Stochastic Approximation Algorithms
for Number Partitioning

Wheeler Ruml

April 12, 1993



Abstract

This report summarizes research on algorithms for finding particularly good
solutions to instances of the NP-complete number-partitioning problem.’
Our approach is based on stochastic search algorithms, which iteratively
improve randomly chosen initial solutions. Instead of searching the space
of all 2"~! possible partitionings, however, we use these algorithms to ma-
nipulate indirect encodings of candidate solutions. An encoded solution is
evaluated by a decoder, which interprets the encoding as instructions for
constructing a partitioning of a given problem instance. We present sev-
eral different solution encodings, including bit strings, permutations, and
rule sets, and describe decoding algorithms for them. Our empirical results
show that many of these encodings restrict and reshape the solution space
in ways that allow relatively generic search methods, such as hill climbing,
simulated annealing, and the genetic algorithm, to find solutions that are
often as good as those produced by the best known constructive heuristic,
and in many cases far superior. For the algorithms and representations we
consider, the choice of solution representation plays an even greater role in
determining performance than the choice of search algorithm.

' This work was undertaken with help from Stuart Shieber, Joe Marks, and Tom Ngo.
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1 Introduction

This report describes original research on techniques for finding good so-
lutions to instances of the NP-complete number-partitioning problem.? In
this combinatorial optimization problem, one is given a set of numbers, and
asked to partition them into two sets, such that the sums of the numbers
in each set are as close as possible to equal. Although there already ex-
ists an efficient approximation algorithm, due to Karmarkar and Karp, for
constructing solutions that are close to optimal, it is non-stochastic and
always yields the same solution for any given problem instance. We have
investigated the use of stochastic algorithms, which attempt to find a good
solution to a given problem instance by using a search procedure that de-
pends, to a limited extent, on random numbers. Our hope is that, while
it may not always find a good solution, a stochastic algorithm may be run
many times using different random seed values, possibly yielding a better
solution on one of its runs than one could obtain by the non-stochastic
Karmarkar-Karp method.

Stochastic algorithms are typically based on an exploration of the solu-
tion space rather than the direct construction of a solution. Unfortunately,
the size of the solution space for the number-partitioning problem is ex-
ponential in the size of the problem instance, and very few of the possible
solutions are good ones. Directly searching the solution space is therefore
quite inefficient.

At the center of our approach is the idea of an encoding of a solution
to a given problem instance (see figure 1 for a schematic diagram). Instead
of manipulating partitions directly, many of the algorithms we have tested
manipulate an encoding structure, such as a permutation of (1,...,n). An
encoding can be interpreted by a decoding algorithm to yield a solution
for the given problem instance. A permutation, for instance, can serve as
instructions to a greedy decoding algorithm, which would construct a par-
titioning by considering instance numbers in the order specified by the per-
mutation, and adding each to the partition with the currently lowest sum.
In this way, every permutation encoding specifies a particular partitioning.
An evaluation of that partitioning is then used by the search algorithm as
a score for the original encoding structure. Guided by these scores, the al-
gorithm explores the space of all encodings, which may differ substantially

?This work was undertaken with help from Stuart Shieber, Joe Marks, and Tom Ngo;
see page 73.



2 2 NUMBER PARTITIONING
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Figure 1: A schematic diagram of our approach to stochastic optimization.
A search algorithm manipulates encodings via operators, guided only by
evaluations of the partitionings made by decoding the encodings.

in size and structure from the space of all partitionings. By using the en-
coding structures to construct an especially rich and smoothly structured
search space, we hope to enable stochastic algorithms to find solutions that
are competitive with those produced by the specialized Karmarkar-Karp
algorithm without groping blindly through the desert of all 2”1 possible
partitionings.

We have constructed six different encoding structures for the number-
partitioning problem, and tested each with at least five different stochastic
search algorithms. Note that these algorithms, unlike the Karmarkar-Karp
algorithm, are general-purpose methods which explore a solution space,
guided only by the quality of the solutions that have been seen so far. As
such, they are readily adaptable to different problems.

Our results affirmn that algorithm performance is fundamentally based on
the representation space being explored, and they show that a good choice of
encoding representation can raise the performance of a stochastic algorithm
up to or beyond the level of the Karmarkar-Karp algorithm.

2 Number Partitioning

2.1 The Problem

Precisely, an instance of number-partitioning consists in a finite set A and
a magnitude m(a) € [0, 1] for each a € A. The optimal solution s to a given
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problem instance (A, m) is a subset A’ C A such that the difference

cost(s) = | z m(a) — Z m(a)|

acA’ acA—A'

is as small as possible.? Karmarkar et al. [10] have shown that the median of
the distribution of expected costs of optimal solutions shrinks in O(y/n/2").

Number-partitioning can be understood as the optimization problem im-
plied by the classic NP-complete PARTITION decision problem (sP12, p. 223
in Garey and Johnson [2]). PARTITION merely asks if it is possible, given a
problem instance (A, m), to form a subset A’ C A such that

Z m(a) = Z m(a).

acA’ acA—-A!

It was shown to be NP-complete by transformation from three-dimensional
matching (3DM) in Karp’s seminal 1972 paper on NP-completeness [11],
and has become popular as the target of transformations from problems in
network design, storage and retrieval, scheduling, and mathematical pro-
gramming (see table 1 for examples). Garey and Johnson rank PARTITION
among the six quintessential NP-complete problems. They also explain how
the decision problem can be solved in “pseudo-polynomial time” by dynamic
programming (that is, in polynomial time if the input values are bounded).
Unfortunately, we do not know of any such algorithm for finding optimal
solutions.

Since many problems reduce to PARTITION, a fast approximation algo-
rithm for it has many applications. Besides obvious problems in scheduling
and mathematical programming, partitioning finds practical application in
cryptography [13]. With a problem instance serving as a lock, a perfect
partitioning (i.e., cost(s) = 0) is an easily verifiable key.

2.2 Previous Work

2.2.1 The Karmarkar-Karp Algorithm

The Karmarkar-Karp algorithm [9] is an efficient approximation algorithm
for constructing good solutions to instances of number-partitioning. The
algorithm, also known as the “difference method,” works by constructing a
tree, and then coloring it:

3 Although we have specified the task of dividing the instance numbers into two parti-
tions, all of the algorithms and representations that we consider are easily applied to the
problem of partitioning into an arbitrary number of subsets.
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Problem Code
Bin Packing ... SR1
Expected Retrieval Cost .......... ...t SR4
Knapsack ... ... i MP9
Continuous Multiple Choice Knapsack ............. MP11
Subset Sum ... sp13
Minimum Sum of Squares ................. . oo sp19
K™ Largest M-tuple ...........cccociiiiiiieiiiii. sp21
Shortest Weight-Constrained Path .............. ... ND30
Sequencing to Minimize Tardy Task Weight ....... ss3
Multiprocessor Scheduling ......................... Ss8
Scheduling to Minimize Weighted Completion Time  $s13
Open-Shop Scheduling .......... ... . ... ... ... ss14
Production Planning ......... ... ... ... L. ss21
Randomization Test for Matched Pairs ............ Ms10

Table 1: Important NP-complete decision problems which are reducible to
PARTITION and which have corresponding optimization problems which are
reducible to number-partitioning. The codes identify the problems’ entries
in Appendix A of Garey and Johnson.
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1. (Initialization) Each instance number is assigned a node. Each node is
assigned the value of its corresponding instance number, and declared
to be “live.”

2. (Build tree) While more than one node is “live,” repeat the following:

(a) (Pick nodes) Pick the live node u with the greatest value, and the
live node v with the second greatest value. Note that this step
resembles the heart of a “greedy” algorithm.

(b) (Connect nodes) Construct an edge between u and v. This rep-
resents the decision to put the two instance numbers in different
partitions.

(¢) (Take difference) Declare v “dead,” and subtract the value of v
from the value of u. This new value for u represents the differ-
ence between the partitions specified by the attached tree of dead
nodes.

3. (Make partition) The last live node is the root of a tree. Two-color
this tree to create the partitions. The value of the last live node is the
difference between the partitions.

The algorithm can be implemented to run in O(nlogn) time, and a simpler
variant has been shown to construct solutions with an expected difference of
O(1/n®1°8™) o > 0. Although this can be much greater than the expected
optimum (O(y/n/2")), it is much less than the expected difference of results
of any comparable heuristic algorithm.

2.2.2 Comparisons with Simulated Annealing

The Karmarkar-Karp algorithm seems formidable competition for a stochas-
tic algorithm. In their extensive empirical work on simulated annealing,
Johnson et al. [5, 6] compare the performance of a stochastic simulated
annealing algorithm (see section 3.3) to that of the Karmarkar-Karp algo-
rithm. Johnson et al. choose number-partitioning as a hard test problem for
simulated annealing because of the great range of possible solution values,
the scarcity of good solutions in the space of all partitionings, and the high
performance of the competing Karmarkar-Karp algorithm.

Using a well-designed simulated annealer searching through the space
of all 2"~ possible partitionings, Johnson et al. show that both local opti-
mization (see section 3.2) and simulated annealing take about 50,000 times
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as long as the Karmarkar-Karp algorithm to find a comparable solution to
a given 100-element instance, and much longer for larger instances.

