Easily Searched Encodings for Number Partitioning

Wheeler Ruml
ruml@das.harvard.edu
Harvard University, Cambridge, Massachusetts

J. Thomas Ngo

ngo@interval.com

Interval Research Corporation, Palo Alto, California

Joe Marks

marks@merl.com

Mitsubishi Electric Research Laboratories, Inc., Cambridge, Massachusetts

Stuart Shieber
shieber@das.harvard.edu
Harvard University, Cambridge, Massachusetts

Journal of Optimization Theory and Applications, 1995, to appear.
Final version.

Abstract

Can stochastic search algorithms outperform existing deterministic heuristics for the NP-hard
problem NUMBER PARTITIONING if given a sufficient, but practically realizable amount of time? In
a thorough empirical investigation using a straightforward implementation of one such algorithm,
simulated annealing, Johnson et al. (1991) concluded tentatively that the answer is “no.”

In this paper we show that the answer can be “yes” if attention is devoted to the issue of
problem representation (encoding). We present results from empirical tests of several encodings
of NUMBER PARTITIONING with problem instances consisting of multiple-precision integers drawn
from a uniform probability distribution. With these instances and with an appropriate choice of
representation, stochastic and deterministic searches can—routinely and in a practical amount of
time—{find solutions several orders of magnitude better than those constructed by the best heuristic
known (Karmarkar and Karp, 1982), which does not employ searching.

The choice of encoding is found to be more important than the choice of search technique in
determining search efficacy. Three alternative explanations for the relative performance of the en-
codings are tested experimentally. The best encodings tested are found to contain a high proportion
of good solutions; moreover, in those encodings, the solutions are organized into a single “bumpy
funnel” centered at a known position in the search space. This is likely to be the only relevant
structure in the search space because a blind search performs as well as any other search technique
tested when the search space is restricted to the funnel tip.

We also show how analogous representations might be designed in a principled manner for
other difficult combinatorial optimization problems by applying the principles of parameterized
arbitration, parameterized constraint, and parameterized greediness.

Keywords: number partitioning, NP-complete, representation, encoding, empirical comparison,
stochastic optimization, parameterized arbitration, parameterized constraint, parameterized greed-
iness.

1 Introduction

NUMBER PARTITIONING is a very simple NP-hard problem: given a sequence A = (a1, as,...,a,)
of positive rational numbers, the object is to find a corresponding sequence S = (s1, S2,...,5,) of
signs s; € {—1,+1}, such that the residue

U =

n
E S5
=1

is minimized. A sample instance, to which we refer repeatedly in examples, is given in Table 1.
Intuitively, the task is to divide the given sequence into two subsets of roughly equal sum.! NUMBER
PARTITIONING is the optimization problem implied by the decision problem PARTITION, in which
it is asked whether a perfect partitioning (v = 0) exists for a given sequence A. PARTITION was
shown to be NP-complete by Karp (1972).

Despite the apparent simplicity of NUMBER PARTITIONING, good heuristics have been difficult
to devise. The best heuristic known, due to Karmarkar and Karp (1982), runs in O(nlogn) time,
and given a sequence of numbers distributed uniformly between 0 and 1, it returns solutions with
expected values of u = n~?1°8" where « is a positive constant. Although this is much better than
previously reported heuristic techniques, it falls far short of known upper bounds on the expected
optimum residue (§7). Another significant drawback is that the Karmarkar-Karp (KK) heuristic
is completely deterministic: it always constructs the same solution for a given problem instance.
Thus the KK algorithm does not permit a trade-off between computational effort and the value of
the solution found.

The term stochastic optimization (SO) refers to a family of search techniques—simulated an-
nealing (Kirkpatrick et al., 1983; Cerny, 1985) and genetic algorithms (Holland, 1975; Goldberg,
1988; Davis, 1991) being two of the most popular types—that might appear to be worthy candi-
dates for improving on the KK heuristic. SO techniques generally do permit a trade-oflf between
computational effort and the value of the solution found. Therefore, while SO is often valued
principally as a “method of first resort” when little is known about an optimization problem, it is
worth asking whether SO could be the technique of choice even for a problem that has undergone
extensive analysis. However, previous research results have suggested that SO is poorly suited
for NUMBER PARTITIONING relative to the KK heuristic. A thorough empirical investigation of
simulated annealing for NUMBER PARTITIONING by Johnson et al. (1991) led them to report:

For number partitioning, simulated annealing is not competitive with the differencing
algorithm of N. Karmarkar and R. M. Karp, except on relatively small instances.

Nevertheless, Johnson et al. caution:
[Our results should not be taken to imply that] there is no way of successfully adapting

simulated annealing to this problem, but at present we can think of no better alternatives
than the ones we consider.

'Indeed, the task is conventionally cast in terms of dividing a given set of numbers into two partitions such that
the difference u between the partitions’ sums is as close as possible to zero. It is for clarity later in the paper that
we choose to describe the problem in terms of finding a sign sequence S that minimizes the residue u.

In this paper, we present some better alternatives. We show that by representing the problem
appropriately—choosing a suitable encoding for candidate solutions, and operators for generating
new candidate solutions from old ones—a variety of SO techniques can find solutions better than
those computed by the KK heuristic. For problem instances with 100 uniformly distributed ele-
ments, our techniques match the values of w attained by KK in the same amount of time, begin
improving upon the KK solution immediately thereafter, and after a practical amount of time
better the KK solution by several orders of magnitude.

We begin by establishing some basic terminology (§2). We summarize previous work: the KK
heuristic and previous attempts at using SO for this problem (§3). We describe four encodings
for NUMBER PARTITIONING and four “search engines” (§4), and demonstrate that the choice of
encoding is far more important than the choice of search engine in determining SO performance
(§5). We propose three alternative explanations for the relative performance of the encodings and
distinguish among these explanations experimentally (§6). We conclude by discussing how the
principles we have used to design effective encodings for NUMBER PARTITIONING might be applied
to other optimization problems (§7).

6 5 4 4 3| u| Remark
4+ 4+ — — —| 0| Optimal solution
+ — 4+ — — 1| 2| KK solution

Table 1: Sample instance of NUMBER PARTITIONING with two candidate solutions. In this sample
instance, A = (6,5,4,4,3).

2 Basic terminology

Stochastic optimization refers to a family of optimization techniques in which the solution space is
searched by generating candidate solutions with the aid of a pseudorandom number generator. As
the run proceeds, the probability distribution by which new candidate solutions are generated may
change, based on results of trials earlier in the run. (In the simplest and most common case, a new
candidate solution is obtained by perturbing another solution from a recent trial.)

Each SO algorithm that we investigate may be divided into two layers. A distinction between
these two layers is essential to our research strategy. The bottom layer, the representation or
encoding of the problem, encapsulates details about what independent variables are used to encode
a candidate solution, and how the values of those variables might be manipulated during a search.
In the context of this paper, an encoding is specified by a list of these independent variables and
their possible values (which define the encoding space =) and a specification for each of the following
operations:

e Fvaluate—Compute a real-valued cost u(§) given a candidate solution £ € . The algorithm
for decoding € may, in general, incorporate heuristics specific to the representation.

e Randomize—Draw a candidate solution £ € = from some a priori probability distribution.

e Perturb—Change the values of the independent variables randomly by a small amount, i.e.,
given one candidate solution £ € =, generate another (possibly identical) solution & € =.

The task of the top layer, the search engine, is to find £ € Z that minimizes u(§) using only the
operations Fvaluate, Randomize, and Perturb. A simple example of a search engine is hill climbing
(§4.6), in which a randomly generated candidate solution £ is repeatedly perturbed, but perturba-
tions that increase u(&) are rejected. In this paper, attention is restricted to four search engines
that employ only the three operations listed above. A fourth operation called Crossover, in which
two solutions are somehow combined to make a third, can be defined. If an encoding is extended to
include such an operation, then several additional search engines—variants of the genetic algorithm
(Holland, 1975)—become applicable. We have conducted a more extensive empirical study (Ruml,
1993) that includes genetic algorithms. Because the combinations of genetic algorithm and encod-
ing tested did not present any particular advantage, for brevity we do not present those results
here.

The importance of the distinction between the search-engine and encoding layers lies in the
principles by which various search engines operate. Although these principles vary greatly in
detail depending on the search engine in question, the principles are all generic. That is, they
involve minimal assumptions about the distribution of candidate solutions within the search space—
assumptions that rely little on information specific to the problem at hand. For example, as Johnson
et al. (1991) note, simulated annealing relies for its success on the existence of a “neighborhood
structure” in the search space. It is assumed, in essence, that groups of good solutions tend to
lie close together, i.e., tend to be mutually accessible via perturbations. If the solution space of a
problem lacks neighborhood structure under a given encoding, then simulated annealing may not
fare better than a blind search given that encoding.

