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Abstract Previous work has shown how Al techniques can be used to

_ _ _ ) ) control such machines (Ruret al. 2005; Do and Ruml 2006;
This paper reports our experience extending an on-linegurin Do et al. 2008). Requests for printed sheets become goals for
controller based on Al planning to handle two significantfea  he system to achieve, the various actuators and mechanisms
tures of this commercially important domain: execution-fai in the machine become actions and resources to be used in
ures and multi-objective preferences. A printer contratieist c -
achieving these goals, and sensors provide feedback about

plan quickly and reliably, otherwise expensive human inter . A - -
vention will be required. Our approach is practical and effi- ~&ction execution and the state of the system. The main objec-

cient, and showcases the flexibility inherent in viewingnpla  tive in previous work has been maintaining high produdfivit
ning as heuristic search. Execution failure is handled by re ~and thus high return on investment for the equipment owner.
planning. We link together the individual searches for éach While this is the most common and important objective, it is

flight sheet, giving rise to a tree of potentially infinite bca- by no means the only thing that owners care about.
ing factor. Multiple objectives are handled by linear combi In this paper, we address two major challenges. The first is
nation and tie-breaking during best-first search. Multjpie- execution failure and exception handling. To reduce thelnee

computed pattern databases are used to improve the efficienc o gperator oversight and expertise and to allow the use of
of handling preferences regarding image quality. Our SS&Ce oy complex mechanisms, the system must be as autonomic

ful experience controlling multiple prototype printingssgms . .
shows that replanning and preference-handling can be made &5 possible. Because operators can make mistakes and even

practical without using hand-coded control knowledge. highly-engineered system modules can fail, the system must
cope with execution failure. And because the system must

work with legacy modules in order to be commercially feasi-
Introduction ble, its architecture must tolerate components that ar@but
. . . . its direct control and will give rise to unexpected eventse T
It is a sustaining goal of Al to develop techniques enablingsecong challenge is complex objectives. In a modular system
autonomous agents to robustly achieve multiple intergctinith multiple print engines, one might want to optimize the
goals in a dynamic environment. This goal also happens t@g; of printing by choosing to print black-only pages ony o
align perfectly with the needs of many commercial manu-yonochrome engines and avoid using more expensive color
facturing plants. In this paper, we focus on one particulangines. One might want to optimize image quality by choos-
manufacturing setting: high-speed digital productiompng 4o print pages from the same document only on print en-
systems. Unlike traditional continuous-feed offset peess gines whose current marking gamuts are similar. The printer
digital xerographic cut-sheet printers can treat eachtstite  conroller needs to give operators the ability to tradelude
ferently: printing a different image and performing diet o nfiicting objectives while maintaining robust operation

preparatory and finishing operations. Often, a single inte- \ve meet these challenges using (1) fast replanning to han-
grated machine can transform blank sheets into a complete various types of exceptions in plan execution, (2) multi

document, such as a bound book or a folded bill in a sealegyyiecive optimization to handle both productivity andrpri
envelope. Itis sometimes even possible to process differef,g cost, and (3) multiple heuristic look-ups to efficiertin-
kinds of jobs simultaneously on the same equipment.

Degle image quality consistency constraints. We concludk wit
signing a high-performance yet cost-effective controftar 9°d y y '

. X o a discussion of our experience using the planner to control
such machines is made more difficult by the current trend tog,ree physical prototype printing systems as well as result
wards increased modularity, in which each customer’s sy

. ! . Sfrom simulation studies.
tem is unique and includes only those components that are

most appropriate for their needs. We have been working
closely with the Xerox Corporation to explore architecture Background
which printing systems can be composed of literally hunsiredIn analogy to other parallel systems such as RAID storage,

of modules, possibly including multiple specialized pnigt ~ our approach to modular printing systems is called Rack
modules, working together at high speed. Mounted Printing (RMP). A modular RMP system can be

seen as a network of transports linking multiple printing en
Copyright(© 2008, American Association for Artificial Intelligence gines. These transports are known as the media path. Figure 1
(www.aaai.org). All rights reserved. shows a four-engine prototype printer located at the Paio Al
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Figure 2: System architecture, showing the steps involued i
nominal planning (dashed lines) and replanning (solidslne

plan step igproposedo the module involved. If all involved
Inverter Inverter modulesaccepttheir proposed actions, then the plarc@n-
Toverteg favites mitted As we discuss below, this commitment means that
] modules become responsible for notifying the controller if
r they fail to complete an action or realize that they will not
be able to perform a planned action in the future.

