Seed-Growth Heuristics for Graph Bisection

Harvard CS TR-10-99

Wheeler Ruml
Division of Engineering and Applied Sciences
Harvard University
ruml@eecs.harvard.edu

Joe Marks
MERL—-A Mitsubishi Electric Research Laboratory

marks@merl.com

Stuart M. Shieber
Division of Engineering and Applied Sciences
Harvard University
shieber@eecs.harvard.edu

J. Thomas Ngo
Interval Research Corporation
ngo@interval.com

March 31, 1998*

*This report is an expanded version of a paper presented at Workshop on Algorithms
and Ezperiments, 1998 in Trento, Italy. Due to delays involving consideration of this
report for journal publication, this technical report was not published until November,
1999 or made available electronically until May, 2000.

Abstract

We investigate a family of algorithms for graph bisection that are
based on a simple local connectivity heuristic, which we call seed-
growth. We show how the heuristic can be combined with stochas-
tic search procedures and a postprocess application of the Kernighan-
Lin algorithm. In a series of time-equated comparisons against large-
sample runs of pure Kernighan-Lin, the new algorithms find bisections
of the same or superior quality. Their performance is particularly good
on structured graphs representing important industrial applications.
An appendix provides further favorable comparisons to other published
results. Our experimental methodology and extensive empirical results
provide a solid foundation for further empirical investigation of graph-
bisection algorithms.

Keywords: Graph bisection, heuristic algorithms, computer-aided
design, graph partitioning,.

1 Introduction

Given a graph G = (V, E) with an even number of vertices, the graph bi-
section problem is to divide V into two equal-size subsets X and Y such
that the number of edges connecting vertices in X to vertices in Y (the
size of the cut set, notated cut(X,Y’)) is minimized. This problem is NP-
complete [12]. Although we will not address generalizations of the problem
in this paper, popular ones include dividing V into more than two subsets,
relaxing the strict equality constraint on the sizes of the subsets, and associ-
ating weights with the vertices and edges. Graph bisection has considerable
practical significance, especially in the areas of VLSI design and operations
research.

The benchmark algorithm for graph bisection is due to Kernighan and
Lin [19]. (Data structures allowing an efficient implementation of this heuris-
tic technique were described by Fiduccia and Mattheyses [9], so the algo-
rithm is sometimes referred to as the Kernighan-Lin-Fiduccia-Mattheyses
algorithm.) The Kernighan-Lin (KL) algorithm improves an initial random
bisection by making a sequence of locally optimal vertex swaps between
the partitions X and Y. The vertex-swap operation is also the primitive
perturbation operator used in applications of simulated annealing to graph
bisection [20, 21]. In spite of the folk wisdom that the simulated-annealing
search strategy is capable of avoiding the local minima that often plague
greedy heuristics like the KL algorithm, Johnson et al. [18] found that the
relative performance of the two algorithms depends on the nature of the

graphs being bisected. Although their conclusions were quite detailed, a
rough summary is that simulated annealing has an advantage on relatively
uniform graphs, but KL is better for graphs with structure.

Recently, more aggressive attempts have been made to exploit the struc-
ture that is often found in graphs of practical significance. The common
theme of these attempts is clustering: by grouping together vertices in
tightly connected subgraphs, clusters of vertices can be treated as individual
supernodes during the application of standard heuristics like KL or simu-
lated annealing. The various incarnations of the clustering idea appear to
show a marked superiority over the original KL algorithm [4, 6, 8, 11, 13, 16,
22, 26, 27], though the degree of superiority is unclear because the reported
empirical results tend to sell the KL algorithm short, as we will argue below.

The algorithms we present in this paper can be considered a synthesis of
ideas from previous work. They are based on a simple constructive heuristic
that, although it has shown some promise in previous work [25, 23, 2], has
never been investigated thoroughly; in particular, it has not been compared
fairly to KL. We investigate the use of a parallel hill-climbing search strategy
to improve performance when given extra computation time, and the use of
the KL algorithm for final refinement of the computed bisections. When
compared fairly with the KL algorithm (i.e., giving each algorithm equal
time and ensuring that a large sample of KL runs is considered), the new
algorithms exhibit significant superiority on a variety of test graphs. Our
experimental methodology and results may also serve as a basis for further
investigation of related graph-bisection techniques.

In the following sections we describe our algorithms, present an empirical
analysis of their behavior, and conclude with a discussion of future work.
An appendix provides further comparisons with other algorithms.

2 Algorithm Descriptions

2.1 The Seed-Growth Heuristic

Our algorithms are based on a simple seed-growth heuristic, which uses only
the local connectivity of the graph to guide its construction of a bisection.
We start with two disjoint, equal-size subsets of the vertex set to seed the
two partitions, and add the remaining vertices one at a time into alter-
nate partitions, at each step choosing the vertex to be added in a greedy
manner. When adding to partition X we choose a vertex a that minimizes
cut({a},Y) — cut({a}, X), the relative connectedness of a to Y. Intuitively,
we minimize the number of edges added to the cut set separating X and

Y while maximizing the number of edges barred from future addition to
the cut set. Thus the exploitation of structure is implicit in this heuris-
tic, as compared to heuristics in which explicit clusters are computed and
manipulated [4, 6, 8, 11, 13, 16, 22, 26, 27].

More formally, the algorithm can be given by the following pseudocode.
To simplify notation, we assume |V| is even, although in practice we tolerate
solutions with an imbalance of 1. The constant size specifies the cardinality
of the seed sets.

Input: An undirected graph G = (V, E).
Output: A partition of V into subsets X and Y of size %

Procedure:

1. Let the seed sets s; and s, be randomly chosen disjoint subsets
of V such that |s;| = |sy| = size < |2ﬂ
2. X < 555Y < sy,

3. Repeat substeps (a) and (b) until all the vertices in V' have been
assigned to X or Y:

(a) Find an unassigned vertex a € V such that cut({a},Y) —
cut({a}, X) is minimal.
X + X U{a}.

(b) Find an unassigned vertex b € V such that cut({b}, X) —
cut({b},Y’) is minimal.
Y «+ Y U {b}.

This constructive heuristic can be implemented to run in O(|V| + |E|)
time using the bucket data structure of Fiduccia and Mattheyses [9]. Since
it makes only a single pass through the vertices, it is roughly five times
faster than an efficient implementation of the KL algorithm on standard test
graphs. On average, a single execution of this heuristic will be worse than
a single application of the KL algorithm, which may be why seed-growth
techniques have been largely ignored until recently. But the heuristic can
be rendered effective by running it many times as part of a general search
procedure. We will examine two search techniques in this paper, random
generate-and-test and parallel hill climbing, although others (e.g., simulated
annealing and genetic algorithms) might also be used effectively.

2.2 Previous Work

The seed-growth heuristic can be viewed as a simplified descendent of the
‘direct’ hypergraph partitioning methods described by Donath [8], which
date back to the late 60s. It has been independently developed at least
twice and several algorithms incorporating it have been proposed, but to
our knowledge, no thorough empirical analysis of it has been done before.

Laguna, Feo, and Elrod [23] presented an algorithm they call GRASP
(for ‘greedy randomized adaptive search procedure’) which performs seed
growth using a size of 1 and a slightly elaborated selection criterion: when
there are very few vertices that have the minimum relative connectedness,
a larger candidate set is created that also contains a few vertices with the
next highest score. To improve solution quality, a mild-ascent hill-climbing
procedure is used to refine the resulting bisections. To make use of additional
computation time, the heuristic and refinement combination is run multiple
times using different random seed vertices. Unfortunately, Laguna, Feo, and
Elrod do not use the efficient data structures of Fiduccia and Mattheyses,
and their empirical comparison to KL falls prey to the concerns we will
discuss in the next section.

Dell’Amico and Maffioli [7] replaced the hill-climbing refinement of GRASP
with two different variants of tabu search. In a time-equated comparison to
Laguna, Feo, and Elrod, their EnTaS algorithm (for ‘enhanced tabu search’)
resulted in an improvement on all random graphs tested except sparse struc-
tured ones, although the degree of improvement is hard to assess because the
variance in performance of each algorithm on each instance is not reported.
KL is not considered in their comparison.

Battiti and Bertossi [2] simplified GRASP to the bare seed-growth heuris-
tic, which they call Diff-Greedy. Their algorithm does not use a refinement
procedure on the seed-growth solutions or GRASP’s expanded candidate
list. Their implementation uses the efficient bucket data structure, but
instead of comparing against KL, they present suggestive although incom-
parable results from EnTaS. We will examine the performance of Battiti
and Bertossi’s Diff-Greedy below. Since it can be viewed as combining the
seed-growth (SG) heuristic with a simple random generate-and-test (RGT)
search procedure, we will refer to it as RGT/SG. We will also investigate a
novel variant in which we use the KL algorithm as a postprocess to refine
the resulting bisections. That algorithm will be notated as RGT/SG+KL.

Independently, Marks et al. [25, 24] presented a version of seed-growth
where size = | 0.01 |V| |. For refinement, they use the KL algorithm.
Instead of using multiple independent restarts with random seed sets, they

use a population-based hill-climbing method to incrementally modify seed
sets resulting in good bisections. Their algorithm can be sketched as follows.
Underlined quantities are parameters of the heuristic that can be varied; we
present the values they recommend.

Input: An undirected graph G = (V, E).

Output: A partition of V into subsets X and Y of size

V]

2

Procedure:

1.

Randomly choose a set P of 100 pairs (s, sy) of seed sets using
Step 1 of the seed-growth heuristic.

. Compute the corresponding bisection (X,Y) for each seed-set

pair (sz, sy) € P using Steps 2 and 3 of the seed-growth heuristic.

. For each bisection (X,Y’) that scores in the top 20%, use the KL

procedure to separately compute a refined bisection (X",Y7"),
leaving the original unchanged. Record the best refined bisection
found as B.

. Repeat substeps (a) through (e) until the allotted computation

time has expired:

(a) Randomly pick a seed-set pair (sz,sy) € P according to a
distribution which makes the best seed set 4 times as likely to
be chosen as the worst, with uniform increments in between.

