Y. Liu and S. Koenig. Functional Value Iteration for Decision-Theoretic Planning with General Utility Functions. In AAAI Conference on Artificial Intelligence (AAAI), pages 1186-1193, 2006.

Abstract: We study how to find plans that maximize the expected total utility for a given MDP, a planning objective that is important for decision making in high-stakes domains. The optimal actions can now depend on the total reward that has been accumulated so far in addition to the current state. We extend our previous work on functional value iteration from one-switch utility functions to all utility functions that can be approximated with piecewise linear utility functions (with and without exponential tails) by using functional value iteration to find a plan that maximizes the expected total utility for the approximate utility function. Functional value iteration does not maintain a value for every state but a value function that maps the total reward that has been accumulated so far into a value. We describe how functional value iteration represents these value functions in finite form, how it performs dynamic programming by manipulating these representations and what kinds of approximation guarantees it is able to make. We also apply it to a probabilistic blocksworld problem, a standard test domain for decision-theoretic planners.

Download the paper in pdf.

Many publishers do not want authors to make their papers available electronically after the papers have been published. Please use the electronic versions provided here only if hardcopies are not yet available. If you have comments on any of these papers, please send me an email! Also, please send me your papers if we have common interests.

This page was automatically created by a bibliography maintenance system that was developed as part of an undergraduate research project, advised by Sven Koenig.