[Feeder] L YN —— [Cutput] Sheet Planning | |
T v N R The sheet planner builds a plan for each sheet of a job us-
[Fecder |IA=T=> it ! : [Output | ing a combination of regression state-space planning and

partial-order scheduling. It plans by adding one module ac-
tion at a time, starting from a finisher until the sequence
of actions reaches a feeder. Adding an action to a sheet’s

T
|
1| Print Engine F

Print Engine _ _

— —F itinerary causes resource allocations to be made on any re-
by tverter| Tnverter sources required for the execution of that action. Given the
¢ i . media path redundancies in RMP, the planner usually faces
O [O)Ne] (@] multiple choices about which action to add at each planning

step. To organize this search, the planner uses best-first A*
Figure 1: A modular printer and schematic side view show-search with a planning-graph heuristic (Ruetlal. 2005;
ing how the four print engines and approximately 170 otheiDo and Ruml 2006), adjusted with resource conflicts, that
modules are connected. The solid line shows a sample sheettimates how promising each potential route is. To main-
plan together with other in-flight sheets in the system. tain maximum flexibility, all action times are managed using
temporal constraints instead of absolute times. The planne

Research Center (PARC). It has over 170 independently comttempts to minimize the earliest time the last action of the
trolled modules and many possible paper paths linking theurrently planned sheet could end, in essence optimiziag th
paper feeders to the possible output trays. Multiple feedersystem’s throughput. The planner uses no domain-dependent
allow blank sheets to enter the printer at a high rate andmultsearch control knowledge, allowing us to use the same plan-
ple finishers allow several jobs to run simultaneously. Hgvi ner to run very different printing systems at full produittiv
redundant paths through the machine enables graceful-degra Our system has been used successfully to control hard-
dation of performance when modules fail. By building theware prototypes at PARC (four monochrome engines, giv-
system out of relatively small modules, we enable easy recoring a total of 220ppm) and at Xerox (two monochrome and
figuration of the components to add new modules and functwo color engines, yielding 180ppm), as well as hundreds
tionality. Each module has a limited number of discrete acof hypothetical RMP systems in simulation, all at their full
tions it can perform, also known aapabilities and for many  productivity. These prototypes printers run at speedserigh
of these actions the planner is allowed to control their durathan any cut-sheet production printers current on the nharke
tions within a range spanning three orders of magnitude. ~ We have also built a tool to automatically convert our cus-

A printer controller works in an on-line real-time and con- tom domain language into the PDDL2.1 temporal planning
tinual planning environment with three on-going processeslanguage, allowing us to test current state-of-the-artmdas
(1) on-line arrival of new goals; (2) planning for known gsial such as LPG (Gerevirgt al. 2003) and SGPlan (Chest al.
and (3) executions of previously found plans. While usually2006), winner of the last two planning competitions. As re-
sequential for any given goal, these processes are intedea ported in detail by Det al. (2008), neither of these planners
between different goals received. Figure 2 sketches tferdif can handle a single sheet for the printer shown in Figure 1.
ent steps in the plan life cycle managed by the plan manageFor a much simpler printer, our planner out-performed both

After the controller issues new plans, there is an additionaLPG and SGPlan by more than 1000x for jobs of up to 15
negotiation protocol before the plan is committed. Firaghe  sheets, which already stretched the limits of LPG and SG-



Plan. For this simpler machine, our planner can plan verghose plans were made after the commitments had been made

quickly for hundreds of sheets easily. for the rejected plan.
Module Update: Machine modules can guff-line due to a
Handling Execution Failures hardware failure, such as a sheet jam, a benign event, such

_ ) ) ) ~as running out of paper in a feed tray, or an unmodeled pro-

Imagine a printer or copier that never seems to jam, but justess, such as print engine self-adjustment. Similarly, tae
runs a little slower as the month goes on. Once a monthgomeon-line when they are repaired, adjusted, or otherwise
someone opens the covers, removes some jammed sheets, gigie ready. When this happens, the module controller will
the system is back at full productivity. The RMP systems thatend message to the planner indicating which of the module’s
our planner is used to control are designed to fulfill thisons  capabilities is now on/off. If a given capability is turneff,
of partial productivity when a subset of the modules are downthen the planner will remove the corresponding action from
To make this transition transparent to the users (and thus irtonsideration in future planning episodes. If a given cépab
crease the perceived reliability of the system), we have beeity is turnedon, then the planner will add it to the action set
concentrating on developing exception handling techréquefor future planning episodes.
that minimize user interventions without stopping or slow-greak-in-Future: When a module changes the status of
ing down the machine. Current products perform exceptiogome of its capabilities froranto off, currently executing or
handling using rules hard-coded into each machine modul@ysent plans using that module may become invalid. In this
This technique works well for simple straight-line systems case, the module controller will send messages to the planne
but would be limited to a small predefined subset of fa"UreSindicating which plans are affected. The planner will cdnce
in more complex topologies. In our modular RMP systemsihe affected unsent plans and subsequent plans and move the
there are a countless number of different printer configuragoa|s back to thenplannedjueue. For plans that are execut-
tions and failure possibilities, so we would prefera more-ge ing and thus correspond to sheets that have already been fed
eral exception handling approach. _ ~into the machine, the planner needs to find new plans for the