Johnson et al. conclude with the observation that the size and structure
of the representation space is the critical issue that limits the performance
of the stochastic algorithm:

The major challenge is that of devising a suitable and effec-
tive neighborhood structure. ... There remains the question of
whether some other neighborhood structure for the problem ...
might prove more amenable to annealing. ([6], pp. 400, 405)

It is this question of neighborhood structure that we have investigated.

2.2.3 A Genetic Algorithm for Number Partitioning

Encodings for problem solutions and operations on these encodings form the
central focus of research on genetic algorithms, a popular stochastic opti-
mization method (see section 3.4). Jones and Beltramo of General Motors
have compared two encodings for number-partitioning and several different
operators on these encodings [7]. Using a test problem of length thirty-four
partitioned into ten disjoint subsets, one of their representations (permuted
lists with a greedy decoder and pmx crossover, see section 6.6) enabled a
genetic algorithm to approach the known optimum quickly. When manipu-
lating partitions directly, however, their genetic algorithm converged to very
poor solutions.

Although their results are encouraging, Jones and Beltramo do not com-
pare the performance of their genetic algorithm against other competitive
search methods, nor do they test its ability on larger problem instances.

3 Algorithms

In order to compare different encoding representations for number-parti-
tioning without bias in favor of one particular stochastic algorithm, we have
implemented several. Each algorithm depends upon the notion of moving
through a space of solutions, usually starting from a random initial solution
and proceeding via an operator that yields a random neighbor of a given
solution. Note that since our algorithms manipulate an indirect encoding,
an extra decoding step is necessary to form a solution to the given problem
instance. When we refer to the cost of an encoded solution, we actually mean
the difference between the partitions in the decoded solution. This usage is
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sound because all the decoders we have investigated are non-stochastic and
yield a unique solution for any given encoding.

3.1 Random Generate-and-Test

The simplest stochastic optimization algorithm is to generate a specified
number of randomly chosen solutions and return the best one. We used this
algorithm as a benchmark for others. It also gives a good indication of the
density of good solutions in the space induced by a given representation.

3.2 Local Optimization

In local optimization, also known as ‘hill climbing,” one starts with a ran-
dom solution and attempts to improve upon it by looking at its immediate
neighbors. Our local optimizer can be sketched as:

1. (Initialize) Pick a random solution s.
2. (Loop) For a specified number of iterations, repeat the following:

(a) (Get neighbor) Apply an operator to s, yielding one of its neigh-
bors, s'.

(b) (Test and replace) If cost(s’) < cost(s) (i.e., s’ represents a better
solution than s), replace s with s’.

3. (End) Return the current solution s.

Note that this differs from some implementations of ‘gradient descent’ in
which all neighbors s’ of s are tested, and s is replaced by its best neighbor.
Due to the large number of neighbors induced by some of our representations
and operators, our algorithm does not follow the ‘steepest’ route to the
optimum, but rather takes the first improvement it can find.

While performing well for many problems in which the evaluation of
solutions follows a monotonic path from any point to the optimum, local
optimization does notoriously badly on problems that have many local op-
tima. If all neighboring solutions have a higher cost, local optimization will
not find any other optimum, even if it is nearby and substantially better.
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3.3 Simulated Annealing

Simulated annealing attempts to circumvent the poor behavior of local op-
timization by allowing occasional moves to neighboring solutions that are
worse than the current one. The algorithm takes its name from an anal-
ogy with a process in physical chemistry, in which a liquid is more likely to
crystallize in its minimum energy configuration if it is cooled, or ‘annealed,’
very slowly [8]. The cost of a solution is considered to be analogous to
the energy level of a particular configuration, and a variable ¢, representing
temperature, controls how likely a move to a worse solution will be. Typ-
ically, annealing algorithms follow a ‘schedule’ of decreasing temperatures.
At first, almost any move will be tolerated, but as ¢t decreases, only moves to
neighboring solutions that are better or only slightly worse will be allowed.
Some implementations of simulated annealing exhibit values for ¢ at which
‘phase transitions’ occur, when moves to positively bad solutions are pro-
hibited but relatively small uphill climbs are still forgiven, thus promoting
rapid improvement while giving the search resistance to local minima.
There are many variations of this basic annealing method. Our im-
plementation follows that of Johnson et al., and depends mainly on three
parameters: nit-prob, the desired probability of accepting a random move
at the starting temperature, temp-length, the number of moves to attempt
at any given temperature, and temp-factor, which controls how fast the
temperature should be lowered. The algorithm proceeds like this:

1. (Initialization) Pick a random solution s.

2. (Find starting t) Set ¢t to a value that yields acceptance of approx-
imately init-prob% of the neighbors of a randomly chosen solution.
(This step can easily be performed separately, and is more accurate if
computed using several random starting solutions.)

3. (Loop) While frozen < maz-frozen, repeat the following:

(a) (Loop at this t) Repeat the following temp-length times:
i. (Find neighbor) Apply a specified operator to s, yielding s’
ii. (Test) If cost(s’) < cost(s), replace s with s’ and reset frozen
to zero.
iii. (Stochastic move) If cost(s’) > cost(s), accept it anyway with
probability e =2/t where A is cost(s’) — cost(s).
(b) (Decrease t) Set t = temp-factor - t.
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(¢) (Check progress) If fewer than min-percent% of moves attempted
at this temperature have been accepted, increment frozen.

4. (End) Return the best solution seen during the run (which may be
different from the solution s at convergence).

During our experiments, the variable maz-frozen was not used. Instead, the
algorithm was run for a specified number of iterations. For the represen-
tations that we have used, those that allow a low init-prob setting of 20%
usually perform better at that low starting temperature than at Johnson et
al.’s recommended setting of 50% (for some representations, including the
one used by Johnson et al., the range of costs of constructible solutions is so
great that the test in step ii succeeds half of the time). Step 2 was performed
beforehand, using a converging binary search evaluating the percentage of
moves accepted at each temperature during 300 iterations of the inner loop
(i iii) for 25 randomly chosen solutions. We used a temp-factor of 0.9 and
a temp-length of between two and sixteen times the number n of elements
to be partitioned.

Simulated annealing has been shown to offer qualitatively better perfor-
mance than local optimization for many problems [5]. It has been proven
that, given an annealing schedule that calls for lowering the temperature ex-
tremely slowly, simulated annealing will find the globally optimum solution.
Unfortunately, such a slow schedule can mean taking longer than a direct
branch-and-bound computation of the optimum [12]. To speed up simulated
annealing, Johnson et al. recommend spending less time at each tempera-
ture (by lowering temp-length), rather than lowering the temperature faster
(decreasing temp-factor).

3.4 A Genetic Algorithm

Local optimization and simulated annealing both start with a single ran-
dom solution and attempt to improve upon it by looking at its neighbors.
In contrast, a genetic algorithm [4, 3] considers many solutions at the same
time, and allows the construction not only of new solutions that are neigh-
bors of a particular current solution, but also of new solutions that in-
corporate information from two different current solutions. By analogy to
genetics, ‘neighbor’ operators are referred to as ‘mutators,” and operators
that take information from two solutions are called ‘recombination’ opera-
tors, or ‘crossovers.” A typical crossover operator will swap portions of two
encodings, and return the two new hybrids.
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3.4.1 Implementation

The performance of a genetic algorithm depends on many small design de-
cisions, including the process of selecting solutions to operate on and the
policy for deletion of poor solutions. Our genetic algorithm proceeds like
this:

1. (Initialize) Initialize the population set P to contain a specified number
of random solutions.

2. (Loop) For a given number of iterations, repeat:

(a) (Select operator) Choose an operator o from a specified non-
empty set O.

(b) (‘Crossover’) If o takes two arguments, do the following:

i. (Select ‘parents’) Select two solutions s; and so from P. The
probability of selecting a particular solution s; is inversely
related to cost(s;).

ii. (Apply operator) Apply o to s1 and so, producing new solu-
tions s| and sb.

(¢) (‘Mutation’) If the operator o instead takes only one argument,
do the following:

i. (Select parent) Select a solution s from P. As with crossover,
the probability of selecting a particular solution is inversely
related to its cost.

ii. (Apply operator) Apply o to s, producing a new solution .

(d) (Add solutions) For each new solution, if its cost is less than the
cost of the worst member of P, delete that worst member and
add that new solution to P.

3. (End) Return the best solution in P.

This is a ‘steady-state’ genetic algorithm, which guarantees that only the
worst solutions will be replaced, as opposed to a ‘generational” algorithm,
in which all solutions are replaced with every iteration.

In our implementation, each operator has an associated probability p,
of being selected on a given iteration, and each selection of an operator
is made independently. This differs from some implementations, in which a
mutation can only be performed after a crossover. We also attempt to insert
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both solutions that result from a crossover into the population, rather than
picking one arbitrarily. This complicates the relationship between iterations
of the algorithm and the number of solutions evaluated, since two evaluations
are performed during an iteration in which the selected operator o is a
crossover, but it assures that all good solutions produced by a crossover
have the opportunity to be added to the population.

