R.G. Simmons, R. Goodwin, K. Haigh, S. Koenig and J. O'Sullivan. Xavier: Experience with a Layered Robot Architecture. Sigart Bulletin, 8, (1-4), 22-33, 1997.

Abstract: Office delivery robots have to perform many tasks such as picking up and delivering mail or faxes, returning library books, and getting coffee. They have to determine the order in which to visit locations, plan paths to those locations, follow paths reliably, and avoid static and dynamic obstacles in the process. Reliability and efficiency are key issues in the design of such autonomous robot systems. They must deal reliably with noisy sensors and actuators and with incomplete knowledge of the environment. They must also act efficiently, in real time, to deal with dynamic situations. To achieve these objectives, we have developed a robot architecture that is composed of four layers: obstacle avoidance, navigation, path planning, and task planning. The layers are independent, communicating processes that are always active, processing sensory data and status information to update their decisions and actions. A version of our robot architecture has been in nearly daily use in our building since December 1995. As of January 1997, the robot has traveled more than 110 kilometers (65 miles) in servi ce of over 2500 navigation requests that were specified using our World Wide Web interface.

Download the paper in pdf.

Download the paper in gzipped postscript (large download time).

Many publishers do not want authors to make their papers available electronically after the papers have been published. Please use the electronic versions provided here only if hardcopies are not yet available. If you have comments on any of these papers, please send me an email! Also, please send me your papers if we have common interests.

This page was automatically created by a bibliography maintenance system that was developed as part of an undergraduate research project, advised by Sven Koenig.