Thus, the success of the search-engine layer in locating solutions of low cost relies critically on
the nature of the solution space presented to it by the representation layer. If the representation
produces a candidate-solution space whose structure is incompatible with the assumptions of the
search engine, the algorithm as a whole is likely to fail to find low-cost solutions efficiently. In
§4 we show by example how an encoding can be designed in a principled manner by choosing its
independent variables with respect to a given existing greedy heuristic. In §6 we suggest how the
operators Randomize and Perturb can also be designed in a principled manner.

3 Previous Work

3.1 Pseudopolynomial algorithm

NUMBER PARTITIONING can be solved in pseudopolynomial time. If A is a sequence of positive
integers whose sum is B, then the optimal residue w can be determined in time polynomial in nB—
“pseudopolynomial” time, because nB is not bounded by any polynomial in nlog B, a measure of
the space required to store A (Garey and Johnson, 1979).

(The pseudopolynomial algorithm is based on the observation that for any subset A’ C A, the
sum) .4 @ must be an integer between 1 and B. By dynamic programming it is asked, in turn,
whether there exists A’ C A such that) .4 a = 1,2, and so on up to |B/2|. A value u is an
attainable residue if and only if %(B —u) is a possible partial sum; therefore, the partial sum closest
to £B gives the minimal residue u.)

This pseudopolynomial algorithm, which requires time and space at least linear in B, is of little
practical value when B is large. In the runs presented here, we employed effective values of B that
exceed 2", the total number of candidate solutions.

3.2 Karmarkar-Karp algorithm

Many heuristics that attempt to minimize u even when B is large have been described. Of these,
the most successful has been the Karmarkar-Karp (KK) algorithm (Karmarkar and Karp, 1982).

The KK procedure may be understood by means of the following observation. Consider a pair
of elements, a; and a;, in the given sequence A. If it is believed, for whatever reason, that all
candidate solutions in which a@; and «; lie in the same partition (i.e., s;s; = 1) can be eliminated
from consideration, then the larger of a; and a; can be replaced by their difference |a; — a;|, and
the smaller by zero, without changing the set of attainable values of the residue u. This operation,
called differencing, can be applied recursively to the sequence of remaining nonzero numbers. With
each differencing operation the number of nonzero elements in the sequence is reduced by at least
one, and when the sequence contains only one nonzero element, that element is the residue. (If no
nonzero element remains, then a perfect partitioning exists.) A sequence of signs s; that produces
this residue can be constructed in a straightforward manner from the sequence of differencing choices
by two-coloring the graph (A, £), where £ is the set of pairs (a;, a;) subjected to differencing.

Unfortunately, no known algorithm based on repeated differencing is guaranteed to produce an
optimal solution in polynomial time. In particular, at each step of the process, it is not known
how to select efficiently a pair of elements a; and a; for differencing such that the optimal solution
is guaranteed not to be eliminated from consideration. (A polynomial-time algorithm for making
this choice with such a guarantee does not exist unless P = NP.) The KK algorithm is a heuristic
special case of the repeated-differencing procedure in which the two elements a; and a; selected for
differencing at any given step are the two largest numbers in the sequence (Figure 1). The solution
returned by this procedure is not necessarily optimal (Table 1). In pseudocode, the KK procedure
is:

fori=1ton—-1
J « the index of the largest element of A
k < the index of the second largest element of A
a; < a; — a
ap 0
end for

When the procedure ends, at least n—1 of the elements of A will be equal to zero, and the remaining
element will be the value of u.

6 1 1= 0| O
5 0 0 o| @ Two-coloring
based on

4 4170 01 O (gifferencing

4 41— 0 0| @ steps

3 3 3r—=2(© u=2
N

Repeated differencing

Figure 1: [lustration of the KK heuristic.

Since the publication of the KK algorithm (Karmarkar and Karp, 1982), no superior determin-
istic heuristic for NUMBER PARTITIONING has been developed. Indeed, Karmarkar et al. (1986)
later declared:

[The expected residue u produced by the KK algorithm] was a great improvement over
other results, [but] is still much greater than the optimum difference which is shown in
this paper to be likely. It would be very interesting, though possibly very difficult, to
improve upon that algorithm.

3.3 Previous investigations of SO for NUMBER PARTITIONING

Might stochastic optimization techniques produce solutions closer to optimal than the KK solution,
albeit given a larger (but practically realizable) amount of time? This possibility was investigated
by Johnson et al. (1991), who empirically compared stochastic algorithms for NUMBER PARTITION-
ING with the KK heuristic. Johnson et al. tested two search engines with a single encoding—in
particular, they tested the combinations that we call SA/direct and HC/direct. (Table 2 explains
these and other abbreviations; the encodings and search engines themselves are described in §4.)
Simulated annealing was found to be inferior to the KK algorithm, especially with larger problem
instances. Indeed, NUMBER PARTITIONING had been chosen as a hard test case for simulated
annealing because, at least in what we call the direct representation, “the natural ‘neighborhood
structures’ for it, those in which neighboring solutions differ as to the location of only one or two
elements, have exceedingly ‘mountainous’ terrains, in which neighboring solutions differ widely in
cost” (Johnson et al., 1991).

Jones and Beltramo (1991) considered the use of a genetic algorithm for a generalization of the
NUMBER PARTITIONING problem that they called the “equal piles problem.” In this problem, the
object is to divide a given set of numbers into & partitions of equal sum. (NUMBER PARTITIONING
is the special case of the equal-piles problem in which & = 2.) To test the effectiveness of various
encodings with the GA, they compared the combinations that we call GA/jb-greedy, GA/jb-sep,
and GA/jb-num, each using several possible types of Crossover. Because they used a small problem
instance (n = 34, k = 10) and did not perform comparisons with the KK algorithm, their results
do not help answer the question posed above. The results of Ruml (1993) include tests of the best
Jones-Beltramo algorithms with larger instances.

4 Encodings and Search Engines

4.1 Overview

In contrast with previous investigations of SO techniques for NUMBER PARTITIONING, we system-
atically employed a suite of possible encodings (many of them novel) with a suite of search engines.
Our initial purpose was to test, empirically, the proposition that the success of a search engine in
finding low-cost solutions for a given instance of NUMBER PARTITIONING depends heavily on the
nature of the representation used.

With the exception of the direct encoding (§4.2), every encoding we used was designed with the
benefit of insights derived from existing greedy deterministic heuristics such as the KK algorithm. In
the remainder of the paper, we will refer to the solution constructed by the given greedy heuristic as

Search-engine layer
Abbreviation Explanation
RGT (§4.6) Random generate and test
HC (§4.6) Hill climbing
PHC (§4.6) Parallel hill climbing
SA (§4.6) Simulated annealing
GA Genetic algorithm
Representation layer
Abbreviation Explanation
direct (§4.2) Direct: The encoding used by Johnson et al. (1991)
jb-greedy (§4.3) | Greedy decoder: The best encoding used by Jones and Beltramo (1991)
jb-sep Group separators: An encoding used by Jones and Beltramo (1991)
jb-num Group numbers: An encoding used by Jones and Beltramo (1991)
split Splitting decoder
split-alt Alternating splitting decoder
split-num Number-based splitting decoder
split-grd Greedy splitting decoder
prepart (§4.4) Prepartitioning
index-dbl Double index rules
index-wgt Weighted double index rules
index (§4.5) Single index rules (modified)

Table 2: Abbreviations for the various search engines and encodings employed in the empirical
comparisons of Ruml (1993). Abbreviations for a search engine and an encoding may be combined
with an intervening slash (/); for example, “SA /direct” denotes the use of simulated annealing with
the direct representation. Boldface abbreviations correspond to the search engine and encodings
that are described in detail in this paper.

the greedy solution. Our strategy for designing an effective encoding is summarized in the following
three steps.

1. Select an existing greedy heuristic for the optimization problem in question.
2. Modify the heuristic so that its operation is not fully determined.

3. Choose, for every underdetermined decision point in the heuristic, a parameter whose value
will determine the decision. The set of such parameters will be the independent variables of
the encoding.