Following Davis [1], we use a linear ranking system for parent selection.
Solutions are ranked by cost, then chosen with a probability inversely related
to their rank. Even if the best solution is much better than the second- and
third-best solutions, it will only be given the same relative preference that
the second-best solution enjoys over the third-best. By selecting solutions
according to their rank, rather than directly by their cost, we hope to avoid
uniquely qualified solutions from being chosen too often at the start of a
run, and to avoid all solutions being weighted evenly when the population
has become uniform towards the end of a run. The selectivity of this parent
selection process is controlled in our algorithm by the parameter rank-factor,
which is zero when all solutions are equally likely to be chosen and one when
the best solution is twice as likely to be chosen as the median solution. For
a solution s € P, where the index of s in a sorted list of all solutions in P is
1, |P| = p, and rank-factor = r, we take the probability ps of choosing s as:

—2r . r+1
= —17
plp—1) P

Ps

To implement this distribution, we need a function to map a random number
in [0,1] to the index of the proper solution. By integrating the previous
equation, we obtain an intermediate formula, the inverse of the one we seek,
which assigns a point n in the interval [0, 1] to each 7, 0 < i < p:

ir i(r +1)
n = - 4+
p(1—p) P

Solving for ¢, we are left with a formula which maps a randomly chosen
number 0 < n < 1 onto the index of the proper solution in the sorted list:

p=1—r4+pr—\p—1\/p—1—=2r+2rp—1r2+pr2 —dprn
2r

7 =

Of course, ¢ must then be truncated to an integer.
To summarize, the parameters of our genetic algorithm include: the size
of the population P, the set of operators O, the probabilities p, of selecting
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each operator o € O, and the selectivity of parent selection, rank-factor.
The results reported here used a population size of 1000 and a rank-factor
of 0.8; empirical testing has shown that these settings achieve a good balance
of population diversity and exploitation of good solutions.

3.4.2 Schema Processing

The notion of the neighborhood space induced around a particular solution
by the action of a particular operator becomes more complicated when one
allows crossovers between two solutions; it is not enough to say that (g) =
n (n—1)/2 different crossovers can occur. Analysis of a genetic algorithm is
usually expressed in its ability to combine pieces of encoding, or ‘schema,’
from two good solutions to form a new, better solution (see [4] for more
detail). Schema processing plays a key role in operator design; if the operator
does not combine useful pieces of solutions, but instead adjoins portions of
the encoding that will not contribute toward lowering its cost, the genetic
algorithm will not be able to construct good solutions.

This has been acknowledged as a fundamental weakness of the genetic
algorithm. While it successfully avoids the local optima which entrap local
optimization, the algorithm cannot construct solutions that require combin-
ing schema that do not perform well separately. Techniques for solving such
‘deceptive’ problems are an active area of research.

3.5 Parallel Local Optimization

In order to assess the effectiveness of the crossover operations so fundamen-
tal to the operation of a genetic algorithm, we also ran the genetic algorithm
without any crossover operators at all. This is very different from local op-
timization, however, because of the genetic algorithm’s process of selecting
promising solutions from a population structure. In this way, a castrated
genetic algorithm, or parallel local optimizer, can remember multiple promis-
ing solutions and balance exploitation of the best solutions currently known
with exploratory operations around other promising solutions.

3.6 Mixed Algorithms

Although the main focus of our work has been to assess the effect of represen-
tation on particular algorithms per se, we also experimented with combining
two or more of our algorithms in order to find the best possible solutions. We
have experimented with using local optimization as a post-processing step
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on results obtained by the random generate-and-test method and the genetic
algorithm. We have also used the solution constructed by the Karmarkar-
Karp heuristic as a starting point for other algorithms.

Because there is often a many-to-one correspondence between encoded
solutions and partitionings of an instance, results from these mixed algo-
rithms can depend on the particular solution in the second algorithm’s rep-
resentation that is chosen to represent the partitioning found by the first
algorithm. We have implemented the most straightforward transformations;
we have not guaranteed that the transformed partition will be encoded in
the most advantageous way for the new algorithm.

4 Implementation

These algorithms were each implemented in ANSI C in a parameterized
manner that separated the details of any particular solution representation
from the essential workings of the algorithms. They were run on a DECsta-
tion 5000/33 (MIPS CPU) under ULTRIX 4.2a (GNU C compiler) and on a
Sun 4m 670 (four Sparc2 CPUs) under SunOS 4.1.3 (Sun ANSI C compiler).
All reported times are scaled to indicate elapsed user-level CPU time on the
DECstation.

Unless otherwise indicated, all results are the geometric mean of 100
runs of each algorithm. Where cost(s;) refers to score of the final solution
of run 7 in a batch of m runs, the geometric mean was computed as:

10" where I = (1/m) Z log( cost(s;)
i=1

Since results tend asymptotically toward zero, this value more closely reflects
their distribution than an ordinary arithmetic mean would.

We used test cases with 100, 200, and 500 elements chosen uniformly
from [0,1). Results are for the 100-element problem unless noted otherwise.
In each instance, numbers were specified to at least five more decimal places
than were necessary to represent the expected difference of an optimal solu-
tion to a problem of that size (see table 2). Since solutions are evaluated by
summing each partition and subtracting the two sums, it is important that
these arithmetic operations be performed with full accuracy. Any round-off
error in the addition will change the computed difference between parti-
tions, possibly even creating or denying a perfect partitioning. To avoid this
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n  digits exp’d cost(seps) exp’d cost(spr) cost(sgpr) cost(Spest)

100 36 7.9e-30 1.0e-4 1.1e-8 1.3e-14
200 65 8.8e-60 5.1e-6 1.3e-10 2.2e-16
500 156 6.8e-150 5.2e-8 6.5e-12 5.1e-19
100 36 7.9e-30 1.0e-4 1.5e-7 1.1e-12
2007 36 0 5.1e-6 1.7e-9 1.1e-14
500t 36 0 5.2e-8 1.5e-12 3.8e-17

Table 2: Attributes of the test instances: length of instance, number of
digits specified, expected optimum, expected Karmarkar-Karp solution («
assumed to be one), actual Karmarkar-Karp solution, best known solution
(found using the algorithms of section 7.1.3). Instances marked ‘t’ corre-
spond to test cases from Johnson et al.

problem, all algorithms were implemented using arbitrary precision integer

arithmetic (the GNU MP library).

Although we attempted to benchmark our algorithms using the test cases
of Johnson et al. [6], our results are incomparable due to the lack of arith-
metic error in our computations.

5 Direct Representation

The first representation to consider is the most straightforward one: the
direct encoding of a partitioning. A solution consists of a list of partition
labels, with the label at position ¢ specifying the partition into which the
sth instance number is to be placed. Since we consider partitioning a given
instance into two partitions, this direct representation ranges over (0,1)"
yielding 2" possible solutions. This is twice the number of possible parti-
tionings because we allow the same partitioning to be labelled in two ways.
Enforcing a regular labelling would not restrict the possible search space, is
expensive to calculate, and has unpleasant effects with mutation operators
(see Jones and Beltramo [7] for an example and empirical results).
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5.1 Operators

We have defined several operators for direct partition encodings. We started
by implementing the “SW}” operators from Johnson et al.:

one-move Creates a new solution by moving one random instance number
to the other partition. The mn neighbors s’ of a solution s are all
solutions such that if s defines a partitioning into disjoint sets A; and
As and s’ defines sets By and By, then A; and By differ by one element,
ie., |A1 — Bl| + |Bl - A1| =1.

The average move cost (|cost(s)—cost(s’)]) is twice the average element
value, namely 2(0.5) = 1, and the smallest possible move cost would
be the value of the least element, or 1/n in the average case.

two-move Moves one element to a new partition and a second distinct el-
ement to a random partition (possibly the one it is already in). Using
our previous terminology, |41 — Bi| + |B1 — A1] < 2. Thus the neigh-
borhood of a given solution is of size n + n(n — 1)/2 = (n? +n)/2,
much larger than for the one-move operator. The smallest possible
move would be the difference between the two smallest elements, or
(1/n) —1/(n—1) = 1/(n®> — n) = 1/n? on average.

We also considered additional operators, including two crossovers:

two-always-move Always moves two elements to new partitions. Induces
a neighborhood of size n?, with a minimum move cost of 1/n?.

one-swap Swaps the partition labels of two elements, ie, |4} — By| =
|B1 — A1] < 1. Note that the two elements are not required to be in
different partitions. Neighborhood size n? and minimum move cost

1/n?.

one-always-swap Swaps two elements between distinct partitions, such
that |A; — Bi| = |B; — A1| = 1. Neighborhood size n? and minimum
move cost 1/n?.

two-point crossover Given two solutions s; and so, swaps the partitioning
specified for all instance numbers ¢; through ¢y, where 1 < ¢1,¢0 < n
are chosen at random. The operator creates two new solutions s] and
s5 such that s, = s; except at positions between the two ‘crossover
points’ ¢; and cp. At those positions, the partitioning specified by ¢}
is that of s9, and similarly for s}, (see table 3 for an example).
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s; = 0|1 0 1]1 0
s9 = 1|0 1 1
i = 0]0 1 1]1 0
sh = 1|1 0 1

Table 3: An example of two-point crossover between partitionings. If ‘|’
represents each crossover point, a two-point crossover between solutions s
and s9 will produce solutions s} and sb.

s = 010110
59 10110 1
r =011010
s = 001100
sh =1 10111

Table 4: An example of uniform crossover between partitionings. Using
the random numbers r;, where a value of one specifies a swap, a uniform
crossover between solutions s; and sg will produce solutions s} and sb.

