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Abstract

Much recent work on boolean satisfiability has focussed
on incomplete algorithms that sacrifice accuracy for im-
proved running time. Statistical predictors of satisfiability
do not return actual satisfying assignments, but at least
two have been developed that run in linear time. Search al-
gorithms allow increased accuracy with additional running
time, and can return satisfying assignments. The efficient
search algorithms that have been proposed are based on it-
eratively improving a random assignment, in effect search-
ing a graph of degree equal to the number of variables. In
this paper, we examine an incomplete algorithm based on
searching a standard binary tree, in which statistical pre-
dictors are used to speculatively prune the tree in constant
time. Experimental evaluation on hard random instances
shows it to be the first practical incomplete algorithm based
on tree search, surpassing even graph-based methods on
smaller instances.

1 Introduction

Satisfiability, determining whether a boolean formula could possibly be made
true, is a quintessential NP-complete problem (Cook, 1971; Garey and John-
son, 1991). It remains hard even when the formula must be presented as a
conjunction of disjunctions of at most three literals. An example of such a
formula might be the rules for pet compatibility: (dog V cat V parakeet) A



(—eat V —dog) A (—cat V —parakeet). This restricted version, known as 3-
satisfiability or 3-SAT, has the maximum simplicity—the problem can be
solved in polynomial time when restricted to two-element clauses (Even,
Itai, and Shamir, 1976). Boolean satisfiability is particularly interesting be-
cause it is a fundamental task in reasoning with propositional logic: one can
detect an inconsistent conclusion by conjoining it to the theory and show-
ing that the resulting formula is unsatisfiable. It is also relatively easy to
convert certain other NP-complete problems, such as graph coloring, circuit
diagnosis, and STRIPS planning, into satisfiability problems.

In response to the intractability of satisfiability, two types of approxima-
tion algorithms have been proposed that trade a certain probability of an
incorrect answer for enormous improvements in running time. The predic-
tive algorithms use only general features of a formula, such as the average
number of clauses per variable, to gauge its satisfiability. Although some
of these algorithms can be guaranteed to run in time linear in the size of
the formula, a predictor will not return an actual satisfying assignment;
such assignments are useful in many applications. The second approach is
to iteratively modify an initial unsatisfying assignment, with the intent of
discovering one which satisfies the formula. These algorithms organize their
search space as a graph rather than as a traditional binary tree, with assign-
ments connected if they differ on the value of only a single variable. Since
these methods do not attempt to consider all possible assignments, they
sometimes erroneously conclude unsatisfiability when, in fact, a satisfying
assignment exists.

In this paper, we will examine a third type of incomplete algorithm.
Rather than making local moves over a graph representation of the possible
assignments, we will use backtracking to move through a traditional binary
tree. As with the graph-based algorithms, we will improve running time by
ignoring portions of the search space. As we will see, we can use variants
of the fast predictive satisfiability algorithms to determine whether a node
warrants expansion. This yields a practical incomplete tree search algorithm
for boolean satisfiability.

2 Previous Algorithms

The traditional complete tree search algorithm for satisfiability was de-
scribed by Davis, Logemann, and Loveland (1962), and is known as DLL.!

!They implemented a modified version of the algorithm suggested by Davis and Putnam
(1960).



Each node represents a partial assignment and nodes are expanded by as-
signing an additional variable. Along any path from the root, the formula is
simplified as clauses are eliminated by becoming satisfied and as occurrences
of variables (known as literals) become false and can be removed. Contra-
dictory assignments are signalled by empty clauses. Any clause with a single
literal forces the value of that variable; by performing this check, known as
unit propagation, after every assignment, the effective depth of the tree is
greatly reduced.

DLL runs quickly on many problems, and it was not until 1992 that
Mitchell et. al. formulated a distribution of instances, known as random
3-SAT, for which DLL requires exponential time in the average case. In
this model, all clauses contain three literals of three distinct variables, each
negated with probability %, and no clause is repeated. The number of clauses
per variable, known as (3, can be varied, producing easily satisfied instances
with few constraints, overconstrained instances with easily found contra-
dictions, or difficult problems, with about 4.258n + 58.26n~2/3 clauses per
variable (Crawford and Auton, 1996; Mitchell, Selman, and Levesque, 1992).
Even on difficult problems, however, careful selection of the next variable to
assign can lower the exponent: Crawford and Auton’s TABLEAU algorithm
runs in O(2%'9%) time in the average case on hard random 3-SAT instances
(Crawford and Auton, 1996).

