
and the score of that child. The coefficients on this linear function might be restricted to
being a quadratic function of depth. In this way, the quadratic action cost model could be

supplemented by child score information. Other possibilities include a multiplicative model,

121

which could easily be implemented by maintaining logarithms, or a model based on taking
the maximum cost along a path, as in the simpler variant of indecision search.?

By analyzing models that prove successful over multiple domains, it may be possible
to design useful new search algorithms. In domains where the on-line costs of adaptation
are too high, BLFS may still be useful to help select, diagnose, and tune a non-adaptive
method.

Child preferences and leaf costs are the two fundamental types of information available
during a tree search. A different type of information that is often exploited in optimization
problems is improvement advice, which suggests changes to complete solutions. The process
of evaluating and executing such changes amounts to a search in the graph of complete
solutions, a process known variously as improvement search, heuristic repair, or local search
(recall Section 1.1.4). These search spaces are sufficiently distinct from search trees that
we do not consider them in this thesis. It would certainly be interesting to explore how
improvement information might be used in conjunction with a tree search. One might
view the work on ‘squeaky wheel optimization’ of Joslin and Clements (1998) as pointing
in this direction. In that method, gradient information is used to influence a variable
choice heuristic. Neither of these forms of heuristic information is considered in the models
presented here.

It should also be straightforward to train multiple models, each of which is slightly
more complex than the one before, and guide the search using the simplest model until the
next most complex exhibits lower average prediction error across an entire iteration. The
simpler model can then be discarded, and the process could continue with the next more

complicated model.

Tt may well be possible to modify Widrow-Hoff to learn a max model.

122

As we discussed in Section 4.3, it would also be interesting to extend the tree model
to explicitly include estimates of its uncertainty. When used with a known deadline, this
would allow active learning to reduce model uncertainty, even when the necessary actions

are not those that lead to the best solution in the near term.

123

Chapter 7

Conclusions

Adaptive tree search has enormous potential. This thesis has shown that adaptive methods
can be general, requiring no problem-specific information that is not already available;
efficient, adding no more than a constant factor to the complexity of a tree search; and
effective, solving problems as well or better than current methods and exhibiting much
more robust performance.

A simple adaptive probing algorithm demonstrated that it was possible to efficiently
learn a model of the distribution of leaf costs in the tree and, at the same time, exploit it
for search. Performance on several constraint satisfaction and combinatorial optimization
problems showed the algorithm to be exceptionally robust across both different types of
problems and different instances of the same type.

Best-leaf-first search (BLFS), a framework for complete adaptive search, uses an explicit
model of leaf costs and visits leaves in an efficient approximation of increasing predicted
cost. The cost model can be learned on-line during the search, enabling the algorithm to
approximate rational exploitation of heuristic information. All previous proposals for com-

plete tree search—including depth-first search, limited discrepancy search, depth-bounded

124

discrepancy search, and iterative broadening—are special cases of BLFS.

We investigated several different cost models for BLFS. The first two were based on the
scores assigned by a heuristic node ordering function. They led to excellent performance on
latin square completion and all but one class of binary constraint satisfaction problems. The
later models were based on on-line learning of action costs or score weights from leaf costs.
This approach led to the best results known for the combinatorial optimization problem of
number partitioning. BLFS often approached or surpassed the best previous method for
each problem class and it never exhibited the pathologically brittle behavior of DFS.

The explicit cost model of BLFS makes it clear that the assumptions made by iterative
broadening and the various discrepancy search algorithms are actually very rough approxi-
mations of f(n). Similarly, the use of child ordering in traditional depth-first branch-and-
bound search is a attempt to exploit the child score as a predictor of the leaf cost. BLFS
unites all of these techniques under the same conceptual umbrella, and makes it clearer how
one might go about designing more effective ways to leverage problem specific information
to improve search order. Adaptive probing and its BLF'S analogue demonstrate how feature
weights for the f function can be learned on-line, allowing one to toss features into the pot
and see if they are actually found to be predictive.

This thesis shows how the application of core ideas from artificial intelligence about
exploiting heuristic information can make a significant contribution to problems at the core
of operations research. BLF'S clarifies the relationship between combinatorial optimization
and shortest-path problems. The two problems are not fundamentally different—they can
both be solved by the same general approach of single-agent rationality. Only adversarial
search is a fundamentally different type of tree search, due to the introduction of a second

agent and the need for strategic reasoning.