Under two-point crossover, short building blocks of partition specifi-
cations that are clumped together in the encoding are favored over
longer schema that are less likely to be completely reproduced. This
is desirable when the encoding has an implicit structure in which re-
lated parts of a solution are close to one another. Because of this,
we would expect an instance with unordered instance numbers not to
benefit from two-point crossover, while an instance in which numbers
were indexed in sorted order should do better.

uniform crossover Instead of using crossover points, uniform crossover
makes the decision to swap independently for each instance number.
In effect, for each instance number, the partition specified by s} is
chosen randomly between the partitions specified by s; and s (see
table 4 for an example).
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The intent is to allow the reproduction of schema when the relation-
ships between positions in the representation are not known [14]. In
such a case, there is no advantage in encouraging the propagation
of adjacent values in good solutions, and this practice can even be
counter-productive. Instead of exchanging partitioning information
about a group of similarly indexed instance numbers, uniform crossover
exchanges information about randomly chosen instance numbers.

5.2 Results

As Johnson et al. [6] and Jones and Beltramo [7] have already shown, using
stochastic algorithms to manipulate partitions directly is not very effective
(see figure 2).  All algorithms, even the genetic algorithm, which is not
based upon local optimization, converge rapidly to poor solutions, with an
average cost of about le-4. Random generate-and-test does worst, but the
best algorithm, parallel local optimization, does not do significantly better
(about 20% of the parallel local optimization solutions are worse than the
median solution of random generate-and-test).

A comparison of the one-argument mutation operators using local opti-
mization shows that, while the one-move operator does significantly worse
than the others (1.1e-2), the others differ only in the rate at which they con-
verge to the same local minimum (1.8e-4) (see figure 3). This is because of
the significantly higher minimum move cost for the one-move operator. For
any given solution, this operator can at best improve it by 1/n, or 0.01 for
the instance in figure 3. As indicated by the figure, no improvement can be
found once a solution has a cost of 0.01. All other mutation operators have
the same minimum move cost (about 1/n?), and converge to 1/100? = le-4.
They differ only in the size of the neighborhood they induce around a par-
ticular solution and how likely the operator is to find the small improvement
needed. As expected, the two-move operator, which has a smaller neighbor-
hood space than the one-swap and one-always-swap operators, takes much
longer to converge. The one-swap and one-always-swap operators, which
have the same neighborhood size and differ only slightly in how likely they
are to find better solutions, converge at roughly the same rate.

The poor performance of the genetic algorithm is due to the crossover
operators (see figure 4). Those runs of the genetic algorithm that are most
successful are those that use the least crossover, and no crossover seems best
of all (only one-swap mutation). As expected, when crossover is used, the
uniform operator seems to work better than the two-point variant.
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Random Generate-and-Test

Local Optimization

Genetic Algorithm

Simulated Annealing

o Parallel Local Optimization

Karmarkar-Karp

Iterations

Figure 2: Solution cost over time for all algorithms manipulating partitions
directly. All results from stochastic algorithms are the geometric mean of 100

runs. Error bars represent standard deviation. Each curve is identified by a
unique point marker (such as ‘¢’) and dash pattern. Note the horizontal line
at 1.08e-8 representing the solution found by the Karmarkar-Karp algorithm.
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Figure 3: Solution cost over time for the local optimization algorithm using

the direct representation of partitions and many different operators. The
one-move operator does significantly worse than the rest.
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Figure 4: Performance of the genetic algorithm with different crossover op-

erators on an arbitrarily ordered 100-element instance. The lowest curve

represents the genetic algorithm without any crossover at all.
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Surprisingly, an attempt to increase the linkage in the encoding by in-
dexing the instance numbers in sorted order does not seem to help two-point
crossover approach the effectiveness of uniform crossover (figure 5). This
may indicate that the schema reproduced by uniform crossover do not in-
volve instance numbers of similar sizes, but instead specify scattered groups
composed of numbers of many sizes.

Given these expectedly poor results, we concur with Johnson et al. and
Jones and Beltramo that the enormous size of the representation space and
the great variety of possible solutions (n/2 to /n/2" for the average in-
stance) yields a terrain that is just too large and mountainous for a search-
based algorithm.

6 Permuted Lists with Decoders

Following Jones and Beltramo [7], we have defined several representations
based around a permutation of (1,2,..., n). Such a list is manipulated by
operators without reference to its meaning, but then serves as instructions to
a decoding algorithm for constructing a partitioning, usually specifying the
order in which to consider the instance numbers. Each decoding transforma-
tion we define below is many-to-one, and maps the n! possible permutations
to 271 or fewer partitionings.

6.1 Operators

Operators for permuted lists are an active area of research in the genetic
algorithm community; we have merely implemented the most traditional:

one swap This operator returns the permuted list obtained by swapping
the positions of two distinct elements of the given list. This induces
a neighborhood of size n(n — 1) around any permuted list of length
n. Since this neighborhood is defined in the space of permutations,
neighboring solutions may correspond to radically different partition-
ings, depending on the decoder algorithm. Because of this, it is difficult
to generalize about neighborhood structure and move costs under this
operator.

pmx This operator, known as ‘partially matched crossover,’ is an extension
of two-point crossover to permuted lists. As before, the s, are ini-
tialized from the s;. But instead of merely swapping values between
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90% Uniform Crossover

90% Two-point Crossover

50% Uniform Crossover
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t
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Figure 5: The genetic algorithm using the direct representation of parti-
tions and two-point and crossover on a sorted problem instance. Two-point

crossover still does worse than uniform crossover, and both tend to hinder

the progress of the algorithm. The lowest curve represents parallel local

optimization.
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s =9 8 4|5 6 7|1 3 2 10
sg = 8 T 1‘2310‘954 6
s =9 8 4|2 3 10|11 6 5 7
sh = 8 10 1‘56 7‘924 3

Table 5: An example of pmx between permuted lists. If ‘|” represents each
crossover point, pmx between solutions s; and sg will produce solutions s}
and s5. (This example comes from p. 171 of Goldberg [3]).

solutions, which would yield encodings that were not permuted lists,
for all positions ¢y < 2 < ¢y between crossover points ¢; and cs, the
value a in position 7 of s; is transferred to the new solution s, by
swapping a from its current position j in s5) with whatever value b is
at position ¢ in sb. Solution s, will then have a at the proper position
7 and b in position j, where a originated (see table 5 for an example).
Since the transfer of information is accomplished using this swapping
process and not via direct copying, the resulting solutions are said to
be ‘partially determined’ by the originals.

uniform crossover Again, we extend the operation for the canonical repre-
sentation to preserve permuted lists. Starting with s} = s;, we choose,
at every place in the permuted list, whether or not to force the instance
number specified by S,{L?} at that place to match the number specified
in sgo1). If we chose to exchange the information, it is performed just
as with pmx, by rearranging one solution based on information from
the other solution (see table 6 for an example). As in the canonical
case, we hope that this will be effective for an unstructured encoding
and eliminate any bias toward short schema.

6.2 The Splitting Decoder

We have defined several decoding transformations from permuted lists to
partitionings. The splitting decoder follows the most straightforward ap-
proach. Given a permuted list of length n, the first partition A; of the
decoded solution consists of the instance numbers indexed by the first n/2
elements of the permuted list. The second partition As is formed from the
remaining elements. For example, if the permuted list were (1,3,2,4), then
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s =9 84 5 6 7 13 2 10
so = 8 71 2 3 10 9 5 4
r =011 0 1 0 010 1
s = 9 71 10 3 8 4 5 2
s = 7 8 4 2 6 5 9 3 1 10

Table 6: An example of uniform crossover between permuted lists. When
one of the random numbers 7; hold the value one, information is exchanged
at position 7 in the permuted list. A uniform crossover between solutions sy
and sy will yield solutions s} and sb.

the first and third instance numbers would be put in Ay, and the second
and fourth in As.

Given the correct permutation, one can create any partitioning such that
|A1| = |A2], or %(7;}2) = n!/2(n/2)!? different partitionings. Unfortunately,
one has no guarantee that the optimal solution will be ‘balanced’ in this
way. If it is not, an algorithm using the splitting decoder will be unable
to find the global optimum. But given randomly selected instance numbers
such as ours, a random balanced partitioning is more likely to be close to the
optimum than a completely random partitioning. For an average instance,
the worst possible solution constructible by this decoder has a cost of n/4,
as opposed to a cost of n/2 for the worst possible partitioning. The solution
space is smaller as well; the ratio of (n72) to 271 is 2(n!)/2"(n/2)!?, which

1

tends to zero as n increases (for example, 5(15%0) = 5.05¢28 < 6.34¢29 = 299).