Since all plans tightly interact through various schedylin affected sheets so that they can get to the correct finisier tr
and temporal constraints, whether or not they belong to thjithout going through the affected modules. The next sactio
same jobs, an exception affecting any single plan can affegfescribes in detail how to reroute those in-flight sheets.
the executability of other plans and the final job integrity. groken: This type of exception happens when one or more
Plans in different stages of their life cycle needto be arely  sheets are jammed in the system. Binekenmessages sent
and treated differently (see Figure 2). Whileseniplans can (o the planner include the ids of all sheets that are jammed
be canceled, we need new plans for the sheets that are alreaglyq thus cannot be reused or rerouted because of the fail-
discuss the types of exceptions that we can currently handigodules and thus therokenmessages normally accompany
and how the plan manager reacts to them, we then concegeyeramodule updatenessages, which are described above.
trate on the hardest part of the exception handling framlewor 1he handling of thésrokenexception is similar to the han-

finding new set of consistent plans for in-flight sheets. dling of the break-in-futureexception in many respects: it
) ) ) involves canceling of unsent plans and finding new plans for
Basic Exception Handling the in-flight sheets. However, the main differences are: (1)

Our planner can handle several types of exceptions. Wheilq—flight sheets that were jammed cannot be rerouted; and (2)

a given exception occurs, the planner will receive a specia&l’}ore critically, the jammed sheets break print-job intggri

message from the machine controller in real time. Depending € discuss this in detail next.
on the failure, the planner does one or more of: adjusting the . .
internal plan queue, updating the machine model and send- In-flight Sheet Replanning

ing new plans to replace the ones that are currently ex@putin| yhis section, we discuss the problem of finding a new set of
Figure 2 shows in solid lines the possible steps of the replary, s tor inflight sheets when a sheet is jammed or a module
ning process. The dashed lines in this figure show the stefy e \sed by some plans is broken. The constraints that make

in nominal planning, as described in (Rbal. 2008). Next, : ; ; : .
we discuss in detail each of the different failure scenarios replanning more challenging than nominal planning are:

Plan Rejection: When a plan is sent to the machine con-e Sheets cannot stop or slow down while the planner searches
troller to execute, the controller may reject the plan if one for new plans for all in-flight sheets. Thus, if the plan-
of the relevant modules cannot commit to executing its re- ner takes too much time to find new plans, the jams and/or
guested action at the time defined by the planner. While such module failures will cascade.

rejections are rare, they can be caused by module constraint

; ; e All newly found plans do not have flexible starting times as
that are outside the scope of the planner's model. For exam- in the nominal planning case, but should all start from the

\%ei} t?) ?ﬁg%?gp@ﬂg%%gg%P:i%gg?et\?a?ir;%?e'gn%llég nrgtsrgr' location at which the sheets are projected to be when the
. PR plans are found. The new locations depend on the actual
not currently modeled in our system. When a plan is rejected, replanning time of the planner.

the planner will cancel all plans in thensentqueue, in ad-
dition to the recently sent and rejected plan. All goalseorr e The sheets from jobs without jammed sheets still need to
sponding to those plans will be rolled back to tiigplanned finish in the correct finisher tray and in order. Any out-of-
gueue. Even plans that are not directly affected by the error order sheets (and all later ones in the same job) should be
message also need to be canceled and rolled back becauseerouted to gurgetray.
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Figure 5: Chaining any searches together gives a search tree

) _ ) with potentially infinite branching factor.
Figure 3: Replanning Example (before jam): sheet 1.1 and

1.2 are planned to enter finisher 2, and sheet 2.1 to finisher E)‘urge tray. This is the default strategy in our replannet tha
[( 7}9 tries to clear out the machine and finish the replanning m®ce
s ;

| )
‘ B as quickly as possible to return to normal operation. How-

1 12 | JIl} ever, there are scenarios where printing medias are exgensi
: — — —srs— Finisher 1 or confidential and purging them is not desirable. In those
w7l Finisher2 scenarios, we have also experimented with a different-strat

== Purge Tray egy that does not purg®, » but keep it in the machine (e.g.

loop it) while waiting for .S ; to be reprinted, thery; - is
routed to the original finisher. We have tested this for a kmal
number of sheets, although more sheets could be saved if one
is allowed to slow down the transports while looping them.
Chained BFS: For normal operation, the planner uses A* to
Figure 4: Replanning Example (after jam): sheet 1.1 igfind the plan for a given sheet that can end soonest, given the
jammed, which requires the planner to reroute sheet 1.2 tgemporally flexible) plans for the previous sheets. A plan
the purge tray and reroute sheet 2.1 to circumvent the jammeiways exists if scheduled sufficiently far in the future.r Fo
sheet before going to finisher 1. re-routing, the problem is different. We must find jointlyafe
sible plans for as many in-flight sheets as possible. We ¢anno