In the case of the encodings presented here and by Ruml (1993), Step 2 was accomplished by
one of the following three principles:

parameterized arbitration This design principle can be used only when the given greedy heuris-
tic already requires making arbitrary decisions. For example, Jones and Beltramo (1991)
describe a greedy heuristic in which the two partitions are initially empty and the elements a;
from the given instance are added, one at a time, to the smaller of the growing partitions. The

order in which the elements a; are added is arbitrary. The encoding abbreviated “jb-greedy”
(§4.3) was designed from this heuristic by parameterized arbitration: an instance of jb-greedy
specifies the order in which elements are to be added to the partitions.

parameterized constraint This design principle can be used if the given greedy heuristic is able
to respect externally imposed constraints. This condition clearly holds with any heuristic
for NUMBER PARTITIONING, since groups of elements can be constrained to lie in the same
partition in a preprocessing step; the heuristic itself need not be modified. The prepartitioning
encoding (§4.4) is an example of parameterized constraint: an instance of this encoding
specifies subsets of A whose elements are to be constrained to lie in the same partition.

Three attractive features are likely to be common among parameterized-constraint encod-
ings. First, the encoding will be complete—all solutions that can be specified in the direct
representation will be encodable—if it is legal to specify constraints that fully define a direct
solution. Second, the empty set of constraints corresponds to the solution constructed by
the unparameterized heuristic. Thus, it is trivial to guarantee that an SO run based on a
parameterized-constraint encoding will do at least as well as the original heuristic. Third, the
cost of a solution can be anticipated to be positively correlated with the number of constraints
in its parameterized-constraint encoding, thus producing the “bumpy-funnel” effect described
in §6.3.

parameterized greediness A greedy deterministic heuristic generally consists of a sequence of
greedy low-level decisions. An encoding can be designed by the principle of parameterized
greediness? if the greediness of these low-level decisions can be “tuned.” Consider, the KK
algorithm, in which the two elements a; and a; selected for differencing at any given step are
the two largest numbers in the sequence (§3.2). In the index-rules representation (§4.5), the
degree of greediness employed in the selection of a; is varied: a given solution instance might
specify, for example, that a; and a; are to be the largest and third-largest elements in the
sequence.

Unlike parameterized-constraint encodings, an encoding designed by parameterized greediness
cannot generally be expected to be complete. However, the other two attractive features of
parameterized-constraint encodings are present: an SO run based on such an encoding can
easily be guaranteed to do at least as well as the original heuristic, and the cost of a solution
can be expected to be correlated with the “greediness” of the candidate solution (§6.3).

The categories listed above neither are mutually exclusive, nor constitute an exhaustive list
of the ways in which principles underlying existing deterministic heuristics can be incorporated
into a representation that is to be used with SO. We return to this point in our discussion of
how the results we have obtained might aid in the design of representations for other difficult
combinatorial-optimization problems (§7).

In the remainder of §4 we describe four search engines and four representative encodings of
NUMBER PARTITIONING in detail. A more extensive set of tests analogous to those described in §5
has been conducted by Ruml (1993); see Table 3.> In these descriptions, the expression rand(%,)

2All three design principles discussed in this section can be described as “parameterized greed.” We use the term
parameterized greediness to describe this case, since only in this case is the degree of greediness subject to control.

?The encoding abbreviated “index” employed by Ruml (1993) specifies a definition of Randomize different from
the one used in this paper.

-~

refers to a number drawn from a uniform distribution of integers in {¢,i+1,...,7 —1,5}.

RGT HC PHC SA GA
direct . o, JAMC ° o, JAMC o
jb-greedy | e ° ° ° o, JB
jb-sep JB
jb-num o))) o, JB
split o))))
split-alt o o o))
split-num | o o o o o
split-grd | o o o o o
prepart . . . ° o
index-dbl | o o o o o
index-wgt | o o o o o
index o ° ° °)

Table 3: Combinations of search engine and encoding of NUMBER PARTITIONING for which empir-
ical tests are described in the following publications: JAMC = Johnson et al. (1991); JB = Jones
and Beltramo (1991); o = Ruml (1993) only; e = both here and Ruml (1993).

4.2 Direct representation

S|[-1 +1 -1 +1 +1]
\ \ \ \

Figure 2: Illustration of the direct representation. The sample solution is S = (=1, +1,—1,+1,+1).

The direct representation (abbreviated “direct” and illustrated in Figure 2) is the obvious
encoding for NUMBER PARTITIONING in which the independent variable is the sequence S of signs
itself. No decoding is required. The Randomize procedure generates one of the 2" possible sign
sequences S, each with equal probability. The Perturb procedure toggles one sign and randomly
assigns another: for two indices ¢ = rand(1, n) and 7 = rand(1, n) chosen so that ¢ # j, the following

assignments are made: s; ¢ —s; and s; < 2-rand(0,1) — 1. It is identical to the SW; operator of
Johnson et al. (1991).

The direct representation is clearly complete: any of the 2™ possible sequences S can be encoded.
This is not generally true of the other encodings presented here and by Ruml (1993). Of course,
completeness is not necessarily essential to the practicality of an encoding, particularly if the optimal
or many low-cost solutions are encodable.

4.3 Greedy-decoder representation

Permutation Greedy decoding
G A A
1|16 6
4 (15 4 4
2|14 3 3 3
5|14 5 5 5 5
313 4 4 4 4 4
4
3 5|3 5|3
6 6| 4 6| 4 6| 4 6| 4
V4
u=11-11=0

Figure 3: Illustration of the greedy-decoder representation. The sample solution is G = (1,4, 2,5, 3).

The greedy-decoder representation was designed from a “best-fit” heuristic by the principle of
parameterized arbitration. A candidate solution in the greedy-decoder representation (abbreviated
“jb-greedy” and illustrated in Figure 3) is a permutation G = (g1,92,...,9,) of the sequence

(1,2,...,n). These indices define a permutation A" = (a},a},...,a,) of the original sequence A:

The new sequence A’ determines the order in which numbers are submitted to a greedy decoder.

The decoder creates the sign sequence S" = (s}, s5,...,s!) by the following “best-fit” heuristic:

*SW, is used in preference to SW; (1 + rand(1,n);s; < —s;) because it produces a slightly less rugged search
space: the minimum change in u that can be brought about by an invocation of SWs is expected to be 1/n?, compared
to 1/n in the case of SW;. Tests with SW; and other operators were performed by Ruml (1993).

u+ 0
fori=1ton

ifu<0
then s/ « +1
else s« —1
u ¢ u+ sial
end for

The desired sign sequence S is constructed from S’ by inverting the permutation used to construct

A’ from A:

/

S; = Sgl.

The Randomize procedure generates one of the n! possible permutations GG, each with equal
probability. The Perturb procedure swaps a pair of indices ¢; and g;, where ¢ = rand(1,n), j =
rand(1,n), and 7 # j.

This encoding is not complete. For example, the (maximally non-optimal) sequence S =
(+1,41,...,+1) cannot be generated by any permutation G since the decoder cannot generate
a sequence in which sjs, = 1. We do not believe that this is a material limitation of the represen-
tation because, as we demonstrate constructively in the remainder of this subsection, the optimal
sequence can always be encoded.

Given an optimal partitioning S of a given sequence A, the following procedure constructs the
encoding GG of S. Let count(S, s) be the number of elements s; € S such that s; = s. Let fetch(S, s)
be some index i such that s; = s. Let append(G,) be the sequence formed by appending element
¢ to the sequence G.

G+ ()
u 0
while (count(S,+1)+ count(S,—1) > 0)
ifu<0
then s « +1
else s+ —1
i < fetch(S,s) [o]
G + append (G, 1)
U — u—+ s;a;
s;+ 0
end while

If, at some iteration of this procedure, the operation marked [¢] cannot be executed (i.e., no
remaining element of S has value s), then toggling any nonzero element of S will improve the
residue finally attained. The original S therefore could not have been optimal; this contradicts the
premise of the proof. Therefore, any optimal partitioning S can be encoded in the greedy-decoder
representation.

4.4 Prepartitioning representation

A candidate solution in the prepartitioning representation (abbreviated “prepart” and illus-
trated in Figure 4) is a sequence P = (p1,p2,...,pn) of integers p; € {1,2,...,n}. It is decoded
in two steps: (1) a preprocessing step in which certain elements of A, specified by the sequence

10

P A A’

1 6 Nr— 7 3—0]0

1 5/0 0 0 0

3 4 41— 0 0 0| ® u=0
4 4 4 41— 0 0| ©®

5 3 3 3 30| @

Prepartitioning Standard KK procedure

Figure 4: Illustration of the prepartitioning representation. The candidate solution is P =
(1,1,3,4,5).

P, are added together; and (2) application of the standard KK heuristic to the resulting modified
sequence.

This representation was designed from the KK algorithm by the principle of parameterized
constraint: the sequence P specifies subsets of A whose elements are constrained to lie in the same
partition. Specifically, the preprocessing step proceeds as follows. (Let A’ = (a,d),...,al) be a
sequence of accumulators that will store the modified sequence.)