6.2.1 Results

The results using permuted lists and the splitting decoder are slightly better
than those for the direct partition representation, but still poor (see figure
6). Methods based on local optimization converge to solutions similar
to those found using partitions directly (1.7e-4). The restricted range of
the decoder is evident, however, in the surprisingly good performance of
the random generate-and-test algorithm. It starts with the expected poor
results, but continues to find better solutions as it runs, surpassing all but
the genetic algorithm after 23,000 iterations. This may be due to the richer
nature of the search space.
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Figure 6: Performance of all algorithms using the permuted list representa-
tion with the splitting decoder. Note the line representing random generate-
and-test, which has the highest value at first, but then surpasses all but the

genetic algorithm.
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Figure 7: The effect of crossover operator and crossover frequency on the
genetic algorithm using the permuted list representation with the splitting
decoder. Uniform crossover does much better than pmx.

When using the genetic algorithm, the uniform crossover operator per-
formed quite well (figure 7). Two-point crossover seemed ineffective, and
performed only as well as parallel local optimization. This is probably due
to the nature of the decoder; information regarding both partitions is more
valuable, and is more likely to be transferred by uniform crossover. Two-
point crossover, on the other hand, is more likely to specify the indices that
should appear at one isolated part of the permuted list, thereby specifying
only part of one partition while ignoring the other.

Using permuted lists with the splitting decoder is certainly more effective
than manipulating partitions directly. But there’s more than one way to
decode a permuted list!
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6.3 The Alternating Decoder

The alternating decoder forms a partitioning by putting the instance num-
bers corresponding to every alternate index in the permuted list in the same
partition. For example, given the permuted list (1, 3,2,4), the first and sec-
ond instance numbers would be put in the same partition. This interleaving
of information about the two partitions should allow a two-point crossover
to work more effectively.

Like the splitting decoder, the alternating decoder can only create bal-
anced partitions, thus restricting the space of possible solutions and lowering
the value of the worst possible solution.

6.3.1 Results

Since only the ordering of information has changed, one would expect results
similar to those of the splitting decoder, with the possible exception of the
genetic algorithm. As figure 8 shows, this representation held no surprises.
As with the splitting decoder, methods based on local optimization fared
poorly, while the random generate-and-test algorithm continued to easily
find better solutions throughout the run.

Using a genetic algorithm, one can see the impact of the rearrangement
of information in the encoding (figure 9). Now that information about both
partitions can be represented in any short schema, two-point crossover will
be able to propagate useful information. Indeed, the genetic algorithm finds
better solutions during the first 30,000 iterations when using pmx crossover
than it does with uniform crossover, although it converges sooner. As with
the splitting decoder, selecting the crossover operator only half of the time
produces negligible results when using a large population of 1,000 solutions,
and the more frequently it is used, the better the results.

As expected, algorithms using permuted lists with the alternating de-
coder find the same quality of solutions as they do using the splitting de-
coder, although the improved performance of the pmx crossover allows the
genetic algorithm to find good solutions faster.

6.4 The Number-Based Splitting Decoder

Although the splitting and alternating decoders improve upon the direct ma-
nipulation of partitions, they impose the arbitrary restriction that solutions
must have the same number of numbers in each partition, ignoring the actual
instance numbers that are being partitioned. The number-based splitting
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Figure 8: Performance of all algorithms using the permuted list represen-
tation with the alternating decoder. As with the split decoded, random

generate-and-test continues to find good solutions, but the genetic algorithm
is the leader.
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Figure 9: Performance of the genetic algorithm using the permuted list

representation with the splitting decoder. Pmx crossover converges faster

than uniform crossover, but uniform continues to improve and eventually

finds slightly better solutions.
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decoder is a variant of the splitting decoder that addresses this need. It cre-
ates a partitioning from a permuted list by adding instance numbers to the
first partition, in the order specified by the permuted list, until their sum
exceeds the ideal partition size. (Since the instance numbers are static, the
ideal partition size can be precomputed as half their sum.) The remaining
numbers are put into the second partition. The instance number that causes
the first partition to overflow is added to whichever partition has a lower
final sum.

The number of different solutions that can be constructed in this way
depends heavily on the problem instance, and cannot be easily quantified.
The cost of the worst possible solution is easily specified, and is equal to
half the largest instance number, or 0.5 on average. For any reasonably sized
problem instance, this is much smaller than n/4, the worst solution cost for
the splitting and alternating decoders. In addition, the optimal solution can
always be constructed by this decoder.

6.4.1 Results

Empirical results show that the solution space is indeed richer (figure 10).
The random generate-and-test algorithm returns solutions with an average
cost of 1.0e-5, as opposed to 6.8e-5 when using the splitting and alternating
decoders. The genetic algorithm finds solutions in the vicinity of 5.2e-6, as
opposed to 2.6e-5 with the previous decoders. As with the split decoder,
uniform crossover is much more effective than pmx.

Simulated annealing also behaves qualitatively differently from before,
when it converged in the same manner as local optimization (figure 11).
Under the number-based splitting decoder, simulated annealing is able to
find solutions that are much better than those found by plain local opti-
mization. This may be because of fewer and less entrenched local optima,
since the worst possible solution is much better under this decoder.

Although we have improved the performance of our algorithms by con-
structing a representation space with fewer poor solutions, none have yielded
solutions that are competitive with those constructed by the Karmarkar-
Karp algorithm. By making the permuted list decoder even more intelligent,
we might hope for better solutions, but at the risk of distancing the decoded
solution even further from the encoded representation that the algorithms
are manipulating.
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Figure 10: Performance of all algorithms using the permuted list represen-
tation with the number-based splitting decoder. Simulated annealing seems
to be able to make progress here.
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Figure 11: Performance of simulated annealing using the direct representa-
tion and the permuted list representation with the splitting, alternating, and
number-based splitting decoders. The algorithm’s behavior is qualitatively
different with the number-based decoder. This graph represents more than
sixteen times as many iterations as those in previous figures.
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6.5 The Greedy Splitting Decoder

The greedy splitting decoder is a greedy version of the number-based split-
ting decoder. The number-based decoder split the permuted list by putting
instance numbers into the first partition until it overflowed, and then putting
the remaining numbers in the second partition. This greedy variant puts
numbers into the first partition until it overflows, as did the previous de-
coder, but it then checks to see if each additional number will fit into the
remaining space in the first partition. Only after such numbers have been
added to the first partition are the remaining ones relegated to the second
partition.

6.5.1 Results

The results of algorithms using the greedy splitting decoder are about an
order of magnitude better than those obtained using the number-based split-
ting decoder (compare figures 12 and 10). The random generate-and-test
algorithm returns solutions with an average cost of 1.2e-6 (versus 1.0e-5),
and local optimization gives results averaging 8.3e-6 (versus 7.3e-5). Qual-
itatively, however, the results are very similar. Single and parallel local
optimization both converge within 20,000 iterations, revealing the presence
of many local optima, while random generate-and-test and the genetic al-
gorithm continue to improve, reflecting the richness of the representation
space. Due to the lack of linkage in the encoding, uniform crossover was
again much more successful than pmx.

The only qualitative difference is in the behavior of the simulated an-
nealing algorithm, which does not improve as quickly during the first 5,000
iterations relative to local optimization as it did using the non-greedy de-
coder. This may be because a random permuted list is more likely to decode
into an acceptable partitioning, thus distracting the algorithm from vigor-
ously exploring one particularly good area of the representation space. In
other words, if almost any solution is good, there is less incentive to discrimi-
nate when the temperature variable is high. Nevertheless, the algorithm does
make steady progress, and eventually succeeds in finding particularly good
solutions (solutions after 500,000 iterations have an average cost of 1.5e-
7; see figure 13).  The solution space is so rich, however, that random
generate-and-test surpasses all other algorithms within 150,000 iterations.
This shows that even the most trivial of search methods can outperform
more sophisticated techniques when using the right representation.
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Figure 12: Performance of all algorithms using a permuted list representa-
tion with the greedy splitting decoder. Qualitatively similar to, although
quantitatively better than, the number-based splitting decoder (compare
with figure 10).
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Figure 13: Long runs of algorithms using a permuted list representation
with the greedy splitting decoder. The results from the random generate-
and-test and simulated annealing algorithms approach the quality of the
Karmarkar-Karp solution.
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The additional heuristic of the greedy splitting decoder does not seem
to significantly hinder any of the stochastic algorithms we have tried, and it
consistently improves the quality of their solutions.

6.6 The Greedy Decoder

While the number-based splitting decoder seems successful, it may be more
complicated than necessary. We have also implemented a plain greedy de-
coder, which just considers the instance numbers in the order in which they
are specified by the permuted list, and adds a given number to the par-
tition with the currently lowest sum. Just as the number-based splitting
decoder is an enlightened variant of the ordinary splitting decoder, so the
plain greedy algorithm could be considered a more flexible version of the
alternating decoder.

The solution space of the greedy decoder is similar to that of the number-
based splitting decoder: the worst solution that can be constructed has a
cost of at most half the greatest instance number, 0.5 on average, and the
optimum is clearly constructible.