(b) Randomly select a vertex in one of s, or s, and replace it
with another randomly chosen seed vertex from V' — s, U sy;
call the resulting seed-set pair (s, sy).

(c) Compute the corresponding bisection (X', Y’) using Steps 2
and 3 of the seed-growth heuristic.

(d) Add (s, sy) to P. If its bisection scores in the top 20%, use
the KL procedure to separately compute a refined bisection,
and update B if this refined bisection is better.

(e) Remove the worst seed set from P.

5. Return B.

Because this algorithm combines parallel hill climbing (PHC), the growth
heuristic applied to sets of seeds (SSG), and the KL algorithm, we will refer
to it as PHC/SSG+KL. It could easily be the case that the KL refinement
is not worth the time it takes away from additional PHC iterations, so

KL: 20 runs X: 20 runs % improvement

over KL,
Graph | min avg | min avg | min avg
test4 | 1,376 2,098.8 | 1,295 1,612.2 | 5.9 23.2
testb | 2,257 4,393.8 | 2,138 2,606.3 | 5.3 40.7
test6 | 1,309 1,723.7 | 1,233 1,326.2 | 5.8 23.1
test2 | 1,274 1,512.7 | 1,281 1,357.4 | -0.6 10.3
test3 | 1,147 2,829.1 | 1,013 1,693.1 | 11.7 40.2
19ks | 1,461 2030.7 | 1,368 1,625.5 | 6.4 20.0
primaryl 368 463.2 300 375.5 | 18.5 19.0
bm1 326 436.9 303 3786 | 7.1 13.3
primary2 | 1,636 2,160.1 | 1,285 1,766.7 | 21.5 18.2

Table 1: Kernighan-Lin and Algorithm X: an empirical comparison. Algo-
rithm X runs five times more slowly than the Kernighan-Lin (KL) algorithm.

we will also investigate the unadorned variant, PHC/SSG. Note that par-
allel hill-climbing could also be used with the single-vertex seed variant,
just as a random generate-and-test strategy could be used here. We will
also present results for these variants, notated as PHC/SG, PHC/SG+KL,
RGT/SSG+KL, and RGT/SSG. Thus, we examine a total of 8 variants
of the seed-growth strategy, with the intent not only of identifying the best
technique for different kinds of graphs, but also of understanding the relative
contributions of the different algorithmic elements.

3 Empirical Analysis

Heuristic algorithms for graph partitioning like the ones described above
cannot be evaluated in a purely analytic fashion; empirical analysis is the
only way to ascertain such an algorithm’s utility. Unfortunately, empirical
analysis of algorithm performance is often done poorly, which sometimes
leads to erroneous conclusions. In the following subsection we discuss two
common errors that are often committed in the empirical analysis of graph-
partitioning algorithms. We then present empirical results for the seed-
growth algorithms.

350

300 -

250 -

200 -

Count

150 -

100 -

200 250 300 350 400 450 500 550 600 650
Solution Cost

Figure 1: Histogram of solutions computed by the KL algorithm for graph
bml.

3.1 Caveats

Consider the evidence presented in Table 1. (This example is based on an
empirical analysis reported by Wei and Cheng [27].) The table contains
the average and minimum cut-set sizes of bisections for 9 different graphs,
computed from 20 runs of the KL algorithm and 20 runs of some mystery
Algorithm X. Although Algorithm X is five times more expensive than the
KL algorithm, one might be tempted to conclude that the extra expense
is indeed worthwhile, because its performance appears to be significantly
better. However, the difference in performance is due solely to the extra
time afforded Algorithm X, because Algorithm X merely returns the best of
five runs of the KL algorithm! The moral is clear: Given the high variance of
the distribution of results generated by the KL algorithm, any analysis that
does not give equal time to KL will result in an inappropriate comparison.

The nature of the distribution of KL results provides a further oppor-
tunity for misleading analysis. Figure 1 shows the distribution of 10,000
values returned by the KL algorithm for graph bm1, which is derived from
a benchmark VLSI circuit. Suppose that some hypothetical Algorithm Y
generates a distribution of results with better mean but smaller variance:
for instance, let us assume that it essentially always finds a bisection with

cut-set size between 300 and 350 for this graph. If one compares the best re-
sult from m runs of Algorithm Y with the best result from n runs of the KL,
algorithm to determine which algorithm is better (where m and n have been
chosen to equate overall running times, of course), the answer one gets will
be affected by the magnitude of n. 57 of the values in the histogram for KL

are less than 300. Since the chance of obtaining a solution in the top %

from n samples is 1 — (1 — ;055)", n must be at least logg ggq3 0.5 =~ 122

in order for KL to have at least a 50% chance of being declared the better
algorithm by virtue of finding the best bisection. Therefore, if one can afford
to wait the 15 seconds or so required for 400 runs of KL—as is typical for
many applications involving graph partitioning—KL has a 90% chance of
finding a better bisection than Algorithm Y and should be considered the
better algorithm on the basis of the empirical evidence. When absolute per-
formance is what matters most, several tens or even hundreds of runs of the
KL algorithm may be required to do it justice; a statistical analysis of the
distribution of results for a given graph can be used to estimate an appropri-
ate minimum number of runs, if such an estimate is needed [26]. Conversely,
any comparisons with KL that involve taking the best of as few as 10 or 20
runs—especially against algorithms with good average performance but low
variance—would appear to be suspect, though such comparisons are not
uncommon [6, 16, 27, 28].

3.2 Benchmarks

We investigated the performance of the seed-growth algorithms on the three
most commonly used classes of benchmark problems: 18 graphs derived from
benchmark VLSI circuit hypergraphs using the standard clique model,! 6
uniform random graphs, in which each possible edge is generated with fixed
probability, and 6 geometric random graphs, in which vertices are randomly
placed on a unit square and connected to all neighbors within a fixed radius.
One would expect the geometric random graphs, but not the uniform ones,
to exhibit exploitable structure [18]. Table 2 contains various statistics of
the benchmark graphs. From left to right:

1. |V, the number of vertices.
2. |E|, the number of edges.

3. p(edge), the edge probability. This is the probability that a possible
edge actually appears in the graph.

'The hypergraphs are freely available at http://vlsicad.cs.ucla.edu/~cheese/benchmarks.html.

Graph V| |E| p(edge) deg IQR(deg) deg o(deg) CC Time

test4 1,515 126,349 0.11017 22 7-424 166.8 236.3 1 379.0

testb 2,695 274,173 0.08146 31 7289 211.3 331.1 1 822.5

test6 1,752 122,449 0.07983 61 7-129 139.8 190.1 1 367.3

fract 149 869 0.07881 7 3-11 11.7 14.9 1 2.6

test2 1,663 105,441 0.07630 14 5263 126.8 204.8 1 316.3

test3 1,607 65,442 0.05071 24 8-166 81.4 102.6 1 196.3

balu 801 15,470 0.04828 13 6-31 38.6 65.6 1 46.4

19ks 2,844 185,948 0.04600 18 4-201 130.8 201.5 1 557.8

primaryl 833 6,257 0.01806 11 6-23 15.0 12.1 1 18.8

bmi 882 6,258 0.01611 10 520 14.2 12.2 1 18.8

primary2 3,014 37,252 0.00820 19 1033 247 226 1 1118

struct 1,952 8,542 0.00449 5 3-7 8.8 10.0 1 25.6
industry3 15,406 179,846 0.00152 11 720 23.3 50.8 45 539.5

s9234 5,866 16,003 0.00093 3 2-6 5.5 6.4 4 48.0

13207 8,772 28,550 0.00074 2 2-5 6.5 11.0 7 85.7

38584 20,995 143,590 0.00065 5 3-14 13.7 19.9 7 430.8

15850 10,470 32,741 0.00060 3 2-6 6.3 8.2 16 98.2

38417 23,949 86,645 0.00030 3 2-6 7.2 11.8 1 259.9
geo-rand-0.10 1,000 42,633 0.08535 90 71-101 85.3 20.5 1 127.9
geo-rand-0.08 1,000 36,134 0.07234 77 59-86 72.3 18.2 1 1084
geo-rand-0.06 1,000 26,5678 0.05321 54 46-62 53.2 12.0 1 79.7
dsj-geo-rand-0.04 1,000 18,015 0.03607 37 31-42 36.0 8.4 1 54.0
dsj-geo-rand-0.02 1,000 9,339 0.01870 19 15-22 18.7 5.2 1 28.0
dsj-geo-rand-0.01 1,000 4,696 0.00940 9 7-12 9.4 3.2 3 141
dsj-geo-rand-0.005 1,000 2,394 0.00479 5 36 48 22 23 72
unif-rand-0.10 1,000 49,614 0.09933 99 93-106 99.2 9.5 1 148.8
unif-rand-0.08 1,000 40,041 0.08016 80 74-86 80.1 8.6 1 120.1
unif-rand-0.06 1,000 29,865 0.05979 59 54-65 59.7 7.6 1 89.6
unif-rand-0.04 1,000 19,819 0.03968 39 36—43 39.6 5.8 1 59.5
dsj-unif-rand-0.02 1,000 10,107 0.02023 20 17-23 20.2 4.3 1 30.3
dsj-unif-rand-0.01 1,000 5,064 0.01014 10 8-12 10.1 3.1 1 15.2
dsj-unif-rand-0.005 1,000 2,496 0.00500 5 3-6 5.0 2.2 7 7.5
dsj-unif-rand-0.0025 1,000 1,272 0.00255 2 14 2.5 1.6 80 3.8

Table 2: Statistics of the benchmark graphs.

10

Graph Best Source
dsj-geo-rand-0.04 737 [18, Table XI
dsj-geo-rand-0.02 222 [18, Table XI
dsj-geo-rand-0.01 39 [18, Table XI

dsj-geo-rand-0.005 1 [5, Table II
dsj-unif-rand-0.02 3382 [5, Table II
dsj-unif-rand-0.01 1362 [5, Table II
dsj-unif-rand-0.005 445 [5, Table IT
dsj-unif-rand-0.0025 95 [5, Table IT

[Wi S T AL YL L i —

Table 3: Best known bisections of the Johnson et al. graphs.

|
4. deg, the median degree of a vertex in the graph.