A"+ (0,0,...,0)
for j=1ton

a;j — a;j +a;
end for

The net effect of this procedure is to add together any elements a; and a; for which p; = p;. The
modified sequence is then processed by the usual KK procedure. Note that the KK solution may
be encoded as P = (1,2,...,n).

The Randomize procedure generates each element of P from a random uniform distribution:
p1 < rand(1,n), p; « rand(1,n), and so forth. The Perturb procedure assigns p; < 7, where
i =rand(1,n), j = rand(1,n), and j # p;.

The prepartitioning representation is complete: any given sign sequence S can be constructed
by assigning, say, p; < s; + 2 for every ¢. Under this construction, the two nonzero prepartitions
are identical to the partitions generated by the given sign sequence S, so nothing remains to be
done by the subsequent application of the KK heuristic.

4.5 Index-rules representation

The index-rules representation (abbreviated “index” and illustrated in Figure 5) was developed
from the KK algorithm by the principle of parameterized greediness. The independent variable in
the encoding is a sequence R = (rg,71,...,7,—2) of rules r; € {0,1,...,n — 2 —7}. The decoder is

run by executing a sequence of n — 1 differencing operations:

®This decoder is a realization of the suggestion by Karmarkar and Karp (1982) that “differencing operations. . .can

11

@ (b)

A b~ O W

w A Dool|>

whOPrPW®
O woow
©Ooooo
®@® e OO0

c

I

o

Variant of KK procedure

Figure 5: Illustration of the index-rules representation. The candidate solution is R = (3,0, 2,0).
(a) 7o = 3, so in the first step, the largest and fifth-largest elements are selected for differencing;
and (b) rz = 2, so in the third differencing operation, the largest and fourth-largest elements are
selected for differencing.

fori=1ton-1
J « the index of the largest element of A
k < the index of the (24 r;)th largest element of A
a; < a; — ag
ap +— 0
end for

As in the usual KK algorithm, a two-coloring procedure generates the sign sequence S. Note that
the standard KK heuristic (differencing of the two largest elements in A) is executed in any step
i for which r; = 0; in particular, the KK solution may be encoded as R = (0,0,...,0). Note also
that the range of values of r; decreases as ¢ increases; in particular, r,,_o = 0, which is appropriate
because the number of nonzero elements in A after n — 2 differencing operations is at most two.

The Randomize procedure draws each r; independently from its own uniform distribution of
integers 0 < r; <n—2—1.

The Perturb procedure is designed to make all distinct, legal changes r; < j (where r; # j)
equally probable. Merely assigning ¢ < rand(0,n — 3) and j < rand(0,n — 2 — ¢) would make
rn—3 < 0 and r,_3 < 1 the most probable changes. One way to avoid this undesirable effect is to
draw ¢ from a probability distribution that involves a square root. The method that we use is as
follows:

be used as subroutines in more complicated heuristic algorithms.”

12

-0 000

Figure 6: Choosing ¢ and j for use in the Perturb operation in the index-rules representation. See
text.

¢ < rand(0,n — 3)
J < rand(0,n — 2)
if (¢ > j)
then i< n—-3—1
else j«n—-2—7j
if (j=r;) thenj<n—-2—1
T]

Figure 6 demonstrates the procedure for the case n = 6, R = (2,0,1,0,0). A pair of integers (¢, 7)
is chosen from a uniform distribution over the rectangle (0,0) < (¢,7) < (3,4). If ¢ > j (black
circles, Step 1), the point is reflected across the vertical bisector of the rectangle; otherwise, it
is reflected across the horizontal bisector. At this point, (¢,) has effectively been chosen from a
random distribution chosen over the triangle depicted in Step 2. If j = r; (hatched circles, Step
3), then the assignment j + n — 2 — ¢ is made (white circles). Thus, every pair (¢,7), such that
0<:<n-3,0<j7<n—-2-1 and j # r;, is equally probable.

Like the greedy-decoder representation, the index-rules representation is not complete; for ex-
ample, there is no way to encode the sequence S = (41, +1,...,41). In this case, the reason is that
every differencing operation constrains two elements to lie in different partitions (i.e., sjsp = —1).
As with the greedy-decoder representation, we do not believe that lack of completeness is an im-
portant limitation of the index-rules representation because, as we demonstrate constructively in
the remainder of this subsection, the optimal sequence can always be encoded.

Given an optimal partitioning S of a given sequence A, the following procedure constructs
the encoding G of S. Let count(S,s) be the number of elements s; € S such that s; = s. Let
append (R, 1) be the sequence formed by appending element ¢ to the sequence R. Let rank(a;, A)
be the rank of element «; in A: 1 if a; is the largest element in A, 2 if it is the second largest, and
so forth.

13

R ()
while (count(S,+1)+ count(S,—1) > 0)
¢ < index of largest a; € A for which s; #0
J < index of largest a; € A for which s; = —s; [0]
R « append (R, rank(a;, A) — 2)
a; < a; — a;
S5 0
end while

If, at some iteration of this procedure, the operation marked [¢] cannot be executed (i.e., all
nonzero elements of S are of the same sign), then toggling any nonzero element of S will improve
the residue finally attained. The original S therefore could not have been optimal; this contradicts
the premise of the proof. Therefore, any optimal partitioning S can be encoded in the index-rules
representation.

4.6 Search engines

We now describe the four search engines for which we present results in this paper. Parallel hill
climbing, the most successful search engine in most of our tests, is described in detail; the other
three search engines are summarized in pseudocode.

Random generate and test (RGT), which is used as a control case that does not employ the Per-
turb operation, merely returns the best of many candidate solutions, each generated independently
by Randomize:

& < Randomize()
for iter = 1 to max_iter
&'+ Randomize()
if u(¢') < u(€) then § «+ ¢
end for
return &

Hill climbing (HC) executes a random walk in the search space, accepting only steps that
produce improvement:

& < Randomize()
for iter = 1 to max_iter
&« Perturb(€)
if u(¢') < u(€) then & + ¢
end for
return &

Simulated annealing (SA) is a variant of HC in which steps that produce setbacks (i.e., steps
for which Au > 0) are accepted with probability exponential in Awu:

14

& < Randomize()
for iter = 1 to max_iter

& « Perturb(€)
Aut - u(€) - u(€)
if Au <0
then & « ¢’
else & «+ & with probability exp(—Awu/T (iter))
end for
return &

The temperature parameter T (iter), which controls the tolerance with which setbacks Au > 0 are
accepted, decreases according to a fixed schedule.®

In PHC (Figure 7), a population of candidate solutions is maintained. We use a population of
1,000 in the examples in this paper. These are initially generated by the Randomize procedure.
Each candidate solution is evaluated, i.e., its residue u is calculated. Thereafter, at each iteration
of the algorithm, the following steps are executed:

1. A solution, selected at random from the population, is duplicated and the copy is subjected
to Perturb. The probability distribution for this selection is such that solutions with smaller

residues are more likely to be chosen.”

2. The worst member of the population, i.e., the candidate solution with the largest value of u
(possibly the solution just created by Perturb), is deleted.

This procedure is repeated for some predetermined number of iterations.

PHC usually outperformed the other SO variants we tested, in terms of the solution cost attained
after 30,000 trial solutions (§5.4).

Results (Ruml, 1993) from tests with a genetic algorithm (GA), which are very similar to those
obtained with the other search engines, are omitted to avoid complicating the presentation with
comparisons of various crossover operators.

4.7 Computational complexity

If, as in our multiple-precision implementation, arithmetic operations on the elements of A dominate
the computational cost of decoding, then all four representations presented here are approximately
equivalent with respect to the time required per evaluation: each requires n — 1 additions and

®The schedule used in the runs presented here is T(iter) = 0.01(0.8)Liter/300J. Runs with other temperature
schedules more carefully tailored to the individual representations give essentially the same results with regard to the
important comparisons in this paper (Johnson et al., 1991; Ruml, 1993). Although it is possible that further careful
tuning of the annealing schedule could improve the performance of SA, we feel that this is unlikely given the results
presented in §6.3.

"In particular, we employ linear rank-based selection (Davis, 1991), in which the probability that a given solution
is selected is related linearly to its rank in the population. The two independent parameters of the linear relation
are determined by (1) the constraint that the probabilities sum to unity, and (2) a parameter called the rank factor,
defined as the ratio between the selection probabilities of the worst and best individuals in the population. In all
PHC runs presented here, the rank factor was set to 0.8.

15

increasing cost (residue)

wani QOO0 000@0O0

(1) A member of the population, chosen by
linear rank—based selection, is duplicated

(2) The duplicateis perturbed and
inserted into the population in order |/ @

iteration i+1 QOOOO@OO.Q

(3) The worst member of the population is deleted

Figure 7: Single iteration of parallel hill climbing.

subtractions. However, when operations associated with accessing elements of A are taken into
account, the representations fall into two categories with regard to their asymptotic performance.
Whereas the direct and jb-greedy representations can be decoded in O(n) time, decoding in the
index-rules® and prepartitioning representations requires executing the KK heuristic and therefore
has O(nlogn) complexity.