Replanning involves four main steps: (1) create new goal§reedily plan one sheet at a time, committing irrevocably to
for the in-flight sheets; (2) predict (an upper bound on) ghe r the plans for all previous sheets, because the plan selfected
trajectory and the predicted planning time to find their fatu ~ We considered two strategies to solve this problem. The
locations, which will form the new initial state of the repta  first was to simply plan in the joint action space of all sheets
ning problem; (4) find plans for all sheets that are salvalgeab This results in a large branching factor and it was not clear
(i.e., possible to avoid broken modules and jammed sheets i@ us how to design an effective heuristic evaluation func-
time), satisfying the constraints listed above. tion. We chose a different approach, in which we can retain
Example: Here we provide a concrete example illustratingthe view of planning for each sheet individually using heuri
our replanning procedure. Figures 3 & 4 show a scenario iic search. However, we overlay an additional search on top
which there are three in-flight sheetS; ; and S; » belong  of this, as depicted in Figure 5. In the high-level search, a
to the same job and were planned to go to finisher 2 (in th&ranching node represents the situation in which we have se-
middle); sheeb,_ ; belongs to a different job and is scheduledlected certain specific plans for all previous sheets angl it i
to go to finisher 1. The third finisher is the purge tray. Thetime to select a plan for an additional sheet. The children
original routes are indicated by the dashed lines in Figure 30f that node represent commitments to the different possi-
Assume thas; ; is jammed. According to the original routes, ble plans for that additional sheet. By considering diffiére
we have: (i)S;.o will arrive in the finisher tray out-of-order paths in the high-level search tree, we can consider differe
(becauses; ; did not arrive before it); (i)Ss.; will crashinto  combinations of plans for the different sheets. We call this
the module wheres; ; jammed. Therefore, we need to find approactthained best-first searclin our current implemen-
new plans for those two sheets so ti$at, will instead go  tation, sheets are replanned in their original order, aspan a
to the purge tray ands; goes arounds; ;. Finding those proximation of “distance from exit.” An alternative appoba
plans takes time and given that we cannot stop or sfpw is to replan in the order of “urgency” defined as the time left
and S, o down while finding the new plans for them, those to reroute a sheet before it becomes unsalvageable.
two sheets will continue their original trajectories to trew Because the children of a node represent the possible plans
locations, which were circled in Figure 4. From there, thereturned by a best-first search, the children are not availab
printer controller will apply the new plans, which were indi all at once. Instead, an individual sheet-level plannirayce
cated by the solid lines, that avoid further cascading fa8u will encounter goal nodes one at a time. We cannot termi-
and also guarantee job integrity. After the replanning iselo nate the search when we find the first goal node because we
the planner will regeneratg, ; andS; > again. have no guarantee that the first goal will make the most sub-

The example above shows one replanning strategy whesequent sheets feasible. Finding a goal merely results in an
the new goal for out-of-order she#f - is set to go to the new branch in the high-level space, and to retain complete-




Chained BFS(problem$ pointed out as important by our industrial partner, anduisc

if problemsis empty, return success how we extended the planning framework to handle them.

p < remove first problem frorproblems

initialize openlistfor p o Optimizing for Printing Cost

repeat untibpenlistis empty or node limit is reached: . ] )
n < best node owpenlist For systems with heterogeneous print engines, the cost of
if n is a goal, call ChainedBFS with remaining problems printing a given page depends on which of the enginesiis used.
expandr, adding any children topenlist For example, it is costlier to print a black and white page on

a color engine than a monochrome one. Thus, to minimize
Figure 6: Sketch of Chained Best-First Search with a depththe overall printing cost, one should use the engines with th
first strategy. lowest printing cost that still satisfy the image type andlgu
ity requirements of a given print job. By doing so, only a

ness we must retain the ability to continue our search andubset of all the available engines will be used for printing
uncover additional possible plans. In fact, in printershsuc job and thus the overall productivity may be reduced.
as ours that contain loops in the paper path, there may be To strike a balance between machine productivity and
an infinite number of possible plans for a given sheet. Funprinting cost, we have implemented a multi-objective skearc
damentally, the high-level search must explore a tree wherftamework that tradeoffs productivity for cost and vicesaer
nodes are expanded incrementally and the branching factor Even though the framework only supports these two poten-
potentially infinite. tially conflicting objectives at the moment, it can be easily

We identified three possible strategies for searching a treextended to support additional objectives such as minimiz-
with infinite branching factor. The first is a best-first ap-ing machine physical degradation that we refer tonesr
proach, in which one formulates a traditional heuristicleva and tear We show that by combining different performance
uation function for the high-level nodes. These nodes reprecriteria into a single objective, the same optimizatiomfea
sent commitments to complete plans for a subset of the inwork that works so well for single-objective planning can be
flight sheets, so the heuristic function needs to estimae thefficiently applied to the multi-objective case. Below dre t
probability that those plans will allow feasible plans faet main steps to extending the planner from supporting single
remaining sheets to be found. The infinite branching factopbjective to multiple objectives.
could be handled using Partial-Expansion A* (Yoshizuni
al. 2000), although this would require a non-trivial lower Step 1: extend the planner’s representation of machine ca-
bound on the heuristic value of the plans that have not ygpabilities to model action cost. Specifically, we added & cos
been found. It was not clear to us how this might be done. Théeld representing the cost of executing each capabilitydin
second possible strategy we considered was limited discreglition, there is an overall objective field with user-supgli
ancy search (Korf 1996). Unlike depth-first search, limitedweights for each of the two objectiveshj = min w; * ¢ +
discrepancy search doesn’t necessarily visit all the obild w- * ¢, wheret is the end time and is the accumulated total
of a node, which are potentially infinite for us. The disad-cost of printing all sheets.
vantage to this method is that, because we revisit each node
many times with different discrepancy bounds, we will suffe Step 2: heuristic estimation: to find the best route for a
considerable node regeneration overhead. given sheet, we estimate how good a potential route is accord