Running DLL may not be necessary if one is willing to tolerate some
probability of error. The WSAT algorithm of Selman, Kautz, and Cohen
(1994) uses a very different kind of search from DLL. Instead of organizing
partial assignments into a tree and thereby implicitly recording the portion
of the possibilities that have been considered, WSAT modifies a complete
assignment without attempting to record its efforts. In effect, it makes
local moves through a graph of assignments. The algorithm starts with a
random assignment and repeatedly selects an unsatisfied clause and flips the
assignment of one of its variables. If one of the variables can be changed
without causing another clause to become unsatisfied, then that variable
is flipped, otherwise, with probability 1 — p, the variable that causes the
fewest other clauses to become unsatisfied is flipped, and with probability
p, a random variable in the clause in flipped. If a satisfying assignment is
not found after some number of flips, the algorithm tries again with a new
random assignment. WSAT runs in O(n~0-6+0-412(n)) time in the average case
on hard random 3-SAT instances that are known beforehand to be satisfiable
(Parkes and Walser, 1996).

If one is willing to tolerate error and also doesn’t require an actual sat-
isfying assignment, even simpler predictive algorithms are available. As



explained above, when given a formula from the random 3-SAT distribution,
[ has been shown to predict satisfiability (Mitchell, Selman, and Levesque,
1992). The average difference between the number of positive and the num-
ber of negative literals of each variable, known as A, has also been shown
predictive for random 3-SAT formulas, especially in combination with
(Sandholm, 1996). Pennock and Stout (1996) proposed the PE-SAT predic-
tor, which uses a clever approximation of variable dependencies to compute
the expected number of satisfying assignments in O(n?) time (O(n3) for an
extended version). They also showed that PE-SAT could be used during a
DLL search. By pruning any node representing a subformula that PE-SAT
predicts has few or no solutions, the algorithms avoids unproductive sub-
trees, at the risk of overlooking a satisfying assignment. By varying the
pruning threshold, accuracy can be traded for decreased running time.

Unfortunately, PE-SAT-pruned DLL is not a practical algorithm, as we
will see below in figure 5. Its O(n?) prediction at every node is too expensive,
and it is unclear how to reuse portions of previous computations. But what
about using a less expensive predictor? (§ and A are easy to compute,
although they have only been shown effective on formulas drawn from the
random 3-SAT distribution. Let’s examine their behavior on the subformulas
that a DLL algorithm generates during its search.

3 Training Data

Predicting satisfiability from 8 and A is most effective when one can com-
pare measurements to prior results on similar formulas, so we must gather
data on the probability of satisfiability of DLL subformulas with various val-
ues of 0 and A. When measuring the subformulas, we might expect the
characteristics of the simpler ones to shift away from those exhibited by
the original formula’s distribution, so we can use the percentage of assigned
variables as an additional classification statistic. ~Figure 1 shows the up-
per bound of a 99% confidence interval on the probability of satisfiability of
subformulas of DLL. The data were gathered while running DLL with a vari-
able choice heuristic similar to that used by TABLEAU (Crawford and Auton,
1996), except that the true number of unit propagations which would result
from selecting each candidate variable was not computed. Variables were
set first to that value that would make the greater number of their literals
true. 100,000 formulas of 80 variables were used. They were drawn from the
1

random 3-SAT distribution, with initial 8 values ranging uniformly from 3

to 1% times the value at which 50% of the instances would be expected to be
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Figure 1: Upper bound on the confidence that DLL subformulas are satisfi-
able. 1.1 indicates no data.

satisfiable. Results were stored in a two-dimensional table with 80 entries
along the percent-assigned axis (for values between 0 and 1) and 100 entries
along the 8 axis (for values between 0 and 10). Confidence intervals were
calculated asymmetrically (Lindgren and McElrath, 1959). For table entries
with no formulas, we have no idea what the upper bound should be and it
is plotted as 1.1.

The swath of figure 1 containing data is tilted to the left, indicating
that, in general, # decreases as variables are assigned. This makes sense,
since true literals eliminate clauses containing unassigned variables. The
bottom portion of the plot, corresponding to few assigned variables, matches
previous results concerning random 3-SAT formulas, showing a monotonic
dependence on 8 with a steep transition from satisfiable to unsatisfiable
between 3 values of 4 and 4.5. The upper portion of the plot also matches
intuition, with DLL unable to assign a large percentage of the variables in
many unsatisfiable formulas. The middle portion of the plot is interesting,
and a slice taken across 3 with 55% of the variables assigned appears in figure
2. DLL subformulas do not simply have the smooth satisfiability profile of
random 3-SAT formulas shifted to the left—the data show a perturbation
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Figure 2: A slice through figure 1 when 55% of the variables are assigned.
1.1 indicates no data.
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Figure 3: Upper bound on satisfiability when 20% of the variables are as-
signed. 1.1 indicates no data.

when ( is 2.2, and a slower approach to unsatisfiability around 2.8 than one
would expect. Despite these anomalies, the data in figure 1 show that there
are wide ranges where 3 seems useful for predicting unsatisfiability.