5. IQR(deg), the interquartile range of the degrees. In a sorted list of
all vertex degrees, this statistic measures the spread between those
degrees falling one-quarter and three-quarters of the way through the
list.

6. deg, the mean (or average) degree.
7. o(deg), the standard deviation of the vertex degrees from the mean.
8. CC, the number of connected components in the graph.

9. Time, measured in seconds on a DEC AlphaStation 500/500 (SPECint95
15.0, SPECp95 20.4), allotted to each algorithm for finding a bisection
of the graph. This does not include time needed to read the graph from
disk, but does include time spent initializing algorithm-specific data
structures. The time was determined by multiplying |E| by 0.003, an
arbitrary constant which was chosen to be large enough to give our
implementation of the plain KL algorithm several hundred runs during
every test. The running times range from 2.6 seconds for graph fract
to 13.7 minutes for graph test5.

The names for the random graphs indicate their expected edge prob-
abilities. Names prefixed with ‘dsj’ indicate standard benchmark graphs
used by Johnson et al. [18] in their study of simulated annealing, the most
thorough of previous empirical investigations of graph bisection. The lowest
known cut-set sizes for these graphs appear in Table 3. Additional values of

11

p were chosen in order to match the range of edge probabilities in the circuit
graphs, which we take as representative of important practical problems. To
construct a geometric random graph with a desired edge probability p, we
used a radius of +/(|[V] — 1)p/(|]V|~).

3.3

Single-vertex Seed Sets

Table 4 presents an empirical comparison of the KL and RGT/SG algo-
rithms. Here, and in later performance tables, we report the following
statistics for each graph in our test suite:

1.

Number of KL runs: The average number of independent runs of the
KL algorithm that were completed within the allotted time.

Mean minimum cut-set size for KL: The average minimum cut-set
size found over 25 tests of k runs each, where k is the number of runs
completed within the time limit.

Standard deviation of minimum cut-set size for KL: The standard
deviation of the minimum cut-set size found over the 25 tests.

Median minimum cut-set size for KL: The median best solution from
the 25 tests.

Number of iterations of RGT/SG: The average number of iterations
of the search strategy. In this case, this is the number of independent
random SG solutions generated.

Average minimum cut-set size for RGT/SG: The average minimum
cut-set size found over 25 runs of the RGT/SG algorithm.

Standard deviation of minimum cut-set size for RGT/SG: The stan-
dard deviation of the minimum cut-set sizes found over the 25 tests.

Median minimum cut-set size for KL: The median best solution from
the 25 tests.

Improvement over KL: The average improvement of the RGT/SG algo-
rithm over the KL algorithm, expressed as a percentage of the average
minimum cut-set size for KL.

Overall, the results are encouraging, but mixed. RGT/SG shows enor-
mous improvements on most of the highly structured VLSI graphs and poor

12

KL RGT/SG
Graph | Runs Mean o Med. Tters Mean 0 Med. Impr.
test4 | 868.4 1256.6 104 1,254 | 2753.0 1271.8 0.4 1,272 -1.2
testb | 792.5 2034.3 26.5 2,035 | 2999.3 2051.0 6.3 2,049 -0.8
test6 | 982.6 1202.9 84 1,200 | 3125.4 1187.0 1.5 1,187 1.3
fract | 573.9 55.0 0.0 55 | 2055.9 55.0 0.0 55 0.0
test2 | 838.9 1239.7 13.9 1,240 | 3049.6 1262.8 7.9 1,262 -1.9
test3 | 914.3 899.3 25.9 898 | 2796.3 839.0 4.1 839 6.7
balu | 818.0 584.5 0.6 584 | 2705.0 586.0 0.2 586 -0.3
19ks | 812.0 1167.2 59.4 1,171 | 3162.7 986.4 1.2 986 15.5
primaryl | 576.2 2775 159 279 | 23414 233.3 1.8 232 15.9
bml | 563.9 269.2 19.2 271 | 2465.9 2274 1.0 228 15.5
primary2 | 685.6 1299.6 90.0 1,296 | 2570.3 624.6 1.2 625 519
struct | 301.7 309.6 14.5 358 | 1958.4 3244 4.1 322 9.8
industry3 | 416.5 6697.6 307.3 6,760 | 2588.9 962.7 43.0 978 85.6
§9234 | 216.2 664.6 29.1 669 | 1629.6 206.3 10.7 204 69.0
13207 | 228.3 800.2 34.7 802 | 1764.3 1520 5.9 155 81.0
38584 | 285.2 3545.8 154.6 3,568 | 2204.3 478.1 31.1 490 86.5
s15850 | 196.2 986.7 46.8 998 | 1787.5 219.7 14.0 213 777
38417 | 186.6 2270.5 91.0 2,274 | 1771.3 351.8 124 353 84.5
geo-rand-0.10 | 934.8 3094.0 0.0 3,094 | 2932.7 3094.0 0.0 3,094 0.0
geo-rand-0.08 | 972.5 2041.0 0.0 2,041 | 2862.7 2041.0 0.0 2,041 0.0
geo-rand-0.06 | 787.2 1274.0 0.0 1,274 | 2899.3 1276.0 0.0 1,276 -0.2
dsj-geo-rand-0.04 | 646.1 737.0 0.0 737 | 3260.3 7403 1.1 740 -0.4
dsj-geo-rand-0.02 | 461.2 222.0 0.0 222 | 2902.2 239.4 0.5 239 -7.9
dsj-geo-rand-0.01 | 335.4 55.8 5.2 55 | 2407.8 43.6 0.5 44 21.7
dsj-geo-rand-0.005 | 235.9 32.1 4.3 31 | 1724.0 1.0 0.0 1 969
unif-rand-0.10 | 446.6 21306.8 13.6 21,303 | 3082.6 21479.0 16.3 21,477 -0.8
unif-rand-0.08 | 437.2 16827.7 12.7 16,828 | 3014.2 16981.3 11.2 16,981 -0.9
unif-rand-0.06 | 437.1 12177.3 10.8 12,176 | 2859.0 12302.2 11.4 12,299 -1.0
unif-rand-0.04 | 421.4 76189 104 7,619 | 2772.2 77304 8.8 7,731 -1.5
dsj-unif-rand-0.02 | 374.5 3410.2 6.6 3,409 | 2929.1 3476.5 8.1 3,476 -1.9
dsj-unif-rand-0.01 | 313.4 1387.6 4.2 1,388 | 2459.7 1429.3 24 1,429 -3.0
dsj-unif-rand-0.005 | 223.8 470.2 3.6 469 | 1784.1 488.3 3.9 488 -3.8
dsj-unif-rand-0.0025 | 122.9 108.3 1.8 108 | 1220.0 116.2 1.5 116 -7.3

Table 4: The performance of Kernighan-Lin and RGT/SG.

13

performance on random graphs. Edge probability seems to be a better pre-
dictor of performance on the VLSI graphs than mean degree. Interestingly,
the relative quality of seed-growth solutions falls as the density of the random
graphs decreases, and then exhibits a sharp reversal for the geometric ran-
dom graphs as the edge probability passes from 0.019 to 0.009. The sparsest
geometric graph tested showed the largest advantage for RGT/SG: the seed-
growth algorithm consistently found a bisection cutting only a single edge
while the median KL solution cut 31 edges. The close correspondence be-
tween RGT/SG’s relative performance on the VLSI and geometric random
graphs is the first verification we know of that the random geometric graph
model is useful for modeling algorithm behavior on real-world problems.

The results for RGT/SG may appear ordinary relative to the results that
have been reported recently for various partitioning heuristics in the CAD
literature. It is important to note, however, that a direct comparison using
the VLSI graphs is inappropriate in many cases, as results for many other
algorithms are reported in terms of hypergraph nets. Also, many heuristics
address variations of the bisection problem in which imbalance is tolerated
and vertices have associated weights. Most importantly, recall the large
number of KL runs we use, over 400 on average. Note that comparing the
‘Min’ columns in Table 1 shows the improvement one can get by taking the
best of 100 runs of the KL algorithm versus the best of 20 runs; moreover,
the best of 400 runs is quite an improvement, on average, over the best of
100 runs. Thus, our time-equated results cannot be directly compared to
previously published improvements. In our appendix, we include approxi-
mate comparisons to published results on the random graphs. But first, we
continue our investigation of methods based on seed-growth.

3.4 KL as a postprocess

Since the seed-growth heuristic adds vertices in a greedy manner and never
reconsiders past decisions, it seems reasonable to expect that the resulting
solutions could contain flaws that would be easily recognized and corrected
by a swap-based algorithm such as KL. What is not clear is whether the
extra time consumed by such a refinement postprocess would be better spent
considering additional seed-growth solutions.

Table 5 presents our empirical answer to this question. The response is
solidly affirmative, with RGT/SG+KL outperforming both KL, and RGT/SG
on every graph, even though it completes from one-third to one-sixth as
many iterations as RGT/SG. In a reversal from RGT/SG, the advantage
over KL increases with graph sparsity for both classes of random graphs.