125

7.1 Future Directions

Tree search using heuristic information remains a fundamental algorithmic problem in arti-
ficial intelligence and other areas of computer science and operations research. The adaptive
tree search methods that we have investigated are very general and should be applicable
to a wide variety of problems. The robustness of BLFS, as demonstrated on latin square
completion for example, may also allow reconsideration of problems previously thought in-
tractable. One interesting direction for future work is dynamic problem domains, in which
the underlying optimization problem changes during the search. An adaptive approach
should be able to adjust its search order on the fly to handle such disruptions.

This thesis emphasizes the central role that learning can play in a search process. The
flexibility of an adaptive approach reduces the chance that the algorithm’s assumptions will
lead to poor performance. This robustness raises the possibility that a tree search could be
reliably used to quickly find near-optimal solutions, a task that has traditionally been left to
improvement search algorithms. However, improvement search cannot take advantage of the
kinds of heuristic information that are often available during tree search. If robust tree-based
and improvement-based methods were both available, researchers would have the freedom to
use whichever search paradigm allowed the fullest exploitation of available heuristic domain
knowledge. This work takes an important step toward this goal. It remains to be seen,
however, if it might be possible to integrate the information that is typically provided to
these two types of algorithms. The view we have taken of tree search has emphasized
rational inference on the basis of acquired information. By making the assumptions of the
search explicit in a model of the tree, it becomes clear how to use the available information

to guide search. A similar approach may be helpful for improvement-based algorithms.

126

References

Abramson, Bruce. 1991. The Expected-Outcome Model of Two-Player Games. Pitman.

Baluja, Shumeet. 1997. Genetic algorithms and explicit search statistics. In Michael C.
Mozer, Michael I. Jordan, and Thomas Petsche, editors, Advances in Neural Information
Processing Systems 9.

Baluja, Shumeet and Scott Davies. 1998. Fast probabilistic modeling for combinatorial
optimization. In Proceedings of AAAI-98.

Bedrax-Weiss, Tania. 1999. Optimal Search Protocols. Ph.D. thesis, University of Oregon,
Eugene, August.

Bishop, Christopher M. 1995. Neural Networks for Pattern Recognition. Oxford University
Press.

Boese, Kenneth D., Andrew B. Kahng, and Sudhakar Muddu. 1994. A new adaptive multi-
start technique for combinatorial global optimizations. Operations Research Letters,
16:101-113.

Boyan, Justin A. and Andrew W. Moore. 1998. Learning evaluation functions for global
optimization and boolean satisfiability. In Proceedings of AAAI-98.

Boyan, Justin A. and Andrew W. Moore. 2000. Learning evaluation functions to improve
optimization by local search. Journal of Machine Learning Research, 1:77-112.

Brélaz, Daniel. 1979. New methods to color the vertices of a graph. Communications of
the ACM, 22(4):251-256, April.

Bresina, John L. 1996. Heuristic-biased stochastic sampling. In Proceedings of AAAI-96,
pages 271-278. AAAI Press/MIT Press.

Cesa-Bianchi, Nicolo, Philip M. Long, and Manfred K. Warmuth. 1996. Worst-case
quadratic loss bounds for on-line prediction of linear functions by gradient descent.
IEEE Transactions on Neural Networks, 7(2):604-619.

Chu, Lon-Chan and Benjamin W. Wah. 1992. Band search: An efficient alternative to
guided depth-first search. In Proceedings of the Fourth International Conference on
Tools with Artificial Intelligence.

Crawford, James M. and Andrew B. Baker. 1994. Experimental results on the application
of satisfiability algorithms to scheduling problems. In Proceedings of AAAI-9/, pages
1092-1097.

Dantzig, G. B., D. R. Fulkerson, and S. M. Johnson. 1954. Solution of a large-scale
traveling-salesman problem. Operations Research, 2:393—410.

Dearden, Richard, Nir Friedman, and Stuart Russell. 1998. Bayesian g-learning. In Pro-
ceedings of AAAI-98, pages 761-768.