Using A improves the segregation of satisfiable and unsatisfiable subfor-
mulas. Figure 3 shows a slice through results gathered from DLL using
a three-dimensional table indexed by 3, A, and the percentage of variables
assigned. The A axis had 100 entries, for values between 0 and 5. The right-
ward tilt of the contours, particularly at mid-range values of 3, suggests that
a larger disparity between the number of positive and negative literals lowers
the number of contradictions and improves the chance of finding a satisfying
assignment. This agrees with the findings of Sandholm (1996) on random
3-SAT formulas.

4 Performance

Now that we have data about the satisfiability of DLL subformulas as a
function of § and A, we can use that information for pruning the search
tree. At every node, we can calculate 8, A, and percentage of variables that
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Figure 4: Performance of DLL with pruning using various predictors, mea-

sured in branches.

have been assigned, and then index into the training data. If prior experience
indicates a very low upper bound on the probability that the subformula is
satisfiable, we won’t bother expanding the node. By adjusting the upper
bound threshold, we can trade accuracy for speed.

Figure 4 shows the accuracy of DLL with pruning versus the number of
nodes expanded. The number of nodes is plotted as speed-up relative to
the same algorithm with no satisfiability prediction or pruning, so a values
of 2 indicates half the usual number of branches in the search tree.? The
variable- and value-selection heuristics were as described above. 2,000 hard
random 3-SAT instances of 40 variables were used for testing. The 8 and
percentage assigned, and 8, A, and percentage assigned data were gathered
from a separate collection, as described above except containing formulas of
40 variables. Error bars indicate 95% confidence intervals.

2Speed-up tends to be lower when measured in branches rather than nodes generated,
since some implementations, such as that of Pennock and Stout (1996), appear to count
each unit propagation as a node.



PE-SAT seems to be the most accurate predictor, although it abruptly
exhibits pathological behavior as the threshold number of solutions rises
past 4. It seems to prune every satisfiable branch, forcing DLL to explore
more of the tree while avoiding any solutions, resulting in low accuracy and
an enormous number of branches. These data points appear at the left of
the plot, even though they result from moving the threshold past the value
used to generate the points falling to the right. While less accurate, the
simpler predictors have smoothly varying performance curves. More im-
portantly, they are much easier to compute. The number of variables and
clauses in each subformula can be computed by subtraction from the par-
ent node as the formula is simplified. Since unit propagation already visits
all clauses in which the recently-set variable’s literal is becoming false and
being eliminated, the additional effort to count the clauses that are being
eliminated, which are those in which the variable’s literal is become true, is
only a constant factor. Therefore, 8 can be computed in constant time as
each node. Similarly, eliminated clauses can be checked for occurrences of
the literals of unbound variables, allowing A to be updated with constant
time overhead. Given a confidence level and upper bound, some additional
time can be saved by precomputing confidence intervals and pruning deci-
sions for each table entry. One might suspect that the O(n?) running time
of PE-SAT wouldn’t be a serious liability in practice, since most subformulas
are fairly small, but this is not the case. For 40 variable instances, all PE-
SAT runs took at least 181 times as long as a plain DLL with no pruning,
for 80 variables instances, at least 407 times as long, and for 120 variables
instances, at least 632 times as long.

Figure 5 compares the same runs of pruned DLL to WSAT. Since WSAT
does no unit propagation, a comparison based on nodes would be mislead-
ing, so we compare the algorithms on the basis of observed running time. As
before, speed-up is relative to DLL without prediction or pruning. On these
40-variable instances, the plain version of DLL performed 16.3 branches per
formula at around 6,000 branches per second, and WSAT performed 66—
71,000 flips per second. These running times correspond to a DEC AlphaS-
tation 500/500 (SPECint95 15.0, SPECtp95 20.4). G and A were computed
efficiently as described above, although the variable-selection heuristics were
implemented naively, taking time linear in the size of the original formula
at every node. WSAT was implemented using the same efficient data struc-
tures as were shown best by Fukunaga (1997), and with attention to the
details discussed by Parkes and Walser (1996). We allowed WSAT to make
0.0445287n23207 flips before restarting with a new random assignment. This
is our fit to the reported optimal data of Parkes and Walser (1996), and it
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Figure 5: Performance of DLL with pruning compared to WSAT on 40-
variable instances.
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Figure 6: Performance of DLL with pruning compared to WSAT on 80-
variable instances.

gave slightly better results than their recommended 0.02n23° flips. To han-
dle unsatisfiable instances, we imposed a limit on the number of restarts,
and varied this limit to allow a trade-off between accuracy and time.