5 Empirical comparisons

5.1 Experimental strategy

The empirical comparisons described here, like those conducted by Ruml (1993), investigated pri-
marily how the performance of stochastic optimization for a given instance of NUMBER PARTI-
TIONING is influenced by the following three factors:

1. Choice of search engine.
2. Choice of representation.

3. Use of seeding.

Because of the difficulty of varying all three factors exhaustively, factors were varied one or two at
a time.

The first two factors are discussed in detail above. The third factor, seeding, refers in this paper
to the use of the KK solution wherever a solution generated by Randomize is normally called for.

8In the index-rules representation, decoding is done using a modified form of the KK procedure that does not
always select the two largest numbers for differencing. The O(nlogn) complexity can be brought about by using a
data structure in which both fetching of the :’th largest element and insertion of the difference can be accomplished
in O(log n) time.

16

This is particularly natural to do in the case of the prepartitioning and index-rules representations,
which are parameterized-constraint and parameterized-greediness encodings, respectively. One mo-
tivation for testing the effect of seeding is to develop better algorithms for NUMBER PARTITIONING.
A second, equally important motivation is to help distinguish between alternative hypotheses for
the relative performance of the various representations (§6).

A batch refers to a set of 100 SO runs® carried out under identical'® conditions. We ran such

a batch on the same!! 100-element instance of NUMBER PARTITIONING for each combination of
encoding, search engine, and seeding tested. All instances of NUMBER PARTITIONING used in our
tests were generated by drawing numbers from a uniform distribution over (0,1]. Curves (as in
Figure 8) depict the progress of runs in a given batch. In each case, the ordinate is the number
of candidate solutions evaluated in a run, and the abscissa is the mean value of log;, @ averaged
over all runs in the batch, where @ is the best residue encountered by a given run after the given
number of trials, normalized against the KK solution (i.e., @« = u/ukk). Each error bar represents
the standard error of the mean of log;, %, computed separately above and below the curve. For
this instance of NUMBER PARTITIONING, ugk = 1.084 x 1077,

Although results are reported as if each element a; € A were a rational number in the range
0 < a; <1, all runs employed multiple-precision integer arithmetic to avoid any dependence of the
calculated residue u on the order in which numbers were added or subtracted.!? The number of
digits of precision was chosen such that the probability that the optimal residue would round to
zero, were it to be represented in integer form, is less than 107°. Table 4 shows the number of
digits used in the 100-element instance and with the other problem-instance sizes for which results
are presented in §7.

5.2 Dependence on algorithm

Figure 8 presents performance curves for all four search engines with the direct representation of
a single 100-element instance of NUMBER PARTITIONING. While there appears to be some variation
in the performance of the various search engines, it is insignificant in most cases relative to the
variation among runs with a single search engine. In the exceptional case, PHC, the geometric mean
residue obtained after 30,000 iterations still falls more than three orders of magnitude short of the
KK solution. (These results also confirm for four search engines what Johnson et al. (1991) observed
with simulated annealing: in our runs, little improvement is observed after 15,000 iterations, and
the best solution encountered is (on average) four orders of magnitude worse than the KK solution.)
If only the direct representation were to be considered, it would appear that SO techniques are—for
practical purposes—far inferior to the KK algorithm.

5.3 Dependence on representation

?The sole exception is in §7, where a batch refers to a set of 30 runs.
10 A different random-number seed was employed in each run.
" Ruml (1993) obtained similar results with other 100-element instances of NUMBER PARTITIONING.

12For this reason, our experimental results cannot be compared quantitatively with those of Johnson et al. (1991),
which were obtained with floating-point arithmetic, although they agree qualitatively.

17

n Ulo Digits
50 | 7.2 x 10721 21
100 | 9.1 x 10736 36
150 | 9.9 x 107>} 51
200 | 1.0 x 10795 65
250 | 1.0 x 107%° 80
300 | 9.8 x 10798 96
350 | 9.4 x 10~ | 111
400 | 8.9 x 107126 | 126
450 | 8.4 x 10~™ | 141
500 | 7.9 x 107196 | 156

Table 4: Number of digits of precision used in each experiment. The number of digits of precision
is [—logyg o], where uj, is a residue value defined such that for large n, the probability that

Uopt < Ulo is less than 1075 (see appendix).

6 6
5.5 o RGT/direct 5.5
] ¢ HC/direct I
+ SA/direct I
51 x PHC/direct f5
(o) R‘ |
o ’K
S 4.5 N r 4.5
o =y
9 ! \‘\ |
| LT |
4- I -4
] I S |
3.5 135
3. - ' r - - - - 1 - 1 - 1 T 1 T 3
0 5000 10000 15000 20000 25000 30000

Iterations

Figure 8: Performance curves for all search engines with direct encoding. Recall that by definition,
log1ot = 0 for the KK solution.

18

] x PHC/direct a4 PHC/index !
5? o PHC/jb-greedy v PHC/prepart ?5
44 4
3] L3
(=} 2 ;2
=
S 1 1
3 3
04 -0
-1 -1
2])
-3 -3
'4: L B A I :'4
0 5000 10000 15000 20000 25000 30000

Iterations

Figure 9: Performance curves for all encodings with PHC search engine.

Comparisons of runs with one search engine (PHC) and a variety of representations tell a
different story (Figure 9). When the greedy-decoder representation of Jones and Beltramo (1991)
is employed, PHC finds solutions that, on average, come within two orders of magnitude of the
KK solution. With the index-rules encoding, PHC comes within an order of magnitude of the
KK solution on average and, as indicated by the large variance, frequently surpasses the KK
solution within a few tens of thousands of iterations. With the prepartitioning representation, PHC
improves upon the KK solution by two orders of magnitude on average within 30,000 iterations.
Thus, the prepartitioning representation may be said to be “more easily searched” than the direct
representation. From these observations, it is clear that an investigation of problem encoding is
critical to any attempt to apply SO to NUMBER PARTITIONING.

5.4 Relative importance of search engine and representation

Using the same 100-element instance of NUMBER PARTITIONING, we ran a batch of one hundred
30,000-iteration runs for each of the sixteen SO variants that can be constructed by matching one
of the four search engines RGT, HC, SA, and PHC with one of the four encodings direct, jb-greedy,
index, and prepart. Results are summarized in Figure 10, which depicts the batch-average value of
log, @ after 30,000 iterations for each SO variant. Switching between search engines as different
as RGT and PHC effects a change in final solution cost of one or two orders of magnitude, whereas
a change in representation can bring about a change in final residue of seven orders of magnitude.
Using SO variants constructed by matching five search engines (including a genetic algorithm) with
ten encodings, Ruml (1993) obtained similar results. The results shown in Figure 10 should be
compared with those presented in Figure 20, in which seeding (§5.5) and gravitation (§6.3) are

19

used to advantage.

5
\
47;[*7 ! [] RGT
l HC
31 I SA

£ PHC

»
\
\
\
T
\\\\\\N_,N

%

KRR
XA

NN

‘v
CSCRRALS
CUKRKKLS

j}

%

=

5%
3
3%
e

o

N
2%
XX

<
<

,v
%S
Siletetetes

NN

7

bata?

R8s
Doiels

o
%

[

b

Log, .0 after 30,000 iterations

direct jb-greedy in(_jex prepart
Representation

Figure 10: Performance for all search engines and encodings.

5.5 Effect of seeding

In parameterized-constraint and parameterized-greediness representations of NUMBER PARTITION-
ING based on the KK heuristic, the KK solution may be encoded in a straightforward manner. This
raises the possibility of seeding SO runs, i.e., using the KK solution wherever a solution generated
by Randomize is normally called for. We investigated the effects of seeding on SO performance for
two reasons. First, we were interested in whether seeding would improve SO performance other than
at the start of a run. Second, the seeding results help distinguish between alternative hypotheses
for the superiority of certain representations (§6).

As demonstrated in Figure 11, seeding significantly improves the performance of PHC/index
and PHC/prepart. The effect is greater in the former case: although unseeded PHC/prepart is
significantly better than unseeded PHC/index, the seeded batches are within experimental error
of each other. Both better the KK solution by three orders of magnitude on average after 30,000
iterations on a 100-element problem instance.

6 Analysis

The empirical comparisons presented in §5 raise a poignant question: what accounts for the strong
dependence of SO performance on problem representation? To help answer this question, we
consider the following characterizations of the search space generated by each given representation:

e “Neighborhood structure”—the tendency of solutions that lie near one another to have similar

residue values.