14

KL RGT/SG+KL
Graph | Runs Mean o Med. | Tters Mean o0 Med. Impr.
test4 | 868.4 1256.6 10.4 1,254 | 954.3 12464 6.5 1,249 0.8
testb | 792.5 2034.3 26.5 2,035 | 9484 1957.6 104 1,960 3.8
test6 | 982.6 1202.9 8.4 1,200 | 969.0 1184.4 0.5 1,184 1.5
fract | 573.9 55.0 0.0 55 | 729.7 55.0 0.0 55 0.0
test2 | 838.9 1239.7 13.9 1,240 | 835.2 1230.7 7.7 1,233 0.7
test3 | 914.3 899.3 25.9 898 | 988.4 829.2 3.8 827 7.8
balu | 818.0 584.5 0.6 584 | 826.1 584.0 0.0 584 0.1
19ks | 812.0 1167.2 59.4 1,171 | 973.2 969.9 1.8 970 16.9
primaryl | 576.2 2775 159 279 | 761.6 220.8 1.7 220 204
bml | 563.9 269.2 19.2 271 | 705.0 218.6 0.9 219 18.8
primary2 | 685.6 1299.6 90.0 1,296 | 834.0 596.1 5.2 599 54.1
struct | 301.7 309.6 14.5 358 | 397.5 320.8 3.5 322 10.8
industry3 | 416.5 6697.6 307.3 6,760 | 732.0 880.1 14.9 889 86.9
§9234 | 216.2 664.6 29.1 669 | 403.1 193.7 164 194 70.9
13207 | 228.3 800.2 34.7 802 | 429.8 149.8 7.5 150 81.3
38584 | 285.2 3545.8 154.6 3,568 | 564.7 402.3 13.3 399 88.7
s15850 | 196.2 986.7 46.8 998 | 446.4 198.6 16.1 198 79.9
38417 | 186.6 2270.5 91.0 2,274 | 308.4 2705 74 266 88.1
geo-rand-0.10 | 934.8 3094.0 0.0 3,094 | 826.1 3094.0 0.0 3,094 0.0
geo-rand-0.08 | 972.5 2041.0 0.0 2,041 | 859.4 2041.0 0.0 2,041 0.0
geo-rand-0.06 | 787.2 1274.0 0.0 1,274 | 786.4 1274.0 0.0 1,274 0.0
dsj-geo-rand-0.04 | 646.1 737.0 0.0 737 | 800.4 737.0 0.0 737 0.0
dsj-geo-rand-0.02 | 461.2 222.0 0.0 222 | 648.8 222.0 0.0 222 0.0
dsj-geo-rand-0.01 | 335.4 55.8 5.2 55 | 638.1 394 0.5 39 293
dsj-geo-rand-0.005 | 235.9 32.1 4.3 31 | 548.0 1.0 0.0 1 969
unif-rand-0.10 | 446.6 21306.8 13.6 21,303 | 458.9 21301.5 12.8 21,298 0.0
unif-rand-0.08 | 437.2 16827.7 12.7 16,828 | 463.5 16818.2 14.2 16,816 0.1
unif-rand-0.06 | 437.1 12177.3 10.8 12,176 | 458.8 12168.3 11.9 12,170 0.1
unif-rand-0.04 | 421.4 7618.9 104 7,619 | 442.7 7614.3 8.0 7,614 0.1
dsj-unif-rand-0.02 | 374.5 3410.2 6.6 3,409 | 443.1 3403.0 5.8 3,404 0.2
dsj-unif-rand-0.01 | 313.4 1387.6 42 1,388 | 3859 1383.2 41 1,384 0.3
dsj-unif-rand-0.005 | 223.8 470.2 3.6 469 | 302.6 466.4 2.6 466 0.8
dsj-unif-rand-0.0025 | 122.9 108.3 1.8 108 | 203.4 1074 1.2 107 0.9

Table 5: The performance of KL and RGT/SG+KL.

15

We hypothesize that the purely local connectivity used by the seed-growth
heuristic provides less information on sparser graphs, providing further op-
portunities for clean-up by the KL algorithm.

3.5 Parallel Hill-Climbing

As we mentioned above, random generate-and-test can be viewed as a sim-
plistic search strategy, in which one attempts to find initial seed vertices
that can be greedily grown into a good bisection. It might be the case,
then, that a more sophisticated search strategy would be more effective in
identifying promising seeds. To test this hypothesis, we used the parallel
hill-climbing technique described above in Section 2.2 as a replacement for
random generate-and-test.

In experiments analogous to the ones described above, we compared
PHC/SG and PHC/SG+KL and determined that KL refinement is uni-
formly beneficial. Therefore, in Table 6 we present a comparison of PHC/SG+KL
with RGT/SG+KL. For algorithms incorporating PHC, the ‘Iters’ column
does not include solutions generated to initialize the population (although of
course this phase of the algorithm is included in the timing measurements).
The PHC version is able to complete many more iterations than the RGT al-
gorithm because of its selective use of the expensive KL refinement. The two
algorithms perform very similarly, although the more sophisticated search
technique yields a slight advantage for the sparse VLSI graphs.

3.6 Larger Seed Sets

It seems reasonable to conjecture that seeding more than one vertex in
each partition could provide benefits, particularly in conjunction with a
search procedure. First, vertices that would be improperly assigned by the
greedy growth heuristic could be correctly assigned from the start. It is
unclear, however, how often this would lead to the incorrect assignment of
other neighboring vertices. Second, assigning multiple seeds could implicitly
capture clustering inherent in structured graphs. If a vertex in a cluster were
part of a seed set, this makes it likely that the entire cluster will be assigned
to that vertex’s partition. Searching over possible seed sets could thereby
function as an implicit search over clusters.

We investigated the performance of the seed growth heuristic with size
now set to 0.01|V| instead of 1. As mentioned previously, we refer to this
heuristic as SSG, since we are now growing from sets of seeds in each par-
tition. KL refinement was found to be worthwhile for seed-set solutions

16

RGT/SG+KL PHC/SG+KL
Graph | Tters Mean o Med. Iters Mean o0 Med. Impr.
testd | 954.3 12464 6.5 1,249 | 2587.5 1250.3 3.4 1,251 -0.3
testb | 9484 1957.6 10.4 1,960 | 2764.3 1963.3 4.0 1,960 -0.3
test6 | 969.0 1184.4 0.5 1,184 | 2208.1 1185.0 0.5 1,185 -0.1
fract | 729.7 55.0 0.0 55 | 1645.8 55.0 0.0 55 0.0
test2 | 835.2 1230.7 7.7 1,233 | 2795.5 1244.8 10.3 1,250 -1.1
test3 | 988.4 829.2 3.8 827 | 2688.6 8273 14 827 0.2
balu | 826.1 584.0 0.0 584 | 2253.4 584.8 04 585 -0.1
19ks | 973.2 969.9 1.8 970 | 2669.7 970.1 1.9 971 -0.0
primaryl | 761.6 220.8 1.7 220 | 2176.4 220.0 0.2 220 0.4
bml | 705.0 218.6 0.9 219 | 2181.6 217.8 1.9 218 0.3
primary2 | 834.0 596.1 5.2 599 | 2155.2 5874 6.6 582 1.5
struct | 397.5 320.8 3.5 322 | 1581.8 321.6 1.2 322 -0.2
industry3 | 732.0 880.1 14.9 889 | 2333.9 849.2 35.7 857 3.5
$9234 | 403.1 193.7 16.4 194 | 1373.1 178.3 9.9 178 7.9
13207 | 429.8 1498 7.5 150 | 1421.9 146.8 4.9 149 2.0
s38584 | 564.7 402.3 13.3 399 | 1880.7 3872 6.8 388 3.7
s15850 | 446.4 198.6 16.1 198 | 1522.4 181.5 8.1 182 8.6
s38417 | 308.4 270.5 74 266 | 1321.8 2674 4.6 266 1.1
geo-rand-0.10 | 826.1 3094.0 0.0 3,094 | 2952.3 3094.0 0.0 3,094 0.0
geo-rand-0.08 | 859.4 2041.0 0.0 2,041 | 2816.7 2041.0 0.0 2,041 0.0
geo-rand-0.06 | 786.4 1274.0 0.0 1,274 | 2657.6 1274.0 0.0 1,274 0.0
dsj-geo-rand-0.04 | 800.4 737.0 0.0 737 | 2728.0 737.0 0.0 737 0.0
dsj-geo-rand-0.02 | 648.8 222.0 0.0 222 | 1949.0 224.0 4.1 222 -0.9
dsj-geo-rand-0.01 | 638.1 39.4 0.5 39 | 1976.3 39.8 04 40 -0.9
dsj-geo-rand-0.005 | 548.0 1.0 0.0 1 1380.1 1.0 0.0 1 0.0
unif-rand-0.10 | 458.9 21301.5 12.8 21,298 | 2751.0 21304.6 12.6 21,307 -0.0
unif-rand-0.08 | 463.5 16818.2 14.2 16,816 | 2762.0 16818.7 9.7 16,819 -0.0
unif-rand-0.06 | 458.8 12168.3 11.9 12,170 | 2726.7 12171.9 11.4 12,172 -0.0
unif-rand-0.04 | 442.7 7614.3 8.0 7,614 | 2634.7 7611.0 9.1 7,611 0.0
dsj-unif-rand-0.02 | 443.1 3403.0 5.8 3,404 | 2356.0 3400.8 7.4 3,398 0.1
dsj-unif-rand-0.01 | 385.9 1383.2 4.1 1,384 | 1914.3 1382.6 4.9 1,382 0.0
dsj-unif-rand-0.005 | 302.6 466.4 2.6 466 | 1441.7 465.7 1.9 466 0.2
dsj-unif-rand-0.0025 | 203.4 1074 1.2 107 | 860.9 1070 2.1 108 0.3

Table 6: The performance of RGT/SG+KL and PHC/SG+KL.