The third strategy, and the one we used in our implemening to each of the objective functions. Finishing time is-est
tation, is perhaps the simplest: depth-first search. Figure mated using temporal planning graph adjusted with resource
shows a pseudo-code sketch. Because we have a fixed nugenflicts between different sheets (Do and Ruml 2006). To es-
ber of sheets to replan, the high-level search tree has leoundtimate the total plan execution cost, we use dynamic program
depth. To cope with the potentially infinite branching fac- ming starting from the initial state (i.e. sheet in the fegte
tor, we impose a limit on the number of nodes each low-leveFompute the total cost to reach different reachable stéites.
sheet planning search may expand. This avoids the danger @@mputation is similar to cost propagation on the planning
searching forever at one high-level node without finding angraph as in the Sapa planner (Do and Kambhampati 2002).
other goal, and is reminiscent of iterative broadening §5in
berg and Harvey 1992). To guide the sheet-level planning, wétep 3: extend the search algorithm from considering only
use a heuristic that minimizes plan duration. This attempt& single objective to multiple ones. The estimations onl tota
to minimize resource use in the machine and maximize théme and cost are combined using the user-supplied weights

probability that other sheets will have feasible plans. (as described in Step 1) to compare nodes in the bestAfirst
search algorithm. Given that both heuristics for time argt co
Multi-Objective Search are admissible, like the single objective planner, our péan

guarantees to find optimal solution for any given sheet. Note
Our second major extension to previous work is aimed at bethat if the weights are not given, the planner chooses to pri-
ter meeting shop owner’s needs in the nominal case. Preveritize the objectives. For example, the planner can first fin
ously, the planner’s objective has been to run multi-enggne the plan that has the lowest cost, and then break ties fayorin
configurable printers at full productivity. Productivityhile  plans with higher productivity, then favoring one with lawe
very important, is only one of the many optimization crigeri wear and tear, and so on. The new search algorithm has been
that naturally exist in real-world planning and schedulipg  implemented and fully integrated into our planner. The de-
plications like the printer control domain. In this sectiwe  fault option without weights specified is optimizing for pro
will describe several additional objective functions thatre  ductivity and break ties on total cost.



Other Objective Functions: Besides optimizing for speed that printed the back side of the previous sheet is less than o
and cost, we recently extended the multi-objective framrgwo equal to some maximum distance. In most cases, this has to
to balance between productivity and diagnostic infornmatio be determined on-line, because thé’ distance between a
gain, the goal of which is to locate one or more failed mod-pair of engines can drift over time. Thus, our planner main-
ules with the fewest test sheets (Kuénal. 2008). The ex- tains an on-line version of a pairwigeE-distance matrix for
ceptions we handle are different from the ones discussed iall the engines in a printer.
the previous section. Here we assume the failures do not (a) While adding extra image-consistency constraints can re-
cause the plan to become inexecutable, (b) violate the job irduce the brute-force search space (if the constraints nhake t
tegrity, or (c) disable any capabilities. However, thedefas  set of reachable states smaller), in practice we found this o
will cause incorrect plan output in the form of minor physica ten makes the search probldrarder, because the heuristic
damages of the finished sheets. For example, the sheets delsomputed for the unconstrained problem, while still admis-
ered to the finisher tray might have a small tear on the edge @ible, is no longer informative. To improve the accuracy of
“dog-eared” corner — physical damage that is small enouglhe heuristic, the planner computes the temporal planning-
to not cause an actual paper jam. We know that the damaggraph heuristic for all legal combinations of print capabil
was caused by some module that got used by the plan, but wies that can be used to print one side of a sheet, and then
do not know which one. To locate a failed module, we needstores them in multiple lookup tables, one for each combina-
to find a set of plans, the execution of which will pinpoint tion. When a heuristic estimate for a search node is needed,
the failed module using the fewest number of sheets on avethe planner calculates an index into the lookup table based o
age, without sacrificing too much of the overall produciivit the state description (e.g., sheet location, black or quiot-
Compared to other approaches such as passive and expligtity), in much the same way how lookups are done in pattern
diagnosis, this approach significantly reduces the number alatabases (Culberson and Schaeffer 1998). On the implemen-
wasted sheets, often by an order of magnitude if the fault igation side, a hash table of hash tables is used to storgeulti
intermittent, the most common failure type in our printer.  lookup tables, but for any given sheet only the relevant hash
) ] ] table(s) is loaded before the sheet is being planned, dirce t
Planning for Image Quality Consistency set of eligible print actions is known and fixed at that time.
Maintaining image consistency across a set of heteroganeou Since there are only a limited ways of printing a single face
engines is especially important for a multi-engine prigtin of a sheet, this approach to improving heuristic accurasy ha
system. The planner achieves this by enforcing additiondlttle overhead yet can significantly reduce the time it take
image-consistency constraints while searching for amugdti  to find an itinerary. Interestingly, the same approach csn al
plan. In color science, the (in)consistency of two colors isbe used to improve the accuracy of the heuristic under excep-
measured by a function, often denotAdy, that calculates tions in which jammed sheets block the media paths to some
the distance between them in some device-independent colengines, which force the planner to work with only the set of
space. While there exist a variety of such functions in theengines that are unblocked, giving rise to planning proklem
color science literature (the most popular of which is ahlle that are similar to enforcing th& E constraints.
A E2000), for our planning purpose it suffices to assume that
given any two engines, A F function returns a non-negative Planning with Constrained Action Set

real-valued scalar, callefNE distance, that measures the dis- From a pure planning perspective, our approach to planning

crepancy inperceivedcolor as a result of printing the same for image-quality consistency corresponds to solving a con