6.6.1 Results

The results from algorithms using permuted lists and the greedy decoder
are encouraging (see figure 14). Although random generate-and-test yields
solutions that are comparable on average to the number-based splitting de-
coder (1.1e-5 compared to 1.0e-5 versus 1.2e-6 for the greedy splitting de-
coder), local optimization finds better solutions using this decoder than with
any of the previous ones (3.3e-6 versus 8.3e-6 for greedy splitting). This may
be because the neighborhood space of the greedy decoder is likely to be more
continuous under a one-swap operator that it would be for a more compli-
cated decoder, which induces more interdependencies in the encoding. The
path of a local descent algorithm would thus be smoother and easier to
traverse.

The genetic algorithm does quite well, although crossover does not seem
particularly beneficial (figure 15).  Uniform crossover clearly hinders the
algorithm, but pmx seems be little different from a mutation. Parallel local
optimization, which is a genetic algorithm without crossover, finds solutions
which score, on average, the same as the genetic algorithm with frequent
pmx crossover. Runs using only infrequent pmx crossover produce similar
results on average, but are more consistent and exhibit less variety (i.e.,
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Figure 14: Performance of all algorithms using a permuted list representa-
tion with the greedy decoder. Parallel local optimization does just as well
as the genetic algorithm.
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Figure 15: Performance of the genetic algorithm using a permuted list repre-
sentation with the greedy decoder. No crossover at all seems to be best. Lots
of pmx crossover is almost as good, while any amount of uniform crossover
significantly hinders the algorithm.
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Figure 16: Long runs of algorithms using a permuted list representation with
the greedy decoder. Parallel local optimization and simulated annealing are
able to find solutions better than that constructed by the Karmarkar-Karp
algorithm.

smaller standard deviation).

6.6.2 Long Runs

Although none of these algorithms can quickly and regularly find solutions
that are better than the one constructed by the Karmarkar-Karp algorithm,
both parallel local optimization and simulated annealing can find compa-
rable solutions if given enough iterations (see figure 16).  After 500,000
iterations, 13% of parallel local optimization runs (eight minutes per run)
have found a solution better than the Karmarkar-Karp algorithm’s, while a
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full 20% of simulated annealing runs are superior (six minutes per run). If
one needed a solution better than that of the Karmarkar-Karp algorithm,
five runs of simulated annealing (about half an hour) would suffice. And
since simulated annealing is a search method, one can always run it longer
if one desires a better result.

6.6.3 Large Instances

While the permuted list representation with the greedy decoder allows par-
allel optimization and simulated annealing to compete with the Karmarkar-
Karp algorithm on a 100-element problem instance, the search space induced
by a 200-element problem instance remains beyond their grasp. Both local
optimization and simulated annealing fall far short of the Karmarkar-Karp
solution, showing only limited improvement over the quality of solutions
found for the 100-element problem (figure 17). The slow improvement of
simulated annealing after 125,000 iterations indicates that the algorithm is
progressing on the 200 element problem much as it did in the 100 element
case; implying that even doubling the number of iterations would not yield
a solution close to that found by the Karmarkar-Karp algorithm.

While effective for finding solutions to 100 element instances that are
competitive with those of the Karmarkar-Karp algorithm, it seems that the
permuted list representation is not capable of performing well on larger
problems.

6.7 Summary of Results

Although comparing the performance of various algorithms using a sin-
gle representation has helped elucidate the structure of each representation
space, it is also useful to compare the performance of the same algorithm
using different representations. This makes the differences between the rep-
resentations strikingly apparent.

6.7.1 Representation Spaces

Comparing the performance of simple algorithms in different representa-
tions can give a rough idea of the character of the search space defined by
each. Table 7 compares the performance of the random generate-and-test
algorithm with that of local optimization in each of the representations we
have considered. The value of the worst representable solution in each rep-
resentation gives a relative comparison of the density of good solutions in
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Figure 17: Local optimization and simulated annealing using a permuted list
representation with the greedy decoder on problem instances of size 100 and
200. Neither algorithm is able to improve as much as the Karmarkar-Karp
algorithm relative to its performance on the 100-element instance. Note the
Karmarkar-Karp solution at 1.25e-10.
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representation  random worst sol.  local
direct | 2.04e-4 | n/2 = 50 | 1.76e-4
splitting | 6.94e-5 | n/4 =25 | 1.75¢-4
alternating | 6.60e-5 | n/4 = 25 | 1.30e-4

number splitting | 1.02e-5 0.5 | 7.30e-5
greedy splitting | 1.21e-6 < 0.5t | 8.28e-6
plain greedy | 1.09e-5 0.5 | 3.34e-6

Table 7: The results of the random generate-and-test and local optimization
algorithms using each of the representations we have described (30,000 iter-
ations), and the worst solution possible for an average instance using that
representation. We have not derived the worst solution value for the greedy
splitting decoder (marked with ‘f’).

the representation space (the best possible solution value is that of the op-
timum except in rare cases; recall from section 6.2 that the splitting and
alternating decoders will not be able to construct the optimum solution for
some problem instances). The performance of the random algorithm should
correspond roughly with the density of good solutions in the representation
space, while the results of local optimization may give an indication of how
mountainous the space appears when structured by the simple one-swap op-
erator. Note the similarities between the representation spaces of the split-
ting and alternating decoders, reflected in the density of good solutions and
the performance of the random generate-and-test algorithm. The number-
based splitting and plain greedy decoders are more intelligent versions of
these decoders, and also induce similar spaces. Note that the structure of
similarly sized spaces under the action of the one-swap operator may be
dramatically different; the number-based splitting decoder and the greedy
algorithm perform identically under random sampling, but the interdepen-
dencies inherent in the splitting decoder mean that neighboring permuted
lists may represent very different partitionings. This explains the difference
in performance of local optimization using the two representations.

6.7.2 Random Generate-and-Test

The performance of the random generate-and-test algorithm increased dra-
matically when using a more restricted search space (figure 18). The algo-
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Figure 18: Performance of the random generate-and-test algorithm using

many different representations. Note the algorithm’s quick convergence

when manipulating partitions directly.
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Figure 19: Performance of local optimization using many different represen-

tations.

rithm found remarkably similar solutions using the alternating and splitting
decoders; this is probably due to the similar densities of their solution spaces.
Similarly, results using the number-based splitting decoder and the plain
greedy decoder were the same. Random generate-and-test was particularly
effective using permuted lists and the greedy splitting decoder.

6.7.3 Local Optimization

As expected, local optimization algorithm was easily trapped in local op-

tima in every representation (figure 19).

In contrast to the behavior of

random generate-and-test, local optimization performed better using the
plain greedy decoder than the greedy splitting decoder, perhaps because
of the smoother nature of the neighborhood space under the one-swap op-
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Figure 20: Performance of parallel local optimization using many different
representations.

erator. When using the greedy splitter decoder, a swap operation in the
permuted list may easily move many instance numbers between partitions.

6.7.4 Parallel Local Optimization

In general, a representation’s performance under parallel local optimization
was an exaggerated caricature of its behavior under ordinary local opti-
mization, with all representations doing slightly better (figure 20).  The
permuted list representation with the plain greedy decoder and the index
rules representation performed particularly well, while again, the greedy
splitting decoder fared relatively poorly. While more robust than its ances-
tor, due to the simultaneous exploration of multiple solutions, the parallel
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Figure 21: Performance of simulated annealing using many different repre-
sentations.

variant of local optimization cannot avoid local optima, due to its lack of
crossover. The overhead of population management in our implementation
(approximately 15 20% of running time) means that parallel optimization
is justified only for the plain greedy decoder; other representations may be
better served by two runs of standard local optimization.

6.7.5 Simulated Annealing

The simulated annealing algorithm was able to overcome local optima and
perform better than local optimization for all representations, but was still
limited by the relative densities of the search spaces and, to a lesser extent,
by the structure of the spaces (figure 21). For the direct representation
and the splitting and alternating decoders, simulated annealing quickly con-
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verged to solutions slightly better than those found by local optimization.
Despite these gains over plain local optimization, however, annealing does
not do as well with these representations as parallel local optimization (refer
back to figure 20). Using the greedy variants of these decoders, the greedy
splitting decoder and the plain greedy decoder, simulated annealing does
qualitatively better than local optimization, but, with the plain greedy de-
coder, still only marginally better than parallel local optimization. These
results show the importance of the structure of the representation space; in a
smoother search space, local search from multiple points has a large chance
of finding a good solution despite the remaining local minima. The rough-
ness of the space induced by the greedy splitting decoder is even evident in
the progress of the simulated annealing algorithm; it often gets stuck briefly
in local optima.

6.7.6 The Genetic Algorithm

Contrary to what one might expect, the genetic algorithm performed the
worst when using the representations whose encodings are interpreted most
literally, and performed the best using the greedy decoders, for whom the
relationship between encoding and solution is the loosest (figure 22). The
disruptive process of crossover seems to work best when the representation is
more robust, such as a permuted list with a greedy decoder. Such forgiving
decoders may help smooth the search space, since they are able to construct
good solutions from a large percentage of the possible encodings.

6.8 Seeded Algorithms

By changing the representation used by our search methods, we have been
restricting their exploration to productive areas of the space of partitionings.
An even easier way to focus a search algorithm on a promising area of the
search space is to start it at a solution known to be good. We have tried
seeding some of the more successful algorithms and representations with
initial solutions found by other search algorithms or constructed by a simple
sorting procedure.