17

RGT/SG+KL RGT/SSG+KL
Graph | Tters Mean o Med. Iters Mean ¢ Med. Impr.
testd | 954.3 12464 6.5 1,249 | 935.0 1233.3 3.7 1,233 1.0
testb | 9484 1957.6 104 1,960 | 1019.5 1943.5 15.6 1,947 0.7
test6 | 969.0 11844 0.5 1,184 | 1023.5 11849 1.0 1,185 -0.0
fract | 729.7 55.0 0.0 55 | 754.8 55.0 0.0 55 0.0
test2 | 835.2 1230.7 7.7 1,233 | 872.0 12129 5.1 1,212 1.4
test3 | 988.4 829.2 3.8 827 | 953.5 8294 2.1 829 -0.0
balu | 826.1 584.0 0.0 584 | 794.7 584.0 0.0 584 0.0
19ks | 973.2 969.9 1.8 970 | 953.6 969.2 4.0 969 0.1
primaryl | 761.6 220.8 1.7 220 | 737.0 219.6 1.9 219 0.6
bml | 705.0 218.6 0.9 219 | 702.1 214.5 2.8 214 1.8
primary2 | 834.0 596.1 5.2 599 | 812.2 587.2 18.0 585 1.5
struct | 397.5 320.8 3.5 322 | 387.3 332.2 8.5 334 -3.6
industry3 | 732.0 880.1 14.9 889 | 692.5 909.1 86.1 880 -3.3
£9234 | 403.1 193.7 16.4 194 | 321.5 201.7 18.2 197 -4.1
13207 | 429.8 149.8 7.5 150 | 359.1 215.3 22.8 215 -43.7
s38584 | 564.7 402.3 13.3 399 | 463.8 525.1 43.1 522 -30.5
s15850 | 446.4 198.6 16.1 198 | 328.9 268.3 19.6 268 -35.1
s38417 | 308.4 270.5 74 266 | 256.1 621.6 51.2 616 -129.8
geo-rand-0.10 | 826.1 3094.0 0.0 3,094 | 866.9 3094.0 0.0 3,094 0.0
geo-rand-0.08 | 859.4 2041.0 0.0 2,041 | 8749 2041.0 0.0 2,041 0.0
geo-rand-0.06 | 786.4 1274.0 0.0 1,274 | 7925 12740 0.0 1,274 0.0
dsj-geo-rand-0.04 | 800.4 737.0 0.0 737 | 757.3 737.0 0.0 737 0.0
dsj-geo-rand-0.02 | 648.8 222.0 0.0 222 | 630.0 222.0 0.0 222 0.0
dsj-geo-rand-0.01 | 638.1 39.4 0.5 39 | 591.0 39.1 0.3 39 0.8
dsj-geo-rand-0.005 | 548.0 1.0 0.0 1] 4499 1.0 0.0 1 0.0
unif-rand-0.10 | 458.9 21301.5 12.8 21,298 | 468.2 21303.4 11.3 21,305 -0.0
unif-rand-0.08 | 463.5 16818.2 14.2 16,816 | 448.4 16817.0 13.1 16,821 0.0
unif-rand-0.06 | 458.8 12168.3 11.9 12,170 | 454.5 12173.7 8.9 12,176 -0.0
unif-rand-0.04 | 442.7 7614.3 8.0 7,614 | 436.3 7610.3 10.6 7,608 0.1
dsj-unif-rand-0.02 | 443.1 3403.0 5.8 3,404 | 428.3 34040 6.8 3,405 -0.0
dsj-unif-rand-0.01 | 385.9 1383.2 4.1 1384 | 368.5 1383.3 4.2 1,383 -0.0
dsj-unif-rand-0.005 | 302.6 466.4 2.6 466 | 2784 467.0 3.5 467 -0.1
dsj-unif-rand-0.0025 | 203.4 1074 1.2 107 | 180.9 1075 1.0 107 -0.1

Table 7: The performance of RGT/SG+KL and RGT/SSG+KL.

18

PHC/SG+KL PHC/SSG+KL

Graph Tters Mean o Med. Tters Mean ¢ Med. Impr.

test4 | 2587.5 1250.3 3.4 1,251 | 2288.5 1241.2 8.1 1,240 0.7

testb | 2764.3 1963.3 4.0 1,960 | 2100.9 1951.6 7.2 1,952 0.6

test6 | 2208.1 1185.0 0.5 1,185 | 2098.8 1187.2 2.7 1,186 -0.2

fract | 1645.8 55.0 0.0 55 | 1699.4 55.0 0.0 55 0.0

test2 | 2795.5 1244.8 10.3 1,250 | 2167.1 1235.3 174 1,238 0.8

test3 | 2688.6 8273 14 827 | 22754 827.4 0.9 827 -0.0

balu | 2253.4 584.8 0.4 585 | 1959.6 584.0 0.2 584 0.1

19ks | 2669.7 970.1 1.9 971 | 1947.0 978.4 213 972 -0.9

primaryl | 2176.4 220.0 0.2 220 | 1858.5 218.1 1.5 218 0.9

bml | 2181.6 217.8 1.9 218 | 1814.4 212.2 4.4 213 2.6

primary2 | 2155.2 5874 6.6 582 | 1692.1 583.9 26.9 579 0.6

struct | 1581.8 321.6 1.2 322 | 1220.0 329.4 6.6 328 -2.4
industry3 | 2333.9 849.2 35.7 857 | 1424.6 981.0 1314 972 -15.5

$9234 | 1373.1 178.3 9.9 178 | 650.8 187.5 18.9 184 -5.1

513207 | 1421.9 146.8 4.9 149 | 684.9 201.3 29.2 204 -37.1

s38584 | 1880.7 387.2 6.8 388 | 904.9 564.9 68.2 576 -45.9

$156850 | 1522.4 181.5 8.1 182 | 656.0 254.1 31.8 257 -40.0

38417 | 1321.8 267.4 4.6 266 | 552.8 564.0 67.5 572 -110.9
geo-rand-0.10 | 2952.3 3094.0 0.0 3,094 | 2100.6 3094.0 0.0 3,094 0.0
geo-rand-0.08 | 2816.7 2041.0 0.0 2,041 | 2054.5 2041.0 0.0 2,041 0.0
geo-rand-0.06 | 2657.6 1274.0 0.0 1,274 | 1871.8 1274.0 0.0 1,274 0.0
dsj-geo-rand-0.04 | 2728.0 737.0 0.0 737 | 2068.1 737.0 0.0 737 0.0
dsj-geo-rand-0.02 | 1949.0 224.0 4.1 222 | 1866.7 222.0 0.0 222 0.9
dsj-geo-rand-0.01 | 1976.3 39.8 04 40 | 1528.9 39.1 0.3 39 1.6
dsj-geo-rand-0.005 | 1380.1 1.0 0.0 11017.9 1.0 0.2 1 -4.0
unif-rand-0.10 | 2751.0 21304.6 12.6 21,307 | 2208.6 21295.9 12.2 21,294 0.0
unif-rand-0.08 | 2762.0 16818.7 9.7 16,819 | 2186.4 16811.3 12.8 16,814 0.0
unif-rand-0.06 | 2726.7 12171.9 11.4 12,172 | 2090.0 12159.5 11.8 12,157 0.1
unif-rand-0.04 | 2634.7 7611.0 9.1 7,611 | 1977.0 7607.6 8.4 7,605 0.0
dsj-unif-rand-0.02 | 2356.0 3400.8 7.4 3,398 | 2096.5 3395.8 49 3,395 0.1
dsj-unif-rand-0.01 | 1914.3 1382.6 4.9 1,382 | 1788.2 1382.7 4.7 1,383 -0.0
dsj-unif-rand-0.005 | 1441.7 465.7 1.9 466 | 1244.5 464.1 3.2 463 0.4
dsj-unif-rand-0.0025 | 860.9 107.0 2.1 108 | 610.3 106.0 1.7 106 0.9

Table 8: The performance of PHC/SG+KL and PHC/SSG+KL.

19

discovered using either random generate-and-test or parallel hill-climbing.
Therefore, in Table 7 we compare RGT/SG+KL with its set-oriented cousin,
RGT/SSG+KL. The seed-set version exhibits similar performance, except
for the the sparse VLSI graphs, on which the single-vertex algorithm is
dramatically superior. Similar behavior was evident for the PHC versions,
whose performance is shown in Table 8. The use of PHC instead of RGT
seemed to improve performance slightly on sparse VLSI graphs, which was
the same effect we saw with single-vertex seeds. (When not using KL re-
finement, PHC/SSG consistently provided an advantage over RGT/SSG,
with the advantage increasing with sparsity on random graphs.) Overall, it
appears that any implicit clustering effect does not make up for the extra
constraints placed on the greedy seed-growth heuristic.

4 Conclusions

We have investigated several algorithms for graph bisection that are based
on a simple seed-growth heuristic. Through time-equated experiments on
three families of benchmark graphs, we have disambiguated the various con-
tributions of seed-set size, search technique, and KL refinement. Algorithms
incorporating the seed-growth heuristic consistently outperform KL. One of
the novel combinations we considered, PHC/SG+KL, emerged as the cham-
pion, although RGT/SG+KL is just as good for uniform random graphs.

One danger of time-equated comparisons is that an algorithm that can-
not make efficient use of extra time may be displayed at a disadvantage
when compared to an algorithm that depends on long running times to be-
come competitive. To ensure that the advantage displayed by PHC/SG+KL
over KL is not due to this phenomenon, we present results in Table 9 that
were compiled after each algorithm had run for one-seventh of our usual
computation time. PHC/SG+KL’s advantage remains clear.

The PHC/SG+KL algorithm is certainly an improvement over the KL
algorithm, but it remains to be seen how effective it is relative to other
recently reported algorithms that use explicit clustering heuristics. The
experimental methodology and large-sample KL results we have presented
here can form the basis of such investigations.