Itrr?;t%gg ET égiie;m%f?ngg‘%%uizcgggg Larcg:g p;?ﬁg)(;: &195 rained planning problem with a reduced set of actions {com
< ; X . gazir red to its unconstrained version). Given a planning prob-
sensitive to image-consistency issues, we have implemente, "\ uh actions, one can crea@(2") different versions

th? fo-llowmg constram_tstg\] our plarlne;]: faci f of the constrained problem. Thus, pre-computing the tem-
1. facing-page constraintthat require the facing pages of a qra| planning-graph heuristic for all possible subsetaof

5 sz be printed b>r/]the"same Fl’”m engine i tions can quickly become infeasible asincreases. Here
- AF coAnstr(zja_lntst at allow orf1 y engines within some max- \ye describe a general solution that strikes a balance batwee
imum AE distance to print facing pages heuristic accuracy and the space overhead for storing-multi

Given that in reality no two engines can havé\& dis-  ple lookup tables, one for each subset of actions. The idea
tance of zero, the facing-page constraints can be viewed as to limit m, the maximum number of actions that are re-
a special case of thA E constraints with the maximusAE  moved from the unconstrained problem, and compute heuris-
distance set to zero. Thus, we only need to focus on the latic lookup tables only for those constrained problems. For
ter, which is more general. To enforéeE constraints, the example, it is usually feasible to enumerate those comsidai
planner keeps track of the set of print capabilities thatman problems in which only one or two actions are removed from
used to print the front side of a sheet, which is constrained bthe action set. To compute the heuristic value of a state in a
the print action applied to the back side of its previous shee constrained problem that is not included in this pre-coragut
Since the first sheet of a job does not have a previous sheetet, the algorithm consults all the lookup tables whose re-
the set of print capabilities eligible for printing its froside  moved actions form a subset of the actions removed in the
is unconstrained (i.e., equal to the entire set of printbdjpa constrained problem, and returns the maximum value as the
ties). For subsequent sheets of the same job, however, onlyreuristic estimate of the state, since the value returneshipy
subset of print capabilities is allowed. Such a subset is-conof the lookup tables is admissible.
puted based on th& E constraints by including only capabil- ~ More formally, leth(s|P) be an admissible heuristic es-
ities of those engines whogeF distance to the print engine timate for states in the constrained problem with the set of



actionsP C A removed from the original action sdt and let  receiving the error messages from the machine contrdiler, t
m be the maximum number of actions removed in any conplanner is fast enough to reroute the sheets around the faile
strained problems for which the heuristic is pre-computedmodules or jammed sheets to the correct locations. Besides
The heuristic estimat(s| P) can be calculated as follows, experimenting with the physical hardware built at PARC and
h(s|P) if |P| <m by Xerox, we have also tested in simulation, by connecting
h(s|P) = { o h(s|Q) otherwise the planner to the visualizer instead of the printer cotdrol
HAXQCP A |Q=m U5 We tried our replanning framework on different hypothet-

The new heuristic resembles the" family of admissible i@l printer configurations with different fault modes and
heuristics (Haslum and Geffner 2000), wherelimits the  different exception handling strategies. For example,rwhe

maximum cardinality of the set of atoms considered in thethe printing media is expensive and the replanning objectiv
construction of the heuristic. The differenceisthatowrim  function is switched from the default objective function of
tic considers the set of removed actions, whereashthe finish replanning as quickly as possible (which can lead to
heuristic considers the set of satisfied atoms. Our heuristimany purged sheets) to saving as many sheets at possible
can also be seen as a kind of multiple pattern databases {#hich can lead to longer replanning time) then the planner
which one can take the maximum over a set of heuristic estiias been able to successfully route up to 2 out-of-order
mates without losing admissibility, although ours is baged ~sheets in long routes (that may contain loops) in the system
action-space abstraction and (multiple) pattern databage Waliting for the jammed sheet to be printed before routed to

based on state-space abstraction. the correct finisher tray. While achievement of replanning
for up to five sheets in a large RMP machine may not seem
Experience in Practice very impressive, we want to point out that: (1) our planner

. . can reroute all reroutable sheets in simpler machines fwhic
In collaboration with Xerox, we have deployed our planneris still much more complex than the biggest multi-engine

to control three physical prototype multi-engine prinf@se  rinter Xerox currently has on the market); (2) the large
with the schematic view shown in Figure 1). These deployachine is very complex for automated planning—the last
ments have been successful and the planner has also begp, |pC winners SGPLan and LPG cannot even find plan

used in simulation to control hundreds of hypothetical@in - fo; 5 single sheet in nominal planning using the PDDL2.1
configurations. The planner is written in Objective Caml, ayersion of our printer domain.