6.8.1 Local Optimization

Using the permuted list representation with the plain greedy decoder, which
performed well under local optimization, we experimented with using local
optimization as a post-processor. Using permuted lists and the plain greedy
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Figure 22: Performance of the genetic algorithm using many different repre-
sentations. Only results using the most effective crossover operator for each
representation are shown.
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decoder and seeding with best of 1,000 random solutions, the algorithm
did little better than when started from a randomly chosen solution. This
shows that the benefits of parallel local optimization do not come merely
from starting with access to better than average initial solutions, but from
exploring multiple points simultaneously, and allotting exploration time for
each solution according to its current performance.

When started with the output of 30,000 iterations of the genetic algo-
rithm, local optimization made small improvements to the seed solutions,
but no significant discoveries. The failure of local optimization as a post-
processor for the genetic algorithm shows that our implementation is effec-
tive at local optimization, as well as global search.

We also tried seeding local optimization with a permuted list that pre-
sented the instance numbers to the decoder in sorted descending order
(analogous to our experiments with the direct representation and sorted
instance numbers). As expected, the number-based splitting decoder per-
formed worse when given this starting solution, and the greedy-splitting
decoder did somewhat better (see figure 23).  The plain greedy decoder
gave the same results with and without the sorted initial solution, as did its
cousin, the alternating decoder. Overall, seeding local optimization with a
sorted permuted list was not particularly effective.

And, as expected, dozens of runs of 30,000 iterations of local optimiza-
tion using permuted lists and many different decoders failed to find any
improvements to the Karmarkar-Karp solutions.

6.8.2 Simulated Annealing

Using the plain greedy decoder, we have experimented with seeding the
simulated annealing algorithm with the solution found by the Karmarkar-
Karp algorithm. We used a low starting temperature (init-prob = 0.2) so
that only moves to other good solutions will be accepted, and lowered the
temperature slowly (temp-factor = 0.95) so that the algorithm would still
have time to explore. Although a graph of the algorithm’s progress looks no
different than before, it does search the area around the Karmarkar-Karp
solution more than usual, as the final results were quite good (8.82e-9 vs.
3.96e-8). Only 10% more runs than usual found solutions better than the
Karmarkar-Karp solution, though, so multiple runs are still necessary in
order to guarantee a superior solution.
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Figure 23: Performance of local optimization using permuted lists and many
different decoders, each seeded with a permuted list representing the sorted
instance numbers. Note the decreased performance of the number-based
splitting decoder, and the increased performance of the greedy splitting
decoder.
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7 Difference Rules

Although the algorithms and representations of the previous section can find
solutions that are superior to those produced by the Karmarkar-Karp algo-
rithm, they take significantly longer. Although this is a less significant prob-
lem each year (machines become faster geometrically), it still makes these
techniques impractical for some applications. The following representations
take a different approach than those based on permuted lists. Instead of us-
ing a decoder based on a greedy algorithm creating partitions, the following
representations are based directly on the Karmarkar-Karp algorithm.
Johnson et al. claim that the Karmarkar-Karp algorithm is “not based
on local optimization or neighborhood structure at all,” and cites this as an
advantage of the algorithm over a simulated annealer working with repre-
sentations of partitions ([6], p. 401). Instead, we have chosen to consider
the Karmarkar-Karp algorithm as a greedy algorithm that operates on pairs
of instance numbers to be placed in different partitions (see page 3 for a re-
view of the algorithm). By thinking of sets of these pairs as instructions to
the greedy algorithm, one can transform the deterministic Karmarkar-Karp
algorithm into the decoder for a stochastic search procedure. We have con-
sidered three different ways of encoding these instructions, corresponding to
different structurings and restrictions on the space of instructions.

7.1 Index-Based Difference Rules

This encoding represents each pair of numbers as a pair of indices into list of
‘live’ nodes sorted by node value. The ordinary behavior of the Karmarkar-
Karp algorithm would then be represented as pairs of zeros. Since one node
remains live at the end of the procedure and there is no choice of nodes for the
last difference operation, there are (n — 2) pairs of indices, with the indices
in the pair in position 7 assuming values in [1,(n — ¢+ 1)] and [1, (n — 7)].
The representation space is very large, at O(n?) possible encodings.

7.1.1 Operators

We have defined operators for this representation that are analogous to those
we have used previously:

pair-mutate Given one solution, sets both indices in a randomly chosen
rule to random legal values.
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s1 = (,)‘(0,3) (3,1) (10)‘(00) (2,1)
s2 = (5,1)](3,2) 24 (0,131 (1,1
sy = (572)‘(3,2) (2,4) (0, 1)‘(0 0) (2,1)
sh (5,1) (0,3) (3,1) (1,0)|(3,1) (1,1)

Table 8: An example of two-point crossover between difference rules. If ‘|’
represents each crossover point, a two-point crossover between solutions s
and s9 will produce solutions s} and sb.

s1 = (5,2) (0,3) (3,1) (1,00 (0,0) (2,1)
s2. = (5,1) (3,2) (2,4) (0,1) (3,1) (1,1)
r = 0 1 1 0 1 0

s1o= (52) 3,2 (24 (1,00 (3,1) (2,1)
sy = (5,1) (0,3) (3,1) (0,1) (0,0) (1,1)

Table 9: An example of uniform crossover between difference rules. Using
the random numbers r;, where a value of one specifies a swap, a uniform
crossover between solutions s1 and sz will produce solutions s} and sb,.

two-point crossover Given two solutions s; and so, exchanges all rules
between two randomly chosen but distinct indices. The resultant so-
lutions 8'1 and 5'2 differ from the s; only at locations ¢ for ¢; < 7 < c¢a,
at which sgj 2) = s(91}. See table 8 for an example.

uniform crossover Given two solutions, swaps their corresponding rules
at randomly chosen locations. Each location has a 50% chance of being
chosen. See table 9 for an example.

7.1.2 Results

Due to the enormous number of solutions, only those methods based on
local optimization are able to perform well using this representation (see
figure 24). (Unfortunately, we were unable to try simulated annealing us-
ing the representations based on difference rules due to the extraordinary
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amount of computer time that would be required using our hardware and
implementation.) The genetic algorithm fared equally poorly against par-
allel local optimization using each type of crossover. This may be because
of interdependencies in the rules. For example, if a rule at the beginning
of the encoding is changed, then the new value of the node remaining after
the differencing step the rule specifies will probably be different. Because
that node will be inserted in a different place in the ranked list of live nodes,
other nodes will have different indices in that list than they would have had
otherwise. This will change the meaning of all the rules in the encoding
coming after the one which was mutated. While local optimization will per-
form only one mutation, a crossover will change many rules at once, causing
even more of the previous rules to change their meaning. It may be this
radical disruption that hinders the progress of the genetic algorithm.

In the case of local optimization, these interdependencies become an ad-
vantage. Combined with the large size of the representation space, they
allow the algorithm to always find a way out of a potential local minimum.
But for any other algorithm, the representation space of index-based differ-
ence rules seems too big and discontinuous to allow an effective search.

7.1.83 Seeding

As with permuted lists, we have conducted limited experiments with seed-
ing the local optimization algorithm with the Karmarkar-Karp solution, this
time represented using index-based difference rules. Since the decoder for
this representation is a generalization of the Karmarkar-Karp algorithm,
the Karmarkar-Karp solution is particularly easy to represent (all indices
are zero, each differencing operation will involve the two greatest numbers).
Since parallel local optimization performed better than the standard algo-
rithm in our unseeded experiments, we have run both. Results (shown in
figure 25) are excellent. When seeded with the Karmarkar-Karp solution
for a 100-element problem, local optimization is able to improve on it by
two orders of magnitude within 2,000 iterations (27 seconds), and almost
three when given 30,000 iterations (seven and a half minutes). On a 500-
element instance, the improvement is even more dramatic: four orders of
magnitude within 3,000 iterations (nine and a half minutes). Parallel local
optimization takes a few thousand iterations to saturate its population with
mutations of the Karmarkar-Karp solution, but then makes quick progress,
overtaking local optimization after 20,000 iterations. Similar results have
also been obtained for additional problem instances. The behavior of these
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mixed algorithms is encouraging. Although they make great progress within
the first 5,000 iterations, they often do not converge to a local minimum even
after 30,000 iterations. They also seem to give results which decrease faster
in relation to problem size than those of the Karmarkar-Karp algorithm.
The space of difference rules may be unmanageably large for an unguided
algorithm, but its structure seems to put excellent solutions within reach of
local optimization when it is started from a good solution.

7.2 Weighted Index-based Difference Rules

Although productive, the search space of index-based difference rules is large
and discontinuous. To help restructure the space and focus algorithms on
the area around the Karmarkar-Karp solution, we have defined operators
that use a skewed probability distribution for choosing indices. If r is a
random number chosen from a uniform distribution on [0, 1] and m is the
maximum legal value for a particular index, then the corresponding index is
defined by r*m. This distribution is used when creating random solutions.
When mutating a given index, if its current value is non-zero, its next value
is chosen by the same distribution, otherwise its next value is chosen as
1+ 73(m—1), to assure a different new value. This weighting scheme makes
low indices much more likely (32% zeros under r*m, 21% ones under 1 +
r3(m—1)), and should help focus algorithms on what we would consider the
more productive areas in the search space.