20

] » PHC/index v PHC/prepart
2] a PHClindex (seededy PHC/prepart (seeded)|2
1
0
S
=
S -1 1
o
-
21 -2
-3 -3
4 4
'57““\““\““\““\““\““:'5
0 5000 10000 15000 20000 25000 30000

Iterations

Figure 11: Performance curves for seeded and unseeded PHC with index-rules and prepartitioning
encodings. The performance curves for the seeded runs are flat for the first 1,000 iterations because,
as we have defined seeding, seeded PHC begins by executing the KK heuristic 1,000 times. In a
practical implementation of seeded PHC one would obviously avoid the duplicated computational
effort.

e A priori distribution—the distribution of residue values generated by Randomize.

e “Gravitation”—the concentration of low-residue solutions around the greedy solution in a
parameterized-constraint or parameterized-greediness encoding. In the context of the index-
rules and prepartitioning encodings of NUMBER PARTITIONING, gravitation refers to depen-
dence of logu on the distance between a given solution and the KK solution.

The essence of SO is to exploit these and other similar properties of the search space, when they
exist.

6.1 Neighborhood structure

A property of a search space commonly associated with efficient stochastic optimization is the
presence of “neighborhood structure” (Johnson et al., 1991). To satisfy conflicting goals of intu-
itive clarity, relevance to SO design, and measurability, we employ three different but interrelated
definitions of neighborhood structure.

1. Informally, neighborhood structure refers to the tendency of solutions near each other in the
search space to have similar scores. This definition leads to the equally informal notion that

21

SO looks for good solutions in regions of the search space where it has found other good
solutions.

2. Operationally, we say that a search space contains neighborhood structure if evaluating par-
ticular candidate solutions can increase the amount of information that the search engine has
about where to look for good solutions. Thus, stating that neighborhood structure is absent
in a search space is equivalent to stating that no search engine can do better than RGT in
that space.

3. Statistically, we say that neighborhood structure is absent if and only if the score of a solution
is statistically independent of the scores of its nearest neighbors, next-nearest neighbors, and
so forth. A “nearest neighbor” of a given solution £ is defined as a solution &' (possibly the
same solution) that can be generated by executing Perturb(€).

Of these three, only the statistical definition can be measured directly in a given search space.
Moreover, only a subset of the conditions can be applied, given limited computational resources:

e Two random variables z and y are statistically independent if and only if F[f(z)g(y)] =
E[f(z)]E[g(y)]for any choice of scalar functions f and g. The relation must hold for an infinite
number of choices of f and g—typically f(z) = 2, 0 < m < o0; g(y) = y™, 0 < m' < 0.
We restrict our investigation to linear f and g by employing only the correlation coeflicient
(Papoulis, 1990). A similar approach to detecting neighborhood structure was taken by
Manderick et al. (1991).

e A search space can, in principle, contain statistical dependence among the scores of next-
nearest neighbors but not nearest neighbors. In general, the existence of neighborhood struc-
ture in a search space cannot be ruled out without testing for statistical dependence among
solution scores at all distances. We restrict our investigation to nearest and next-nearest
neighbors.

We define the neighborhood-structure coefficient ry, of a given encoding of NUMBER PARTITION-
ING to be the correlation coefficient of the random variables log,, @1 and log; @2, where uy and wugy
are residues of two solutions accessible to each other by k perturbations. Values of r; close to zero
suggest, though they do not unambiguously demonstrate, the absence of neighborhood structure.

The neighborhood-structure hypothesis—the hypothesis that the representations with which
SO is most successful are those with the most neighborhood structure—is intuitively attractive.
However, for all four NUMBER PARTITIONING encodings investigated here, neighborhood structure
turns out to be essentially absent except in irrelevant portions of the search space. For example, let
us consider the direct encoding. We estimated rj by generating 2,000 neighbor pairs with residues
below a given limit wjjmy:

22

10 | 8
r1 =71.6%
9 7
N N
S [}
o o
— —
(@) (@)
(@) (@)
| . -
8 6
r =0.2%
1
7 : 5
7 8 9 10 5 6 7 8
Log10 Uy Log10 Uy

Figure 12: Measurement of r; in the direct representation, with log;q @im = 100 (left panel) and
logg @im = 8 (right panel).

10 8
r,= 59.1%
9 7
(:N (3N
o o
— —
(@] o
o o
- -
8 6
r.=33%
2
7 8 9 10 5 6 7 8
Log,q Uy Log, Uy

Figure 13: Measurement of ry in the direct representation, with log;q @im = 100 (left panel) and
logg @im = 8 (right panel).

23

npts < 0

repeat
& < Randomize()
if (w(§) > wim) then reject this data point, i.e., skip to “until”
& « Perturb(€)
repeat k — 1 times: £’ + Perturb(¢’)
if (u(&¢') > wjim) then reject this data point
if (u(€) = u(¢’)) then reject this data point
Use this data point (log;qu(§),logou(&'))
npts ¢ npts + 1

until npts = 2,000

When wjiy, = 100, there is a clear correlation between the scores of neighbors (Figure 12, left
panel). This correlation is present because the perturbation operator that we have employed in
the direct encoding can bring about a change in u(£) of at most 4; this constraint is visible on
the log-log plot as a horn-shaped envelope. Thus, neighborhood structure plays a role in reducing
u when the trial solutions involved are so imbalanced that transferring any element from the
larger partition to the smaller reduces the residue. In the regime logyy @im < 8, there is no
correlation between neighbors (Figure 12, right panel), indicating that in the direct representation,
neighborhood structure plays no significant role in refining u beyond that level.}® Correlation
between the scores of next-nearest neighbors, which in principle can exist even when r; = 0, follow
a similar pattern (Figure 13). Extending this analysis to higher values of k& and the other three
encodings yields similar patterns (Figure 14). In each case, log;q @im is set to the lowest integral
value permitted by computational resources.

Because we have tested only a subset of the infinite number of statistical measures of neigh-
borhood structure, these results do not entirely preclude the existence of neighborhood structure
among the solutions of interest. The issue of neighborhood structure is revisited in §6.3 using the
operational definition.

6.2 A priori distribution

Given that the search spaces generated by the representations described here appear to lack
neighborhood structure, except among irrelevant high-cost solutions, it is reasonable to ask whether
variations in SO performance across representations can be accounted for solely by differences in
the probability distribution of the solutions in each search space.

(In this and the next subsection, we use the following notation. Let f;(§) be the probability
distribution from which an SO run generates a candidate solution in its ¢th iteration. Let iteration
0 be the process of generating initial random guesses, so that fy(§) is the probability distribution
employed by the Randomize procedure of the given representation. Let h;(logu) be the probability
distribution of residue values log u that results from using f;(£).)

In support of this hypothesis, histograms of log;y% in a random sampling of 10,000 solu-
tions generated by Randomize (Figure 15) are shifted by several orders of magnitude relative to
one another. The performance of the random generate-and-test (RGT) search engine, for which
hi(logu) = ho(logu) in every iteration ¢, follows a similar pattern (Figure 10).

*Note that the limit log,, t1im < 8 is quite large: it admits solutions with residue values that approach 10.

24

100

| |
-=— direct (100) —— direct (8)

75i “ ~e— jb-greedy (100) —o- jb-greedy (7) | |
] —— index (100) —— index (5)
—— prepart (100) —— prepart (3)

I (percent)

Figure 14: Value of r as a function of k, for all four encodings. The parenthesized numbers in the
legend are values of logyq @fim.

147 | \ [
0127 direct
8 i ————]b-greedy /\1
4 H /
<]| - - index /| A
2107 1
S| -~ prepart P
S , |
S s T
= 1 | \ / \
q(f \ // \
/ , |
o) 67 | / |
5] Hi |
I] i : / |
2 4] / T |
o \//
z , ‘ |

Log,, U

Figure 15: Differences in kg distribution among four encodings.

25

6.3 Gravitation

Differences in the a priori distribution of u values account for the six-order-of-magnitude disparity
in performance between RGT/direct and RGT/prepart, both of which operate independently of
structure in the search space. However, such differences do not explain the following observations
concerning the index and prepart encodings:

e With the index and prepart representations, RGT is slightly outperformed (§5.4) by PHC,
which operates by attempting to exploit neighborhood structure.

e With PHC/index and PHC/prepart, seeding with the KK solution significantly improves
performance (§5.5).

Both of these observations appear to demonstrate that in spite of the apparent absence of neighbor-
hood structure among all but the worst solutions in the index and prepart representations, h;(logu)
does depend on f;(£). Thus, as the run proceeds, the search engine can improve its odds of finding
near-optimal solutions by modifying f;(§) to reflect the distribution of residues in the search space.