dialect of ML, and runs on a standard desktop PC underei- N
ther Linux or Windows. It communicates with the job sub- Multi-Objective Search: To test the ability to tradeoff be-
mitter and the printer controller using ASCII text over sock tween machine productivity and printing cost, we have téste
ets. The planner can also communicate with a plan visualize?h the model of a four-engine prototype printer built at Xero
to graphically display the plans. The shortest single ptan f This is a better testbed for the tradeoff investigation beea
the machine shown in Figure 1 has 25 actions. Given thahat printer has a mixed set of printer engines (two color and
there are many sheets in the printer at any given time antivo black-and-white engines) instead of four identicachla
the planner can plan ahead, the plan manager consisteng@jigines such as in the our system. Moreover, the engines
manages dozens to hundreds of plans. For the most compléke aligned asymmetrically and thus the paths leading to dif
machine, the planner consistently on average produces plaferent engines are slightly different. We have modeled the
within the 0.27 seconds required to keep the printer runningosts for all different components. We are especially inter
at full productivity (220 pages/minute). The ability to use ested in modeling the cost to print black pages on different
domain-independent planning techniques allows us to wse tiengines: printing them on more expensive color engines cost
same planner for very different configurations, withoutdvee more than on cheaper monochrome engines. By varying the
ing any hand-tuned control rules. weights between the two objective functions, we have been
Exception Handling: Until now, the exception handling able to show that: (1) increasing the weight given to produc-
strategies in current production printers have been tatgp)  tivity results in more printer utilization of all four enggs;
the production or (i) use machine-specific customizedlloca(2) increasing the weight on saving printing cost leads o re
rules to purge sheets in the system. Our work is the first tgluctions in the number of unnecessary costly printing, thus
demonstrate automatic exception handling that does npt refewer black sheets are printed on color engines. We can ob-
on machine-specific control rules. serve the tradeoff between modules with similar functienal
The planner can handle the two easiest types of exceptioffy as well, such as between different feeders, finishers, or
Plan RejecandModule Updatewithout any difficulties. For ~paper-path. For example, increasing the weight for saving
the Brake-|n-FuturmndBrokenexceptions' we can Currenﬂy costs lowers the number of sheets fed from a more_ expenslve
re-route on the fly up to five sheets for the machine shown ifput faster feeders. We have also tested our multi-objective
Figure 1 (note that replanning is exponentially harder tharsearch on other hypothetical printers with mixed compament
nominal planning according the number of in-flight sheets)and similar results were observed. We observed that moving
For the Simp|er prototype Systems at Xerox with fewerfrom Slngle to mUltI-ObjeCtlve search did not slow dOWﬂ our
(but larger) modules, four print engines, and an aggregatelanner and thus does not affect the overall productivity.
throughput of 180 pages-per-minute, our planner has been We also tested the performance of our planner on image-
able to successfully reroute all reroutable sheets whenonsistency planning. The model of the printer used has four
different jams happen. We have demonstrated our replanningonochrome engines, two of which are faster but low-quality
technology in real-time by allowing people come up andengines, and the remaining two are slower but high-quality
either turn on/off modules, or jam sheets intentionallynee  engines. All four engines are connected through asymmet-
times right before the sheets hits the broken module. Uporic paper paths. We ran the simulation with a 20-sheet job



that requires using the two high-quality engines for double ning technology and uses an extension of PDDL, our multi-
sided printing. This can be done with certairk’ constraints, objective planner works in a dynamic online continual en-
which can prevent the planner from choosing the two low-vironment and interacts with a physical machine, not in an
quality engines. Since we are particularly interestedénghh ~ off-line abstracted environment like the mentioned plaane
fect of the heuristic on the search performance, we tested th Currently, we are extending our framework to scale up our
planner with and without using multiple lookup tables, whic real-time replanning framework. While the current planner
made a significant difference in the number of node expanworks for simpler prototype machines (which are still more
sions in A* search and planning times. On average, when theomplex than any multi-engine printer on the market), rerou
multiple lookup table heuristic is used, the planner exganding all possible sheets for the complex modular printer at
only 1783 nodes per sheet; whereas using the heuristic corRPARC is still a challenge. We are also extending to other
puted for the unconstrained problem, which grossly underebjective functions such as machine wear and tear.
estimates the remaining makespan for constrained problems

needs 6458 node expansions to find a plan. In terms of run- References
ning time, the one that uses multiple lookup tables is 60% C. Boutilier, T. Dean, and S. Hanks. Decision-theoretiapiag:
faster than using the naive heuristic. Structural assumptions and computational leverag@lR, 11:1—
91, 1999.
Conclusions Y. Chen, C. Hsu, and B. Wah. Temporal planning using subgoal