In an appendix, we report some approximate comparisons to published
results on the random graphs of Johnson et al., although only broad con-
clusions can be drawn. It appears that combining seed-growth with a re-
finement technique with similar strengths, such as KL, is not as effective as
attempting to boost its performance on more uniform graphs with a post-

20

KL PHC/SG+KL
Graph | Runs Mean o Med. | Iters Mean o Med. Impr.
testd | 124.5 1281.2 19.7 1,280 | 218.1 1252.4 1.9 1,252 2.3
test5 | 118.9 2098.8 40.3 2,101 | 238.5 1966.3 5.2 1,967 6.3
test6 | 140.1 1224.2 186 1,222 | 2294 1185.0 0.5 1,185 3.2
fract | 76.1 55.0 0.0 55 | 92.5 55.0 0.0 55 0.0
test2 | 119.5 1262.0 19.5 1,261 | 235.6 1252.0 7.1 1,251 0.8
test3 | 130.5 927.9 40.9 927 | 229.5 837.2 9.0 837 9.8
balu | 116.9 585.9 1.0 586 | 204.5 584.8 0.4 585 0.2
19ks | 118.3 1286.8 64.6 1,280 | 240.3 973.1 2.6 973 24.4
primaryl | 81.5 3109 225 312 | 152.1 2240 2.6 224 28.0
bmil | 79.7 299.7 245 300 | 152.1 219.0 1.8 219 26.9
primary2 | 96.8 1489.6 131.4 1,538 | 165.1 597.1 10.2 600 59.9
struct | 42.9 398.4 293 396 | 66.5 330.1 5.4 330 17.1
industry3 | 59.3 7286.5 324.3 7,265 | 160.1 898.0 37.9 889 87.7
9234 | 30.8 701.4 26.7 700 | 33.1 2124 238 209 69.7
s13207 | 32.6 860.7 46.4 865 | 44.6 162.7 154 150 81.1
s385684 | 40.8 3836.4 192.2 3,861 | 104.9 429.5 42.0 414 88.8
15850 | 28.0 1044.5 62.1 1,044 | 51.9 212.4 20.7 209 79.7
$38417 | 26.7 2432.0 97.0 2422 | 18.7 276.0 11.3 274 88.7
geo-rand-0.10 | 133.1 3094.0 0.0 3,094 | 252.7 3094.0 0.0 3,094 0.0
geo-rand-0.08 | 138.1 2041.0 0.0 2,041 | 273.4 2041.0 0.0 2,041 0.0
geo-rand-0.06 | 113.0 1274.0 0.0 1,274 |230.6 1274.0 0.0 1,274 0.0
dsj-geo-rand-0.04 | 91.4 737.0 0.0 737 | 239.6 737.0 0.0 737 0.0
dsj-geo-rand-0.02 | 64.9 225.4 5.1 222 | 174.9 2247 4.5 222 0.3
dsj-geo-rand-0.01 | 46.7 70.2 10.9 68 | 118.9 39.8 04 40 43.3
dsj-geo-rand-0.005 | 32.8 40.1 7.2 41 | 731 1.2 04 1 971
unif-rand-0.10 | 63.5 21332.7 21.9 21,337 | 147.5 21322.7 15.2 21,324 0.0
unif-rand-0.08 | 62.3 16850.0 14.4 16,849 | 146.4 16831.4 15.8 16,830 0.1
unif-rand-0.06 | 61.6 121975 13.5 12,194 | 146.4 12185.7 12.1 12,186 0.1
unif-rand-0.04 | 59.1 7636.5 15.7 7,638 | 141.7 7626.5 11.5 7,626 0.1
dsj-unif-rand-0.02 | 51.7 3423.1 10.5 3,422 | 110.1 3409.7 10.0 3,411 0.4
dsj-unif-rand-0.01 | 43.9 1396.6 48 1,395 | 745 13902 5.1 1,390 0.5
dsj-unif-rand-0.005 | 31.3 4754 3.8 475 | 24.2 4715 3.4 472 0.8
dsj-unif-rand-0.0025 | 17.5 112.6 2.7 113 0.0 110.7 2.2 110 1.7

Table 9: The performance of KL and PHC/SG+KL when both are run for
one seventh of our usual computation time.

21

process closer to simulated annealing.

Our agenda for future work includes a thorough time-equated empirical
comparison of the most promising clustering-based heuristics for graph bisec-
tion, including PHC/SG+KL, and an attempt to discover further correlates
between quantitative measures of a graph’s structure and the performance
of seed-growth heuristics.

Furthermore, we plan to generalize the PHC/SG+KL algorithm to other
graph-partitioning problems. In commonly encountered problems of prac-
tical significance, more than two partitions are permitted, the requirement
of exact equality of partition sizes is relaxed, and the vertices and edges are
weighted. The simple nature of the seed-growth heuristic should allow for
straightforward generalization to these cases.

5 Acknowledgments

This material is based upon work supported in part by the National Science
Foundation under Grant Nos. IRI-9350192, and TRI-9618848. We also thank
David S. Johnson, Jason Cong, M’Lissa Smith, and Chuck Alpert for gen-
erously providing benchmark circuits and graphs, and Sandy Staff for help
in compiling our bibliography and obtaining reprints.

A Comparisons with Other Algorithms

In this appendix, we broaden our perspective on the seed-growth algorithms
we have considered in this paper by comparing them to algorithms other
than KL. First we present results from our implementation of a simple spec-
tral bisection algorithm, then we present an approximate comparison of
PHC/SG+KL and RGT/SG+KL with published results from the literature.

A.1 Spectral Bisection

Although KL is the most popular benchmark algorithm for graph bisection,
it could be regarded as part of the same algorithmic approach to graph bi-
section as seed-growth, since they both consider moving vertices based on
edge crossings. We also implemented another standard technique that oper-
ates on a very different principle. This method, known as spectral bisection
[1, 17, 15], uses an eigenvector computation to embed a graph along a line
such that the sum of the squared distances between embedded connected
vertices is minimized. Then we join the ends of the line to form a circle, and

22

consider each of the |V|/2 bisections resulting from breaking the ring into
two equal halves, keeping contiguous vertices together. To take advantage
of additional computation time, we can incrementally compute additional
eigenvectors and their associated embeddings. More sophisticated variants
of spectral bisection can be constructed by combining multiple embeddings
[10].

Table 10 compares KL with spectral bisection. Unfortunately, even
though we used a popular implementation of the Lanczos algorithm for
sparse matrices,? the eigenvector computation takes O(|V|'**) time in the
worst case, and occasionally took longer than the time allotted for a par-
ticular graph. Such graphs are not listed. This was especially a problem
for graphs with many components, since the embedding technique needs
eigenvector ¢ + 1 for a graph with ¢ components. We also had difficulty
reliably extracting many additional eigenvectors for some graphs, due to
loss of orthogonality during the eigenvector computation. This prevented
the spectral methods from using the full allotted computation time on those
graphs. To permit a time-equated comparison against KL, we have listed
results obtained after only 55% of our usual amount of computation time
had elapsed. (In the trade-off between waiting for the first embedding of
some graphs and being unable to generate additional embeddings for oth-
ers, this value allowed us to present the most results.) The average number
of eigenvector embeddings considered is listed in the ‘Vecs’ column. This
varies because of fluctuations in the convergence times of the eigenvector
code. Variation in solution quality can be attributed to the variation in the
number of embeddings considered, as well as numerical inaccuracies past
the fifth decimal place.

The spectral method performs surprisingly poorly against KL, particu-
larly on sparse graphs. It finds better bisections for primary2 and 19ks than
KL can, even when KL is given the usual time limit, although not as good
as those found in an equal amount of time by the seed-growth algorithms
we have considered (PHC/SG+KL has a time-equated mean cut-set size of
588.1 on primary2 and 970.5 on 19ks).

We saw with seed-growth algorithms that the increase in solution quality
afforded by KL refinement can be well worth the time spent. In Table 11 we
see that a KL refinement postprocess also improves the spectral solutions,
although the improvement is not enough to provide a consistent advantage
over KL alone. Spectral+KL outperforms KL only on the sparser VLSI

The LASO package by D. S. Scott and B. N. Parlett, freely available at
http://www.netlib.org/laso.

23

KL

Spectral Bisection

Graph | Runs Mean o Med. | Vecs. Mean o0 Med. Impr.

test4 | 478.2 1260.9 12.9 1,258 44 1323.0 0.0 1,323 -4.9

test6 | 539.9 1209.3 13.2 1,206 4.7 13885 0.9 1,389 -14.8

fract | 311.1 55.0 0.0 55 6.5 73.0 0.0 73 -32.7

test2 | 461.7 1247.2 18.3 1,249 3.7 1523.0 0.0 1,523 -22.1

test3 | 503.2 905.0 24.6 909 41 1288.0 0.0 1,288 -42.3

balu | 450.6 584.8 0.7 585 6.9 809.0 0.0 809 -38.3

19ks | 447.7 1201.8 60.6 1,203 2.3 1080.9 14.3 1,085 10.1

primaryl | 316.5 288.3 16.6 289 7.1 3125 4.5 314 -84

bm1 | 309.6 280.4 20.0 284 6.1 301.0 0.0 301 -7.3

primary2 | 376.0 1332.2 89.4 1,326 5.5 947.8 0.6 948 28.9
struct | 165.7 371.4 179 370 6.5 401.0 0.0 401 -8.0
geo-rand-0.10 | 514.0 3094.0 0.0 3,094 | 29.1 31270 0.0 3,127 -1.1
geo-rand-0.08 | 533.2 2041.0 0.0 2,041 | 29.8 2068.0 0.0 2,068 -1.3
geo-rand-0.06 | 433.5 12740 0.0 1,274 | 29.5 1298.0 0.0 1,298 -1.9
dsj-geo-rand-0.04 | 355.5 737.0 0.0 737 | 253 1062.0 0.0 1,062 -44.1
dsj-geo-rand-0.02 | 253.8 222.0 0.0 222 | 159 297.0 0.0 297 -33.8
dsj-geo-rand-0.01 | 184.1 57.7 6.4 56 4.5 74.0 0.0 74 -28.2
unif-rand-0.10 | 246.2 21316.6 18.3 21,318 | 23.9 22525.0 0.0 22,525 -5.7
unif-rand-0.08 | 240.8 16834.6 16.1 16,835 | 21.9 17935.0 0.0 17,935 -6.5
unif-rand-0.06 | 240.2 12182.3 13.7 12,180 | 22.6 13216.4 3.1 13,217 -8.5
unif-rand-0.04 | 230.4 7623.4 13.4 7,625 | 20.6 8362.0 0.0 8,362 -9.7
dsj-unif-rand-0.02 | 204.4 34128 85 3411 | 18.6 3907.0 0.0 3,907 -14.5
dsj-unif-rand-0.01 | 171.4 1389.8 4.2 1,390 | 12.6 1685.0 0.0 1,685 -21.2

Table 10: The performance of Kernighan-Lin and spectral bisection when
both are given 55% of our usual computation time.

