Abstract
X. Sun, S. Koenig and W. Yeoh. Generalized Adaptive A*. In International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS), pages 469-476, 2008.Abstract: Agents often have to solve series of similar search problems. Adaptive A* is a recent incremental heuristic search algorithm that solves series of similar search problems faster than A* because it updates the h-values using information from previous searches. It basically transforms consistent h-values into more informed consistent h-values. This allows it to find shortest paths in state spaces where the action costs can increase over time since consistent h-values remain consistent after action cost increases. However, it is not guaranteed to find shortest paths in state spaces where the action costs can decrease over time because consistent h-values do not necessarily remain consistent after action cost decreases. Thus, the h-values need to get corrected after action cost decreases. In this paper, we show how to do that, resulting in Generalized Adaptive A* (GAA*) that finds shortest paths in state spaces where the action costs can increase or decrease over time. Our experiments demonstrate that Generalized Adaptive A* outperforms breadth-first search, A* and D* Lite for moving-target search, where D* Lite is an alternative state-of-the-art incremental heuristic search algorithm that finds shortest paths in state spaces where the action costs can increase or decrease over time. Errata: This version of the paper corrects one omission. The user-supplied H-values do not only need to be consistent but also satisfy the additional triangle inequality H(s,s'') ≤ H(s,s') + H(s',s'') for all states s, s' and s'', that is also required by D* Lite.
Many publishers do not want authors to make their papers available electronically after the papers have been published. Please use the electronic versions provided here only if hardcopies are not yet available. If you have comments on any of these papers, please send me an email! Also, please send me your papers if we have common interests.
This page was automatically created by a bibliography maintenance system that was developed as part of an undergraduate research project, advised by Sven Koenig.