In thi h d ibed extensi f i partitioning and resolution in sgpladAIR, 26:323—-369, 2006.
n this paper, we nave describéd extensions of an oniinég Chien, R. Knight, A. Stechert, R. Sherwood, and G. Rabidea

continual plan_n_er C_ontrolling high-sp_eed modul_ar P”'_‘t‘” Using iterative repair to improve the responsiveness ofinpley
handle two critical issues: (1) real-time execution fa@ir 414 scheduling for autonomous spacecrafBroc. of IJCA| 1999.
and (2) objective functions beyond productlv_lty. We havg Joe Culberson and Jonathan Schaeffer. Pattern dataltzmepu-
successfully demonstrated our fast replanning and multi- ational Intelligence 14(3):318—334, 1998.

objective search on three physical prototype prin_ters aNftinh B. Do and Subbarao Kambhampati. Sapa: A multi-objectiv
many other potential printer configurations in simulatiGur metric femporal planedAIR, 20:155-194 2002,

work provides an example of how Al planning and scheduling . . .

. L i - . Minh B. Do and Wheeler Ruml. Lessons learned in applyin
can find real-world application not just in exotic domainsfsu domain-independent planning to high-speed manufactur?lt?gy g
as spacecraft or mobile robot control, but also for common Proceedings of ICAPS-0pages 370373, 2006.
dI()Wh-tp-ear(tjh pro_bl_ems such as prlntefr Cor)érol. lThe r?(,)AI- Minh Do, Wheeler Ruml, and Rong Zhou. On-line planning and
ular .prln_ter omain |s.repres¢ntat|ve Ora wiaer class o scheduling: An application to controlling modular prirgein Pro-
applications that require continual on-line decision-mgk  ceedings of AAAI-Q2008.
T_hrough a.novel combination of fast continual tgmporal plan Maria Fox, Alfonso Gerevini, Derek Long, and Ivan SerinaarP|
ning techniques, we have shown how Al techniques can suc-apjlity: Replanning versus plan repair. Rioc. of ICAPS-06
cessfully enable robust, high-performance, autonomoesop  pages 212-221, 2006.

ation without hand-coded control knowledge. _ A. Gerevini and D. Long. Preferences and soft constraints in

There are other frameworks to handle exceptions andpddi3. InWorkshop on Preferences and Soft Constraints in Plan-
uncertainty in plan execution. Markov decision process ning, ICAPS062006.

(Boutilier et al. 1999) and contingency planning (Pryor and ajfonso Gerevini, Alessandro Saetti, and Ivan Serina. e
Collins 1996) build plans and policies robust to uncertain through stochastic local search and temporal action gréaplpg.
environment. Planners built on those techniques are nor-Journal of Artificial Intelligence ResearcB0:239-290, 2003.
m.ally slow, especially in a reall-tlme. dynamic environment Alfonso Gerevini, Alessandro Saetti, and Ivan Serina. Asraach
with complex temporal constraints like ours. They are not to efficient planning with numerical fluents and multi-crizeplan
suitable for our domain where exceptions do not happen fre-quality. Artificial Intelligence 2008.

quently, but need to be responded to very quickly. Box  Matthew L. Ginsberg and William D. Harvey. Iterative broaile.
al. (2006) discuss the tradeoff between replanning and plan-Artificial Intelligence 55:367-383, 1992.

repair strategies for handling execution failure. Thegoal  p. Haslum and H. Geffner. Admissible heuristics for optiplah-
rithms work off-line, instead of in an on-line real-time en- ning. InProceedings of AIP$ages 140-149, 2000.
vironment such as ours, and they target different objective Rjchard E. Korf. Improved limited discrepancy search. Piro-
function (i.e. plan stability). CASPER system at JPL (Chien ceedings of AAAI-9éages 286-291. MIT Press, 1996.

et al. 1999) uses iterative repairs to continuously modify and | ykas Kuhn, Johan de Kleer, Robert Price, Minh Do, and Rong
update plans to adjust to the dynamic environment. Unlike zhou. Pervasive diagnosis: The integration of active diagminto
our system, CASPER uses domain control-rules and thus isproduction plans. IProceedings of AAAI-Q2008.

Ies_s flexibl_e and the replanning decision is also not neesled a |, pryor and G. Collins. Planning for contingencies: A diagis
quickly as in our domain (sub-s_econd). o based approactlAIR, 4:287—-339, 1996.

There are several academic domain-independent planipanis Refanidis and loannis Vlahavas. Multiobjective retic
ners such as GRT (Refanidis and Vlahavas 2003) and LPGstate-space planninghrtificial Intelligence 145:1-32, 2003.
(Gereviniet al. 2008) that can optimize for multiple ob-  \wheeler Ruml, Minh Binh Do, and Markus Fromherz. On-line
jectives or tradeoff between planning time and plan quality planning and scheduling for high-speed manufacturingroe. of
Standard planning languages, especially PDDL3 (GerevinilCAPS-05 pages 30-39, 2005.
and Long 2006), allow specifying complex objective func- Takayuki Yoshizumi, Teruhisa Miura, and Toru Ishida. A* it
tions in the weighted-sum format (as in our framework). partial expansion for large branching factor problemsPioceed-
While our planner is also based on domain-independent plan-ings of AAAI-2000pages 923-929, 2000.