24

KL Spectral+KL
Graph | Runs Mean o Med. | Vecs. Mean o Med. Impr.
test4 | 478.2 1260.9 12.9 1,258 4.1 12950 0.0 1,295 -2.7
test6 | 539.9 1209.3 13.2 1,206 4.2 1205.1 0.0 1,205 0.4
fract | 311.1 55.0 0.0 55 6.0 55.0 0.0 55 0.0
test2 | 461.7 1247.2 18.3 1,249 3.0 13780 0.0 1,378 -10.5
test3 | 503.2 905.0 24.6 909 3.9 908.3 0.3 908 -0.4
balu | 450.6 584.8 0.7 585 6.9 587.0 0.0 587 -0.4
19ks | 447.7 1201.8 60.6 1,203 2.0 975.9 0.0 976 18.8
primaryl | 316.5 288.3 16.6 289 6.6 264.0 0.0 264 8.4
bmi | 309.6 280.4 20.0 284 5.8 233.0 0.0 233 169
primary2 | 376.0 1332.2 89.4 1,326 5.4 752.0 0.0 752 43.6
struct | 165.7 371.4 179 370 6.4 346.0 0.0 346 6.8
geo-rand-0.10 | 514.0 3094.0 0.0 3,094 | 27.1 3094.0 0.0 3,094 0.0
geo-rand-0.08 | 533.2 2041.0 0.0 2,041 | 27.6 2041.0 0.0 2,041 0.0
geo-rand-0.06 | 433.5 1274.0 0.0 1,274 | 26.8 12740 0.0 1,274 0.0
dsj-geo-rand-0.04 | 355.5 737.0 0.0 737 | 24.0 737.0 0.0 737 0.0
dsj-geo-rand-0.02 | 253.8 222.0 0.0 222 14.9 234.0 0.0 234 -5.4
dsj-geo-rand-0.01 | 184.1 57.7 6.4 56 4.3 60.0 0.0 60 -4.0
unif-rand-0.10 | 246.2 21316.6 18.3 21,318 | 21.6 21342.0 0.0 21,342 -0.1
unif-rand-0.08 | 240.8 16834.6 16.1 16,835 | 19.3 16849.0 0.0 16,849 -0.1
unif-rand-0.06 | 240.2 12182.3 13.7 12,180 | 20.2 12187.0 0.0 12,187 -0.0
unif-rand-0.04 | 230.4 7623.4 134 7,625 | 19.0 7652.0 0.0 7,652 -0.4
dsj-unif-rand-0.02 | 204.4 3412.8 85 3,411 | 17.5 3443.0 0.0 3,443 -0.9
dsj-unif-rand-0.01 | 171.4 1389.8 4.2 1,390 | 11.8 1393.0 0.0 1,393 -0.2

Table 11:

The performance of Kernighan-Lin and spectral+KL when both

are given 55% of our usual computation time.

25

graphs, although not by as much as time-equated PHC/SG+KL.

From these results, we can safely conclude that KL is the better algo-
rithm of the two, further bolstering its reputation as the standard bench-
mark.

A.2 Approximate Comparisons

Since we used the standard Johnson et al. [18] benchmark graphs as a sub-
set of our test suite, we can make approximate comparisons against some
published algorithms without reimplementing them. There are well-known
hazards with this approach, since machine characteristics not captured in a
single time-normalization metric may influence algorithm performance, and
the degree of code optimization and algorithm parameter tuning cannot be
compared. But useful insights can be obtained nonetheless.

Johnson et al. [18] tested simulated annealing (SA) on a DEC VAX
11/750. Our DEC AlphaStation 500/500 is rated at 15.0 on the SPECint95
benchmark. To convert the timings of Johnson et al. and others, we used
the following logic: Bui and Moon [5] report that a Sun SparcStation IPX
is about 30 times faster than a VAX 11/750, based on Dhrystone tests. The
Sun IPX is rated as 21.8 on the SPECint92 benchmark. A recent machine
that is rated on both the SPECint92 and SPECint95 benchmarks is the
DEC AlphaServer 2100 5/250 used by Battiti and Bertossi 3], at 277.1 and
5.92, respectively. The scores on the two benchmarks differ by a factor of
46.8. Therefore, to compare with our DEC 500/500, the Sun IPX timings
should be divided by 15.0/(21.8/46.8) which is 32.2. This means the VAX
11/750 timings should be divided by 32.2 x 30 which is 966. More easily, we
have that the DEC 5/250 timings should be divided by 15.0/5.92 which is
2.53.

Table 12 presents an approximate comparison to the results of Johnson
et al. [18, tables VI and XI for geometric graphs and tables IV, III, and II
for uniform graphs], giving the following data:

1. Time, the originally reported running time on a DEC VAX 11/750.

2. Timey,, an estimate of the running time on a DEC AlphaStation 500/500,
using the conversion constant derived above.

3. SA, the mean solution cost from a single run of simulated annealing
as reported by Johnson et al.

4. KL, the performance of our KL implementation when given Time,,.

26

Graph | Time Time, SA KL PHC/SG+KL RGT/SG+KL
dsj-geo-rand-0.04 | 1038.2 1.1 963.8 739.8 747.41 737.0
dsj-geo-rand-0.02 | 548.7 0.57 355.3 240.2 251.3i 227.8
dsj-geo-rand-0.01 | 563.7 0.58 120.4 89.1 45.91 42.3

dsj-geo-rand-0.005 | 539.3 0.56 41.2 45.1 1.5i 2.4
dsj-unif-rand-0.02 | 853.7 0.88 | 3402.6 3439.9 3500.7i 3432.3
dsj-unif-rand-0.01 | 734.5 0.76 | 1376.6 1403.6 1404.1i 1397.1

dsj-unif-rand-0.005 | 661.2 0.68 | 460.0 4779 473.1i 473.7
dsj-unif-rand-0.0025 | 729.9 0.76 | 109.5 111.9 110.0 110.5

Table 12: Approximate comparison with Johnson et al. [18]. ‘i’ indicates
results taken during population initialization.

5. PHC/SG+KL, the performance of PHC/SG+KL when given Time,.
An 4’ after a figure means the algorithm was still initializing its pop-
ulation of 100 solutions when the allotted time expired. The solution
value reported by such a run is the best current member of the popu-
lation. Since KL is only run on selected solutions when the population
is fully initialized, such results should probably be regarded as repre-
senting the performance of a RGT/SG algorithm.

6. RGT/SG+KL, the performance of RGT/SG+KL when given Time,,.

The best figures for each graph, where obvious, are in boldface. These
running times range from 2%—-20% of the times used in our previous compar-
isons, which were listed in Table 2. Furthermore, they were determined by
observing the ‘freezing’ of the simulated annealing runs and thus represent a
favorable point for annealing in trade-off between time and solution quality.
Our results are similar to those of Johnson et al.: annealing excels at ran-
dom graphs, particularly dense ones, and is surpassed by other algorithms
on geometric graphs. The running times are too short for PHC/SG+KL to
start its search and its results mimic the longer tests with RGT/SG from
Table 4, but its cousin, RGT/SG+KL, consistently beats KL, just as it did
in the longer tests shown previously in Table 5.

Johnson et al. also compared the best of 5 runs of annealing to KL
[18, tables VI, VII, and XI for geometric graphs and tables IV, V, II for
uniform graphs]. We compare against those results in Table 13. KL; indi-
cates results from Johnson et al.’s KL implementation. These do not match
our time-equated KL results for two reasons. First, their implementation

27

Graph | Time, | 5 SAs KL; KL KL;, PHC/SG+KL RGT/SG+KL
dsj-geo-rand-0.04 5.4 790.1 737.0 737.0 737.0 737.0 737.0
dsj-geo-rand-0.02 2.8 256.9 224.9 228.3 2229 225.6 222.3
dsj-geo-rand-0.01 2.9 92.5 56.3 66.9 56.5 39.8 39.9

dsj-geo-rand-0.005 2.8 35.85 30.3 35.6 NA 1.0 1.1
dsj-unif-rand-0.02 4.4 | 3392.4 3480.5 3423.1 3417.6 3409.7 3417.3
dsj-unif-rand-0.01 3.8 | 1369.7 1432.6 1395.0 1388.5 1386.7 1389.6

dsj-unif-rand-0.005 3.4 454.6 499.7 471.3 NA 468.2 468.9
dsj-unif-rand-0.0025 3.8 | 105.3 125.0 108.3 NA 107.0 107.4

Table 13: Approximate comparison with Johnson et al. for longer runs.

Graph | Time Time, | BFS-GBA2.0 KL PHC/SG+KL RGT/SG+KL
dsj-geo-rand-0.04 | 36.99 1.1 738.10 739.8 747.4i 737.0
dsj-geo-rand-0.02 | 32.97 1.0 231.62 236.0 244.3i 225.9
dsj-geo-rand-0.01 | 30.89 0.96 55.78 81.0 40.4 40.3

dsj-geo-rand-0.005 | 17.58 0.55 1.78 45.2 1.52i 2.68
dsj-unif-rand-0.02 | 62.25 1.9 3401.74 3427.0 3416.0i 3424.9
dsj-unif-rand-0.01 | 37.05 1.2 1376.37 1400.8 1393.4i 1396.2
dsj-unif-rand-0.005 | 23.65 0.73 458.55 477.3 472.71 473.7
dsj-unif-rand-0.0025 | 16.83 0.52 103.61 112.6 110.9i 111.5

Table 14: Approximate comparison with Bui and Moon [5]. ‘i’ indicates
results taken during population initialization.

of KL completed 2—4 times more runs during ‘Time’ then our implementa-
tion completed within ‘Time,,” (the difference seemed to increase with graph
sparsity). This could be due to their exclusion of data structure initializa-
tion from measurements of running times, subtle algorithmic improvements
not reported in their paper, or a slow implementation on our part. KL,
indicates the results of our implementation when given the same number of
runs as Johnson et al.’s. Although we then obtained similar performance on
the geometric graphs, we report much better results on the uniform random
graphs. This may be due to our programming of the buckets data structure.
Hagen, Huang, and Khang [14] have shown that a LIFO insertion order can
significantly improve solution quality.