7.2.1 Results

Results using these weighted operators are, in general, a full two orders of
magnitude better than those obtained with a uniform distribution of indices
(see figure 26). The random generate-and-test algorithm does much better
than before, indicating that the reshaping of the solution space is successful.
As before parallel local optimization is the most effective algorithm, while
the genetic algorithm fares poorly with both pmx and uniform crossover.

7.2.2 Seeding

While still very effective, seeding is not quite as successful with the weighted
representation as it was previously (see figure 27). It seems that once an
algorithm has found a good region of the search space, no pressure need be
exerted to focus its attention there, and indeed, such restrictions can hinder
its discovery of good solutions.
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7.3 Single-Index Difference Rules

A more direct way of focussing the search of our stochastic algorithms is
to decrease the size of the representation space. (In contrast to our exper-
iments with permuted lists, we are now using a fixed decoder and limiting
the search space by restricting the representation and its operators.) We
have implemented a single-index difference rules representation, which func-
tions exactly as our previous weighted index-based difference rules encoding,
except that only one number in each difference pair is specified by a partic-
ular solution; the other number of each pair is assumed to be always zero,
referring to the currently greatest ‘live’ node.

7.3.1 Results

As with the weighting of operators, this further restriction of the search
space improves the performance of the search algorithms (see figure 28). In
general, results were about one order of magnitude better than the weighted
index-rules representation (about three orders of magnitude better than the
original unrestricted version). Even without seeding, all algorithms quickly
find solutions better than that found by the Karmarkar-Karp algorithm.
Local optimization performs worse than before, perhaps due to the smaller
search space and a reduction in the effects of rule interdependence (recall
section 7.1.2). The genetic algorithm again fares poorly, although it shows
signs of continued gradual improvement when using uniform crossover.

7.3.2 Seeding

Again, seeding standard and parallel local optimization was very effective
(see figure 29). Parallel local optimization does particularly well relative
to the standard algorithm.

8 Prepartitioning

While difference rules representations modify the inner workings of the
Karmarkar-Karp algorithm in order to produce a solution by specifying the
numbers to difference, the prepartitioning representation works by changing
the input to the algorithm. A solution consists in a list of n labels, each
of which specifies a ‘prepartition’ into which the corresponding instance
number is to be put. Up to n different prepartitions may be specified,
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Figure 28: Performance of all algorithms using the single-index difference
rules representation.
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yielding a representation space of size n" (much larger than the others we
have considered). The sums of the prepartitions are then used as instance
numbers for a new instance of number-partitioning, and given as input to
the Karmarkar-Karp algorithm, which, in effect, treats each prepartition as
a block of numbers to be kept in the same partition. Its solution to the
problem of partitioning the prepartitionings can then be used to produce a
partitioning for the original instance numbers. While the Karmarkar-Karp
algorithm can only construct one solution to any given instance, preparti-
tioning attempts to transform a given instance of number-partitioning into
another equivalent problem that can be solved better.

8.1 Operators

We have defined the same one-swap mutator, two-point crossover, and uni-
form crossover as with the direct representation of partitionings (recall sec-
tion 5.1). The only difference is that instead of ranging over (0,1)", the
encoding now has n possible target partitions and so ranges over (1,...,n)".

8.2 Results

Although prepartitioning is perhaps the simplest technique we have con-
sidered, after the direct representation of partitionings, it performs the best
(see figure 30). Note that, given a perfectly uniform distribution of random
numbers, a random prepartitioning solution will put each number in its own
prepartition, thereby constructing the Karmarkar-Karp solution. This ex-
plains the excellent performance of the random generate-and-test algorithm,
which rapidly finds solutions of a quality similar to those of parallel local
optimization. As with other representations based on the Karmarkar-Karp
algorithm, the genetic algorithm makes little progress with either crossover.

8.3 Seeding

Results from seeding standard and parallel local optimization are poor com-
pared to those of the difference rules representations (see figure 31). Local
optimization seems prone to entrapment in local minima. And surprisingly,
parallel local optimization does little better than the standard algorithm.

In general, the more restricted the search space, the better the perfor-
mance of a single algorithm. When starting from the Karmarkar-Karp algo-
rithm’s solution, however, guidance toward that solution area is unnecessary
and counter-productive.
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Figure 31: Performance of local optimization and parallel local optimization
using the prepartitioning representation seeded with the Karmarkar-Karp
solution.
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representation random local
index rules | 3.18e-6 | 9.40e-7
weighted index rules | 4.92e-9 | 1.01e-8
single index rules | 4.73e-10 | 2.66e-9
prepartitioning | 9.90e-11 | 4.08e-10

Table 10: The results of the random generate-and-test and local optimiza-

tion algorithms using each of the representations that require a Karmarkar-
Karp-based decoder (30,000 iterations).

8.4 Summary of Results

As with the representations based on permuted lists, a comparison of tech-
niques based on the Karmarkar-Karp algorithm may help highlight the qual-
ities of each.

8.4.1 Representation Spaces

Table 10 is analogous to table 7, it compares the performance of the random
generate-and-test algorithm with that of local optimization in each of the
representations under consideration. As our previous results have indicated,
as the solution space becomes more restricted, a random solution is more
likely to be good, but local optimization will have a more difficult time
improving it.

8.4.2 Single Algorithms

Figures 32-35 show the performance of each algorithm using the difference
rules representations and prepartitioning. The performance of the random
generate-and-test algorithm shows the relative restrictiveness of each repre-
sentation space (figure 32). This basic hierarchy of performance holds for
all the search algorithms we have considered. Parallel optimization was the
most effective algorithm overall (figure 34), although random generate-and-
test was quite competitive. The genetic algorithm makes progress when
using the unrestricted index-based difference rules representation, although
its performance is quite poor when compared to the same algorithm without
crossover (i.e., parallel local optimization).
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Figure 32: The random generate-and-test algorithm using many different
representations. The density of good solutions in each representation in-

creases as the representation space shrinks and the operators are more re-
stricted.
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Figure 33: Local optimization using many different representations. The
enormous size of the search space when using difference rules representations
prevents the algorithm from becoming trapped in local minima.
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Figure 34: Parallel local optimization using many different representations.
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Figure 35: The genetic algorithm using many different representations.
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Figure 36: Performance of parallel local optimization using the preparti-

tioning, weighted difference rules, plain difference rules, and single-index

difference rules representations, all seeded with the Karmarkar-Karp solu-

tion.

8.4.3 Seeded Algorithms

Seeding was quite effective in all difference rules representations, as well

as prepartitioning (figure 36).

As noted earlier, representations that were

successful with unseeded algorithms because of the extra focus they provided

on the area of the search space around the Karmarkar-Karp solution tended

to be less successful when used with seeding. The restrictiveness of the

representation kept the algorithms from trying a variety of solutions (note
the larger standard deviation in results when using the unrestricted index-

based difference rules).
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8.5 Overall Summary

Figure 37 shows the performance of all algorithm and representation combi-
nations. The dominant slope of the plot shows that representation is clearly
the most important factor in determining performance, and that it plays an
even larger role than the choice of search algorithm.

9 Conclusion

By applying the genetic algorithm community’s notion of a solution encod-
ing to other algorithms, a difficult problem previously thought ill-suited to
stochastic search methods can be effectively solved. Using permuted lists
and a greedy decoder, a simulated annealer can, in thirty minutes, find a
solution superior to that constructed by the Karmarkar-Karp method. Us-
ing prepartitioning and the Karmarkar-Karp algorithm, one can surpass the
Karmarkar-Karp solution in seconds, and improve on it by orders of magni-
tude within three minutes. And by seeding our algorithms, one can achieve
excellent results immediately.
Our new approach to number-partitioning has shown that:

1. Stochastic search algorithms can find better solutions to instances of
number-partitioning than the plain Karmarkar-Karp algorithm if given
enough time (half an hour in the case of simulated annealing using
permuted lists and the greedy decoder, two and a half minutes for
random generate-and-test or local optimization using prepartitioning).

2. Given the right representation (such as index-based difference rules),
stochastic search around the Karmarkar-Karp solution can be very
effective.

3. The Karmarkar-Karp algorithm itself can be used as a starting point
for constructing an effective stochastic search space (such as the dif-
ference rules and prepartitioning representations).

Our comparisons of representation spaces have also yielded some in-
sights which may applicable to problems other than those related directly
to number-partitioning:

4. When using methods based on local optimization, such as simulated
annealing, it can be more important to have a continuously structured
space than one in which all solutions are exceptionally good (e.g.,
permuted lists and the plain greedy decoder).
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5. With some representations, a genetic algorithm affords no advantage
over parallel local optimization. Parallel local optimization is a good
optimizer in its own right, often much better than standard local op-
timization.

And above all:

6. The choice of the representation space in which a stochastic search
algorithm roams is more important than the choice of the algorithm
itself.

Since number-partitioning has been acknowledged as a difficult problem,
and one to which many others can be reduced, this work may have applica-
tion to many other optimization problems. A key advantage of the methods
we have investigated is that they take very little domain knowledge into
consideration; they perform a relatively blind search. They are also easy to
implement. Thus, these techniques may be easily applied to new problems.
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