In this subsection we attempt to explain these observations by testing the following hypothesis:
in the index-rules and prepartitioning representations, the expected residue of a solution increases
as the decoding procedure departs from the greedy algorithm on which these representations are
based. This type of correlation, which we call “gravitation,” is defined for representations designed
by parameterized constraint and parameterized greediness, but not for direct representations and
those designed by paramterized arbitration; the latter do not involve gradual departure from a
greedy algorithm.

More precisely, we hypothesize that the u value of a candidate solution in these representations
is correlated with its distance from the KK solution, where the metric is encoding-specific. With
the index-rules representation, we use Z?:_& r; as the measure of distance from the KK solution.
With the prepartitioning representation, we use the minimum number of constraints of the form
s;5, = 1 required to produce the given constraint set.

Figure 16, which demonstrates that the prepartitioning representation is consistent with the
hypothesis, is a plot of log;y @(&;) vs. 7 for 25 independently generated sequences (&o,&1, .. ., &99),
each defined so that & is the KK solution, dist(§;,{;—1) = 1, and dist(§;,60) = j. Figure 17,
which shows an even stronger correlation in the index-rules representation, is a similar plot for 3
independently generated sequences (&g, &1, .. ., €1000). In accord with the observed correlations, the
a priori distribution hg(log;y «) shifts by several orders of magnitude when Randomize is restricted
to generate candidate solutions in the immediate neighborhood of the KK solution (Figures 18 and
19).1 Note that the neighborhood of the KK solution in which most of the low-residue solutions
reside occupies a negligible portion of the search space, since the solutions are organized into a
“bumpy funnel” of high dimensionality.

The distinction between gravitation and the type of neighborhood structure discussed in §6.1
has important implications for algorithm design. Consider the operational definition of neighbor-
hood structure given in §6.1. When neighborhood structure is present, information about where

MPigures 18 and 19 were generated using a random sampling of 10,000 solutions in the restricted search space.
When max_step = 1 in the index-rules encoding (Figure 19), the distribution has a bumpy appearance because the
KK solution has only 98 neighbors.

26

0O 10 20 30 40 50 60 70 80 90 100
Distance from KK solution in prepart representation

Figure 16: Gravitation in the prepartitioning encoding. The horizontal axis is the radial dimension
of a ball, centered at the KK solution, that covers the entire solution space.

to find new low-residue solutions is gained as trial solutions are evaluated. When only gravita-
tion is present, all such information is known at the start of the SO run; no new information is
obtained by evaluating trial solutions. In such a case, one would expect to be able to adjust the
Randomize method of an encoding to exploit gravitation so that RGT, which does not attempt
to collect information about the search space as it evaluates candidate solutions, performs as well
as perturbation-based forms of SO such as PHC, HC, and SA, whether seeded or not. Figure 20
demonstrates that this is indeed the case for the prepartitioning and index-rules encodings. In both
cases, the fp(§) distribution is uniform in a ball surrounding the KK solution and zero elsewhere; in
the absence of information about the structure of the search space other than what is presented in
Figures 16 and 17, this probability distribution is optimal.!® Specifically, the Randomize procedure
in both cases is:

15To prove that the optimal distribution is uniform in a ball surrounding the KK solution and zero elsewhere when
gravitation is the only relevant structure present, consider a non-uniform radial distribution, centered at the KK
solution, whose density drops monotonically with distance from KK. This distribution cannot be optimal because
shrinking the ball is guaranteed to improve the mean. The performance of a random or systematic search thus
improves as the ball shrinks, as long as the number of solutions inside the ball exceeds the number of iterations
one can afford to perform. The ball that we employ in our tests has the smallest integral radius that satisfies this
condition.

27

0 500 1000 1500 2000 2500 3000 3500 4000
Distance from KK solution

Figure 17: Gravitation in the index-rules encoding. The horizontal axis is the radial dimension of
a ball, centered at the KK solution, that covers almost the entire solution space.

¢ + KK solution
for j = 1 to max_steps

if rand(0,n) > 0 then £ « step_away(§)
end for

In the index-rules representation, step_away(€) is ry < rp + 1, where k is an integer between 0
and n — 1 inclusive, a given value of k is chosen with probability proportional to n — 2 — j, subject
to the requirement that r; + 1 be a legal value. In the prepartitioning representation, step_away(€)
adds a new constraint of the form sgs; = 1. (With both representations, the high probability
of executing step_away(§) is designed to make fy(€) roughly uniform in the region covered by
the search.) Similarly, one would expect a deterministic search that focuses on the region close
to the KK solution to be competitive. The progress of a deterministic search in the index-rules
representation is in accord with the prediction (Figure 20).16

HC, SA, and PHC are expected to be able to outperform RGT and deterministic searches in a
search space that exhibits both gravitation and neighborhood structure. In such a case, the Perturb
operation should be designed, as with the Randomize operation, to compensate for the negligible
volume of the neighborhood of the greedy solution. Let f/(£’;€) be the conditional probability
distribution from which Perturb draws solutions £ given a solution £. We suggest that the f/(£';€)

1$The search tested the KK solution, all solutions one or two steps away, and a small fraction of the solutions three
steps away.

28

10, prepart
o — ——— prepart (max_step = 10)
§ — - — - prepart (max_step = 2)
LS prepart (max_step = 1)
a7
S . \\
5 i \
3 5 o
5, Y
= / // \/ \\ \
Qo 3 |
£ 7 iR
g 2 T b
B Iy
1 \ \
0 ol /// - / N \\\
5 ” : 1 5 3 4 5
Log,,

Figure 18: Effect on hq distribution of restricting the search space (prepartitioning encoding).

167 T T T]
] index
o 14 .
8] T I index (max_step = 100
B 121 ———— index (max_step = 4)
g] T index (max_step = 1)
5 10
o
n g
Y
> /1)
o 6
. /1
5 4]
zZ] \‘ \
2’ v
] N \
0 = ‘ ‘ :
-2 3 4 5 6 7 8

Log,, U

Figure 19: Effect on hq distribution of restricting the search space (index-rules encoding).

29

0.5 0.5
0 o RGT/index (max_step = 4) o RGT/prepart (max_step = 2 -0
0 57 ¢ PHC/index (max_step = 4) m PHC/prepart (max_step = 2 i 0.5
e + PHClindex (seeded) w PHC/prepart (seeded) e
17 x deterministic/index 71
H-1.5
-2
L-2.5
l\g -3
] — = :
- : L\T-B 5
_4 | T T T T T . _4
0 5000 10000 15000 20000 25000 30000

Iterations

Figure 20: Performance of RGT in restricted search spaces.

distribution approximately obey the relation [z f'(£';€) fo(§)d€ = fo(&'), i.e., that the steady-state
distribution that would be produced by repeated executions of Perturb be approximately equal to

fo(€).

7 Conclusions

We have investigated the suitability of stochastic optimization for the NP-hard optimization prob-
lem NUMBER PARTITIONING. Our approach of analyzing the statistical properties of an existing
optimization problem is complementary to previous lines of reasoning, notably that of Kauffman
(1989), in which the ruggedness of the search space in question is under direct experimental control.
We find that stochastic search engines previously thought ill-suited for NUMBER PARTITIONING can
match the performance of the KK heuristic in the same amount of time, immediately begin im-
proving upon KK with additional investment of time, and eventually better KK performance by
several orders of magnitude. Moreover, the selection and subsequent tuning of the search engine—
aspects of SO on whose adjustment great human effort is typically expended—are far less important
to effective solution of NUMBER PARTITIONING problems than the choice of underlying problem
representation (§5.4).

The most easily searched encodings of NUMBER PARTITIONING that we tested are based on
parameterizations of existing deterministic heuristics. The proposition that stochastic search tech-
niques be hybridized with greedy deterministic heuristics is not uncommon (Davis, 1985; Davis,
1991). We have focused particularly on integrating greedy deterministic heuristics into the pro-

30

cess of designing representations. In contrast with previous work, we have explicitly tested several
hypotheses for the large difference in performance between the best and worst encodings. “Neigh-
borhood structure,” often believed to be the principal factor in determining the success of stochastic
optimization, has little to do with the relative performance of the investigated encodings (§6.1).
Instead, some encodings are better largely because they contain, on average, solutions with smaller
residues (§6.2). Additional effects, present with the index-rules and prepartitioning encodings, can
be accounted for in terms of “gravitation”: the empirical observation that, in the index-rules and
prepartitioning encodings, the residue of a candidate solution is strongly correlated with its distance
from the KK solution (§6.3). Each of these two encodings organizes the candidate solution space
into a single “bumpy funnel.” Since the funnel is bumpy, i.e., the relationship between residue
values and distance from the KK solution is only a statistical trend,'” a stochastic search confined
to the funnel tip readily outdoes the KK algorithm.