With the longer running time, PHC/SG+KL begins to pull away from
KL. Annealing maintains its advantage on the uniform graphs, however.

28

Graph | Time Time, RRTS KL PHC/SG+KL RGT/SG+KL
dsj-geo-rand-0.04 | 2.02 0.80 737.0 7424 751.51 737.2
dsj-geo-rand-0.02 1.01 0.40 222.27 248.1 252.0i 228.6
dsj-geo-rand-0.01 | 0.59 0.23 39.76 105.6 49.4i 47.8

dsj-geo-rand-0.005 | 0.25 0.10 1.0 58.1 3.61 4.9
dsj-unif-rand-0.02 | 1.10 0.43 | 3389.64 3448.9 3509.2i 3437.2
dsj-unif-rand-0.01 | 0.67 0.26 | 1371.47 1413.3 1450.1i 1403.6
dsj-unif-rand-0.005 | 0.47 0.19 | 458.32 484.5 501.4i 480.9
dsj-unif-rand-0.0025 | 0.49 0.19 | 107.18 116.1 122.1i 114.5

Table 15: Approximate comparison with Battiti and Bertossi’s RRTS algo-
rithm [3], given a short amount of time.

Graph | Time Time, RRTS KL PHC/SG+KL RGT/SG+KL
dsj-geo-rand-0.04 | 24.3 9.6 737.0 7370 737.0 737.0
dsj-geo-rand-0.02 12.5 4.9 222.0 224.5 224.0 222.0
dsj-geo-rand-0.01 6.3 2.5 39.03 68.4 39.8 40.2

dsj-geo-rand-0.005 4.2 1.7 1.0 37.5 1.0 1.4
dsj-unif-rand-0.02 | 14.7 5.8 | 3383.92 3421.3 3408.9 3413.2
dsj-unif-rand-0.01 9.3 3.7 | 1364.27 1395.0 1387.2 1389.9
dsj-unif-rand-0.005 6.5 2.6 | 450.99 471.8 468.8 470.3
dsj-unif-rand-0.0025 6.5 2.6 98.69 108.7 107.4 108.0

Table 16: Approximate comparison with RRTS for longer running times.

Bui and Moon have also published empirical results on the Johnson et

al. graphs [5, Table II]. Their algorithm, called BFS-GBA2.0 (for ‘genetic
bisection algorithm’ with ‘best first search’ preprocessing), combines a spe-
cialized genetic algorithm with a truncated version of KL. Table 14 shows a
time-equated comparison with their results, which were originally timed on a
Sun SparcStation TPX. BFS-GBA2.0 surpasses KL on all graphs. It is beaten
by RGT/SG+KL on most geometric graphs, however. PHC/SG+KL’s selec-
tive application of KL seems to give an advantage on the sparsest geometric
graph. BFS-GBA2.0 dominates the seed-growth algorithms on the uniform
graphs. Interestingly, it does only slightly better than Johnson et al.’s SA
on most of them, even though it has been given more time.

In Tables 15 and 16, we present a comparison to Battiti and Bertossi’s
RRTS algorithm (from ‘reactive randomized tabu search’), which is based on

29

a constructive heuristic similar to seed-growth in which the number of edges
to the partition being added to is used only to break ties [3, Table 5]. They
combine the heuristic, which they call Min-Max-Greedy, with a long tabu-
search refinement phase. Their timings were originally measured on a DEC
AlphaServer 2100 5/250, and do not include data-structure initialization
times. Table 15 shows the performance of the algorithms for short running
times. RRTS seems to dominate all other algorithms we have considered,
although implementation tuning may play a significant role at these short
running times. When given more time, seed-growth with KL refinement
gives similar performance on geometric graphs, although the tabu refinement
seems to give RRTS a decided advantage on the uniform graphs. Intuitively,
this fits into the pattern noted by Johnson et al., because relative to KL, tabu
search shares much in common with simulated annealing, which performs
very well on random graphs. In later work, Battiti and Bertossi [2] show
that RGT/SG (which they call Diff-Greedy) is superior to RGT/Min-Max-
Greedy (RRTS without its tabu postprocess), although they do not discuss
adding refinement techniques.

These comparisons, although approximate, have shown that many re-
cently proposed algorithms have surpassed time-equated KL, and that meth-
ods based on seed-growth may be the most effective. The advantage of seed-
growth methods seems to vary with the refinement technique used. Both
KL and tabu-search refinement work well on the geometric graphs, but tabu
search does much better on random graphs. It is clear that these hybrid ap-
proaches that combine two style of optimization are superior to any single
technique used alone, even when compared fairly.

References

[1] E. R. Barnes. An algorithm for partitioning the nodes of a graph. SIAM
Journal of Algebraic and Discrete Methods, 3(4):541-550, 1982.

[2] R. Battiti and A. Bertossi. Differential greedy for the 0-1 equicut prob-
lem. In D. Z. Du and P. M. Pardalos, editors, Proceedings of the DI-
MACS Workshop on Network Design: Connectivity and Facilities Lo-
cation, 1997.

[3] R. Battiti and A. Bertossi. Greedy and prohibition-based heuristics
for graph partitioning. Technical Report UTM-97-512, Universita di
Trento, Dipartimento di Matematica, Trento, Italy, February 1997.
Available via WWW.

30

[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

T. Bui, C. Heigham, C. Jones, and T. Leighton. Improving the perfor-
mance of the Kernighan-Lin and simulated annealing graph bisection
algorithms. In Proceedings of the 26th ACM/IEEE Design Automation
Conference, pages 775-778, 1989.

T. N. Bui and B. R. Moon. Genetic algorithm and graph partitioning.
IEEE Transactions on Computers, 45(7):841-855, 1996.

J. Cong and M. Smith. A parallel bottom-up clustering algorithm with
applications to circuit partitioning in VLSI design. In Proceedings of
the 30th ACM/IEEE Design Automation Conference, pages 755-760,
Dallas, TX, June 1993.

M. Dell’Amico and F. Maffioli. A new tabu search approach to the 0-1
equicut problem. In Metaheuristics 1995: The State of the Art, pages
361-377. Kluwers Academic Publishers, 1996.

W. E. Donath. Logic partitioning. In B. Preas and M. Lorenzetti,
editors, Physical Design Automation of VLSI Systems, pages 65—86.
Benjamin/Cummings, 1988.

C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for im-
proving network partitioning. In Proceedings of the 19th Design Au-
tomation Conference, pages 175-181, Las Vegas, NM, 1982.

J. Frankle and R. M. Karp. Circuit placement and cost bounds by
eigenvector decomposition. In Proceedings of the IEEE International
COnference on Computer-Aided Design, pages 414-417, 1986.

J. Garbers, H. J. Promel, and A. Steger. Finding clusters in VLSI
circuits. In Proceedings of the IEEE International Conference on
Computer-Aided Design, pages 520-523, Santa Clara, California, Nov.
1990.

M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NP-
complete graph problems. Theoretical Computer Science, 1(3):237-267,
1976.

M. K. Goldberg and M. Burstein. Heuristic improvement technique for
bisection of VLSI networks. In Proceedings of the IEEE International
Conference on Computer Design, pages 122-125, Port Chester, NY,
1983.

31

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

L. Hagen, D. J.-H. Huang, and A. B. Khang. On implementation choices
for iterative improvement partitioning algorithms. IEEE Transactions
on Computer-Aided Design, in press.

L. Hagen and A. B. Kahng. Fast spectral methods for ratio cut parti-
tioning and clustering. In Proceedings of the IEEE International Con-
ference on Computer-Aided Design, pages 10-13, 1991.

L. Hagen and A. B. Kahng. A new approach to effective circuit clus-
tering. In Proceedings of the IEEE/ACM International Conference on
Computer-Aided Design, pages 422-427, Santa Clara, California, Nov.
1992.

K. M. Hall. An r-dimensional quadratic placement algorithm. Man-
agement Science, 13(2):311-329, 1970.

D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon. Op-
timization by simulated annealing: An experimental evaluation; Part
I, graph partitioning. Operations Research, 37(6):865-892, November-
December 1989.

B. Kernighan and S. Lin. An efficient heuristic procedure for par-
titioning graphs. The Bell System Technical Journal, 49(2):291-307,
February 1970.

S. Kirkpatrick. Optimization by simulated annealing: Quantitative
studies. Journal of Statistical Physics, 34:975-986, 1984.

S. Kirkpatrick, C. Gelatt, and M. Vecchi. Optimization by simulated
annealing. Science, 220:671-680, 1983.

B. Krishnamurthy. An improved min-cut algorithm for partitioning
VLSI networks. IEEE Transactions on Computers, C-33:438-446, 1984.

M. Laguna, T. A. Feo, and H. C. Elrod. A greedy randomized adaptive
search procedure for the two-partition problem. Operations Research,
42(4):677-687, July-August 1994.

J. Marks, W. Ruml, S. M. Shieber, and J. T. Ngo. A seed-growth heuris-
tic for graph bisection. In R. Battiti and A. A. Bertossi, editors, Pro-
ceedings of the Workshop on Algorithms and Ezperiments (ALEX98),
February 1998.

32

[25] J. Marks, S. M. Shieber, and J. T. Ngo. A stochastic search technique
for graph bisection. Technical Report TR94-18, MERL—A Mitsubishi
Electric Research Laboratory, Cambridge, MA, November 1994.

[26] T.-K. Ng, J. Oldfield, and V. Pitchumani. Improvements of a mincut
partition algorithm. In Proceedings of the IEEE International Confer-
ence on Computer Design, pages 470-473, Santa Clara, CA, 1987.

[27] Y.-C. Wei and C.-K. Cheng. A two-level two-way partitioning al-
gorithm. In Proceedings of the IEEE International Conference on
Computer-Aided Design, pages 516-519, Santa Clara, CA, Nov. 1990.

[28] Y.-C. Wei and C.-K. Cheng. Ratio cut partitioning for hierarchical
design. IEEE Transactions on Computer-Aided Design, 10(7):911-921,
July 1991.

33