Dorigo, Marco and Luca Maria Gambardella. 1997. Ant colony system: A cooperative
learning approach to the traveling salesman problem. IEFEE Transactions on Evolution-
ary Computation, 1(1):53-66.

127

Euler, Leonhard. 1759. Solution d’une question curieuse qui ne paroit soumise a aucune
analyse. Mem. Acad. Sci. Berlin, 15:310-337.

Feo, T. A. and M. G. C. Resende. 1995. Greedy randomized adaptive search procedures.
Journal of Global Optimization, 6:109-133.

Garey, Michael R. and David S. Johnson. 1991. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W.H. Freeman and Company, New York.

Geelen, P. A. 1992. Dual viewpoint heuristics for binary constraint satisfaction problems.
In B. Neumann, editor, Proceedings of ECAI-92, pages 31-35.

Gent, Tan P. and Toby Walsh. 1996. Phase transitions and annealed theories: Number
partitioning as a case study. In Proceedings of ECAI-96.

Ginsberg, Matthew L. and William D. Harvey. 1992. Iterative broadening. Artificial
Intelligence, 55:367-383.

Gomes, Carla P. and Bart Selman. 1997. Problem structure in the presence of perturba-
tions. In Proceedings of AAAI-97, pages 221-226.

Gomes, Carla P., Bart Selman, Nuno Crato, and Henry Kautz. 2000. Heavy-tailed phe-
nomena in satisfiability and constraint satisfaction problems. Journal of Automated
Reasoning, 24:67-100.

Gomes, Carla P., Bart Selman, and Henry Kautz. 1998. Boosting combinatorial search
through randomization. In Proceedings of AAAI-98.

Hansson, Othar. 1998. Bayesian Problem-Solving Applied to Scheduling. Ph.D. thesis,
University of California, Berkeley.

Hansson, Othar and Andrew Mayer. 1994. DTS: A decision-theoretic scheduler for space
telescope applications. In Monte Zweben and Mark S. Fox, editors, Intelligent Schedul-
ing. Morgan Kaufmann, San Francisco, chapter 13, pages 371-388.

Hart, Peter E., Nils J. Nilsson, and Bertram Raphael. 1968. A formal basis for the heuristic
determination of minimum cost paths. IEEFE Transactions of Systems Science and
Cybernetics, SSC-4(2):100-107, July.

Harvey, William D. and Matthew L. Ginsberg. 1995. Limited discrepancy search. In
Proceedings of IJCAI-95, pages 607-613. Morgan Kaufmann.

Herodotus. 440 BC. Histories. Book II.

Horvitz, Eric, Yongshao Ruan, Carla Gomes, Henry Kautz, Bart Selman, and Max Chicker-
ing. 2001. A bayesian approach to tackling hard computational problems. In Proceedings
of UAI-01.

Johnson, David S., Cecilia R. Aragon, Lyle A. McGeoch, and Catherine Schevon. 1991. Op-
timization by simulated annealing: An experimental evaluation; Part II, graph coloring
and number partitioning. Operations Research, 39(3):378-406, May-June.

128

Joslin, David E. and David P. Clements. 1998. “Squeaky wheel” optimization. In Proceed-
ings of AAAI-98, pages 340-346. MIT Press.

Juillé, Hughes and Jordan B. Pollack. 1998. A sampling-based heuristic for tree search
applied to grammar induction. In Proceedings of AAAI-98, pages 776-783. MIT Press.

Karmarkar, Narenda and Richard M. Karp. 1982. The differencing method of set parti-
tioning. Technical Report UCB/CSD 82/113, Computer Science Division, University of
California, Berkeley.

Karmarkar, Narenda, Richard M. Karp, George S. Lueker, and Andrew M. Odlyzko. 1986.
Probabilistic analysis of optimum partitioning. Journal of Applied Probability, 23:626—
645.

Korf, Richard E. 1985. Depth-first iterative-deepening: An optimal admissible tree search.
Artificial Intelligence, 27(1):97-109.

Korf, Richard E. 1990. Real-time heuristic search. Artificial Intelligence, 42:189-211.
Korf, Richard E. 1993. Linear-space best-first search. Artificial Intelligence, 62:41-78.

Korf, Richard E. 1995. From approximate to optimal solutions: A case study of number
partitioning. In Proceedings of 1JCAI-95.