The principles by which the encodings were designed (§4.1) might easily be applied to other hard
optimization problems for which deterministic heuristics currently exist.!® Of the three principles,
parameterized arbitration'® is expected to be both the weakest and the least widely applicable since,
by our definition, it refers to the parameterization of decisions that are otherwise undetermined
in the given heuristic. Not all heuristics involve undetermined decisions; and when they do, it is
because the decisions involved are “neutral” in the sense that there is no obvious reason to choose
one alternative over any other.

Similarly, parameterized-constraint encodings can be designed only from greedy heuristics that
are capable of respecting prespecified constraints. While this consideration is inconsequential in
the case of heuristics for NUMBER PARTITIONING, it may be a serious obstacle when approaching
problems in which constraints are not trivial to apply. In favorable contrast with parameterized ar-
bitration, however, there is reason to expect that a parameterized-constraint encoding will generally
exhibit gravitation: in such an encoding, the average cost of solutions that specify a given number
of constraints should vary gradually from the cost of the greedy solution (when no constraint is
specified) to a value that is likely to exceed the mean of ho(u) (when the maximum number of
constraints are specified).

Unlike the other two design principles, parameterized greediness involves an explicit, orderly
relaxation of the greedy choices made in the given deterministic heuristic. This, we believe, is
responsible for the strong gravitation observed in Figure 17. When strong gravitation is present,
the Randomize procedure must be designed with care and can be used to advantage. We anticipate
that parameterized greediness will usually be the easiest of the three design principles to apply,
and often the most effective in terms of performance.

'71f the funnel were smooth, i.e., the residue value were a single-valued, monotonically increasing function of a
solution’s distance from the KK solution, the KK solution would be optimal and NUMBER PARTITIONING would lie
in P.

8The XRLF algorithm for graph coloring (Johnson et al., 1991) is one important example of a parameterized
greedy heuristic that has previously been described, though it uses a parameterization strategy that differs from the
three strategies that we describe here.

190ne important special case of parameterized arbitration might be called parameterized initialization. This design
principle is applicable when the greedy heuristic in question is to perform local optimization from some starting
point. The parameters would specify the starting point. In initial work with an NP-hard problem of great practical
significance, GRAPH PARTITIONING, we have developed an encoding based on parameterized initialization (Marks
et al., 1994).

31

Our results imply neither that we have found the best possible encodings of NUMBER PARTI-
TIONING for use with SO, nor that deterministic heuristics better than KK do not exist. Rather, if
a deterministic heuristic better than KK is developed, the aforementioned design principles might
be used to define encodings that outperform those presented here.

B0 S
904 Log)gue |
1109 | —— LO9glsy |
1200 | Logyly | e
-140- :
-150- ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 50 100 150 200 250 300 350 400 450 500

Instance size

Log,,u

Figure 21: Performance of RGT/index (max.step = 4) with varying problem-instance sizes.

Does an SO variant that can find solutions better than KK by several orders of magnitude with
a 100-element instance of NUMBER PARTITIONING still find such solutions in a reasonable amount
of time when used with larger problem instances? To help answer this question, we constructed
instances of NUMBER PARTITIONING that vary in size from 50 to 500 elements, in increments of 50.
For each instance we ran a batch of 30 independent 50,000-iteration runs of RGT/index (max_step
= 4), and recorded the final value of log;yu. The results are plotted in Figure 21, with empirical
results from running the KK algorithm, and upper and lower bounds for the optimal solution (see
appendix; pjo = pni = 107°). Although the solutions found by the best SO algorithms tested here
are significantly better than those constructed by the KK algorithm, they are far from the median
optimum (Figure 21).

Acknowledgements

We thank David S. Johnson of AT&T Bell Labs for generously and promptly sharing his test in-
stances. For stimulating discussions we thank members of the Harvard Animation/Optimization
Group (especially Jon Christensen), the computer science department at the University of New
Mexico, the Santa Fe Institute, and the Berkeley CAD group. The anonymous referees made
numerous constructive suggestions. We thank Rebecca Hayes for feedback concerning our fig-

32

ures. JTN is grateful for a Graduate Fellowship from the Fannie and John Hertz Foundation.
The research described in this paper was conducted mostly while JWM was at Digital Equipment
Corporation’s Cambridge Research Lab. This work was supported in part by the National Sci-
ence Foundation, principally under grants IRI-9157996 and 1RI-9350192 to Stuart Shieber, and by
matching grants from Digital Equipment Corporation and Xerox Corporation. We thank the Free
Software Foundation for making the GNU Multiple Precision package available.

Appendix

For a given problem-instance size n and probabilities p, < 1 and pp; <€ 1, we aim to find some
ulo and upi such that for large n, Pr{usps < uo} < plo and Pr{ucps > uni} < phi, where ugpt
is the optimum residue. Both are easily derived from asymptotic probability bounds derived by
Karmarkar et al. (1986). The first of these bounds, pj,, is an upper bound on the probability that
Uopt < Ulo. (It is assumed that the elements of A are uniformly distributed between 0 and 1.)

" 247
2" U\ —
n

The other bound, pp;, is an upper bound on the probability that ugpt > wupi, where ugpt is the
smallest attainable residue when the two partitions are constrained to contain the same number of
elements (3_F; s; = 0):

Plo

_ 1
Phi = 142)
V12
where z = 2Mup;——
™

Clearly p; is also an upper bound on the probability that wepe > uni, since ugpy < ugpt.

To obtain given values of pj, and pp;, we set uj, and wup; as follows:

n .
247 k

> (52) (78)
Upi =
Phi 12

—n

U = 2 Plo

References

Davis, L. (1985). Job shop scheduling with genetic algorithms. In Grefenstette, J. J., editor,
Proceedings of An International Conference on Genelic Algorithms and Their Applications,
pages 136-140.

Davis, L. (1991). Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York, NY.

Garey, M. R. and Johnson, D. S. (1979). Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman and Company, San Francisco, CA.

Goldberg, D. E. (1988). Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley, Reading, MA.

33

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. University of Michigan Press,
Ann Arbor, MI.

Johnson, D. S.; Aragon, C. R., McGeoch, L. A., and Schevon, C. (1991). Optimization by simu-
lated annealing: An experimental evaluation; part I, graph coloring and number partitioning.
Operations Research, 39(3):378-406.

Jones, D. R. and Beltramo, M. A. (1991). Solving partitioning problems with genetic algorithms.
In Belew, R. K. and Booker, L. B., editors, Proceedings of the Fourth International Conference
on Genetic Algorithms, pages 442-449, San Mateo, CA. Morgan Kaufmann.

Karmarkar, N. and Karp, R. M. (1982). The differencing method of set partitioning. Report
UCB/CSD 82/113, Computer Science Division (EECS), University of California, Berkeley,
Berkeley, CA.

Karmarkar, N., Karp, R. M., Lueker, G. S., and Odlyzko, A. M. (1986). Probabilistic analysis of
optimum partitioning. Journal of Applied Probability, 23:626-645.

Karp, R. M. (1972). Reducibility among combinatorial problems. In Miller, R. E. and Thatcher,
J. W., editors, Complexily of Computer Computations, pages 85—-103. Plenum Press, New York,
NY.

Kauffman, S. A. (1989). Adaptation on rugged fitness landscapes. In Stein, D. L., editor, Lectures
in the Sciences of Complexily, pages 527-618. Addison-Wesley, Reading, MA.

Kirkpatrick, S., Gelatt, Jr., C. D., and Vecchi, M. P. (1983). Optimization by simulated annealing.
Science, 220:671-680.

Manderick, B., de Weger, M., and Spiessens, P. (1991). The genetic algorithm and the structure
of the fitness landscape. In Belew, R. K. and Booker, L. B., editors, Proceedings of the Fourth
International Conference on Genetic Algorithms, pages 143-150, San Mateo, CA. Morgan Kauf-
mann.

Marks, J., Shieber, S., and Ngo, J. T. (1994). A stochastic search technique for graph bisection.
Technical Report TR-94-18, Mitsubishi Electric Research Laboratories, Inc., Cambridge, MA.

Papoulis, A. (1990). Probability and Statistics. Prentice Hall, Englewood Cliffs, NJ.

Ruml, W. (1993). Stochastic approximation algorithms for number partitioning. Technical Report
TR-17-93, Harvard University, Cambridge, MA.

Cerny, V. (1985). Thermodynamical approach to the traveling salesman problem: An efficient
simulation approach. Journal of Optimization Theory and Applications, 45(1):41-51.

34