Since calculating the predictors and checking against training data takes
time, the runs of DLL using pruning must sacrifice accuracy just to equal
the running time of the unadorned algorithm. The increased accuracy of
prediction using A does not offset its additional computation time, at least
in our implementation. DLL using PE-SAT lies against the left edge of the
plot. The poor performance of WSAT is caused by its blind tenacity—since it
can’t recognize unsatisfiable formulas, it must reach its restart limit for each
one. Although many satisfiable formulas are solved quickly, high accuracy
requires large numbers of restarts, and this becomes a penalty to be paid on
each unsatisfiable instance.

Figures 69 show the performance of the algorithms as the size of the
formulas is increased. Separate training data was gathered for each size,
except at 160 and 200 variables, where the data from 120-variable formulas
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Figure 7: Performance of DLL with pruning compared to WSAT on 120-
variable instances.
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Figure 8: Performance of DLL with pruning compared to WSAT on 160-
variable instances.

13



WSAT ——
095 | DLL using Betaand % Assigned —— |

09
0.85
0.8

0.75

Accuracy

065 | ]

055 ‘ ‘ ‘ ‘ ‘
0 10 20 30 40 50 60

Speed-up (in running time)
Figure 9: Performance of DLL with pruning compared to WSAT on 200-
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Figure 10: Speed-up of pruned DLL and WSAT relative to plain DLL for
90% accuracy.

was used. As the number of variables increases, so does the accuracy of all
the algorithms. The overhead of computing the pruning predictors remains
constant, as we would expect. The extra accuracy of A never becomes cost-
effective. Although it remains slower than plain DLL for high accuracies,
WSAT improves faster at lower accuracies than DLL with pruning, domi-
nating the tree-based search for larger problems. A plot of the speed-up
achieved for 90% accuracy is shown in figure 10. Unfortunately, it is not
clear if these scaling results are due to poor scaling of our implementation
of the variable-selection heuristics or an inherent property of the two kinds
of algorithms.

As we noticed with 40-variable instances, WSAT spends most of its time
on unproductive restarts for unsatisfiable formulas. When pruned DLL and
W AT spend the same amount of time for the same accuracy, as we find with
95% accuracy on 160-variable formulas, WSAT’s mean time per formula is
more than 6 times greater for unsatisfiable than satisfiable formulas, whereas
DLL only spends 2.5 times as long on them. Although it takes longer to find
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a satisfying assignment that WSAT, DLL can recognize unsatisfiable formulas
and cease working on them.

Similar DLL results were obtained when using # and percentage assigned
data gathered from a collection of exclusively hard random 3-SAT formulas.
Preliminary experiments also showed similar performance on 80-variable in-
stance when using training data from 40-variable instances. Using depth
in the search tree rather than the percentage of variables assigned gave in-
significantly worse results. Preliminary experiments have shown promising
results when using pruned DLL on random 3-SAT formulas with a variety of
[ values. It remains to be seen how the algorithm performs on satisfiability
problems representing reductions of other NP-complete problems.

If the actual satisfying assignment is not needed, preliminary experi-
ments have shown that even greater gains in running time can be achieved
by also using the predictors to guess when a subformula is satisfiable.

5 Possible Extensions

We have shown that traditional measures of satisfiability for random 3-SAT
formulas can be extended for use with the subformulas occurring in the
DLL search tree. By using them for speculative pruning, we developed an
incomplete algorithm for boolean satisfiability that does not organize its
search space as a graph. The basic framework of a pruned DLL is simple,
and if a new predictive statistic were developed for subformulas, it could
easily be incorporated into the algorithm. Increased accuracy must always
be balanced against increased running time, however, as we saw with A.
One possibility would be to compute expensive estimates only occasionally.

Predictors for DLL subformulas can also be used in other algorithms.
One could imagine variable selection heuristics that gauge the promise of
subtrees by probing a constant number of paths and estimating the satis-
fiability of the deeper nodes. Or the predictors could be used for a search
method based on heuristic probing (Bresina, 1996).

Although we have also shown the trade-off between accuracy and speed
for WSAT and a pruning DLL, further analysis is needed to ensure that these
trade-offs hold for individual instances. With WSAT, it is easy to expend
more running time on an individual instance by starting with yet another
random assignment. With DLL, an iterative relaxation of the probability
threshold could be used, although it is not immediately clear how smoothly
the probabilities change as one descends the search tree of a particular in-
stance.
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