Korf, Richard E. 1996. Improved limited discrepancy search. In Proceedings of AAAI-96,
pages 286-291. MIT Press.

Lagoudakis, Michail G. and Michael L. Littman. 2001. Learning to select branching rules
in the DPLL procedure for satisfiability. Flectronic Notes in Discrete Mathematics, 9,
June. LICS 2001 Workshop on Theory and Applications of Satisfiability Testing (SAT
2001).

Larrosa, Javier and Pedro Meseguer. 1995. Optimization-based heuristics for maximal
constraint satisfaction. In Proceedings of CP-95, pages 103—120.

Luger, George F. and William A. Stubblefield. 1998. Artificial Intelligence: Structures and
Strategies for Complex Problem Solving. Addison Wesley Longman, third edition.

Mayer, Andrew Eric. 1994. Rational Search. Ph.D. thesis, University of California, Berke-
ley, December.

Meseguer, Pedro. 1997. Interleaved depth-first search. In Proceedings of IJCAI-97, pages
1382-1387.

Meseguer, Pedro and Toby Walsh. 1998. Interleaved and discrepancy based search. In
Proceedings of ECAI-98.

Murata, Noboru, Klaus-Robert Miiller, Andreas Ziehe, and Shun-ichi Amari. 1997. Adap-
tive on-line learning in changing environments. In Michael Mozer, Michael Jordan,
and Thomas Petsche, editors, Advances in Neural Information Processing Systems 9
(NIPS-96), pages 599-605. MIT Press.

129

Nilsson, Nils J. 1998. Artificial Intelligence: A New Synthesis. Morgan Kaufmann, San
Francisco, CA.

Pearl, Judea. 1984. Heuristics: Intelligent Search Strategies for Computer Problem Solving.
Addison-Wesley.

Poole, David, Alan Mackworth, and Randy Goebel. 1998. Computational Intelligence: A
Logical Approach. Oxford University Press.

Press, William H., Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. 1992.
Numerical Recipes in C. Cambridge University Press, second edition.

Ruml, Wheeler. 2001a. Incomplete tree search using adaptive probing. In Proceedings of
IJCAI-01, pages 235-241.

Ruml, Wheeler. 2001b. Stochastic tree search: Where to put the randomness? In Hol-
ger H. Hoos and Thomas G. Stiitzle, editors, Proceedings of the IJCAI-01 Workshop on
Stochastic Search, pages 43—47.

Ruml, Wheeler. 2001c. Using prior knowledge with adaptive probing. In Carla Gomes and
Toby Walsh, editors, Proceedings of the 2001 AAAI Fall Symposium on Using Uncer-
tainity Within Computation, pages 116-120. AAAI Technical Report FS-01-04.

Ruml, Wheeler, Adam Ginsburg, and Stuart M. Shieber. 1999. Speculative pruning for
boolean satisfiability. Technical Report 99-02, Harvard University.

Russell, Stuart and Eric Wefald. 1991. Do the Right Thing: Studies in Limited Rationality.
MIT Press.

Sutton, Richard S. 1992. Gain adaptation beats least squares? In Proceedings of the
Seventh Yale Workshop on Adaptive and Learning Systems, pages 161-166.

Wah, Benjamin W. and Yi Shang. 1995. Comparison and evaluation of a class of IDA* al-
gorithms. International Journal on Artificial Intelligence Tools, 3(4):493-523, October.

Walsh, Toby. 1997. Depth-bounded discrepancy search. In Proceedings of 1JCAI-97.

Wyatt, Jeremy. 1997. Ezxploration and Inference in Learning from Reinforcement. Ph.D.
thesis, University of Edinburgh.

Zhang, Wei and Thomas G. Dietterich. 1995. A reinforcement learning approach to job-
shop scheduling. In Proceedings 1JCAI-95.

Zhang, Weixiong and Richard E. Korf. 1993. Depth-first vs. best-first search: New results.
In Proceedings of AAAI-93, pages 769-775.

Zilberstein, Shlomo, Francois Charpillet, and Phillippe Chassaing. 1999. Real-time
problem-solving with contract algorithms. In Proceedings of IJCAI-99, pages 1008—
1013.

130

This appended page exists solely as a result of formatting bugs. It is not part of the

thesis.

